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”It is possible to write endlessly on elliptic curves. (This is not a threat.)”[1]

Abstract

In the field of algebraic geometry, elliptic curves are deeply studied rich structures with far-fetching
computational applications to classical number theory and contemporary cryptography. It is a funda-
mental tool in Wiles’ proof of Fermat’s last theorem, as well as the main object of discussion in the Birch
and Swinnerton-Dyer conjecture, an open problem in number theory deemed worthy of being called
one of the Millennium Prize Problems by the Clay Mathematics Institute. In this project, three of the
four most fundamental theorems in the arithmetic of elliptic curves, namely the Hasse-Weil theorem,
the Nagell-Lutz theorem, and the Mordell-Weil theorem, are proven in their respective special forms.
Schoof’s algorithm for counting rational points over Galois fields will also be briefly discussed, allowing
for an application to integer factorisation and primality testing. An introductory section and a brief
appendix on fields, varieties, curves, and groups are also included for completion.
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Preface

The aim of this project is to provide a gentle introduction to the deep theory of elliptic curves. My approach
for the report is to deliver information in the form of general propositions and fundamental theorems,
providing adequate proofs whenever possible. Admittedly, almost all of the work here is unoriginal and
should have been done elsewhere in a similar fashion, but I have tried to make the flow of information as
coherent as possible, consulting various online resources as well as the two books [2] and [3].

As the theory of elliptic curves requires some technical background in algebraic geometry, which in turn
requires prerequisites in commutative algebra, both of which I have zero background in, the report is rather
superficial and may not provide as good of an insight to deeper theory. In addition to the first two years
of undergraduate mathematics, the first three preliminary appendices A.1, A.2, and A.3 will provide all the
required background to understand the first introductory section, while a few additional notions in appendix
A.4 will allow the rest to be fully accessible to middle-year undergraduates such as myself.

The first section introduces elliptic curves while hiding away the definitions and results taken from
algebraic geometry. For instance, the use of explicit Weierstrass equations and formulae for the group law is
an active attempt to avoid bringing in the Riemann-Roch theorem in algebraic geometry to prove that they
are related. As such, many proofs in this section are omitted, but are all given a direct reference.

The second section discusses elliptic curves over finite fields, which hinges on Hasse’s theorem to explain
Schoof’s algorithm for counting rational points. This in turn paves the path for applications in the last
section, as well as an alternative method of counting rational points in the following section. Proofs are
mostly given in full, except for an overly lengthy but elementary proof based on induction.

The third section discusses elliptic curves over the rationals, which can be split into two parts due
to the fundamental theorem of finitely generated abelian groups. The Nagell-Lutz theorem and reduction
modulo prime are two related ways to compute the torsion subgroup, while Mordell’s theorem proves that
the fundamental theorem indeed holds and provides a semi-workable method to compute the rank. Again,
proofs are mostly given in full, except for an assumption made in the last part of Mordell’s theorem.

The last section touches on some applications to classical arithmetic, including integer factorisation and
primality proving, as well as the basics of contemporary cryptography, which could potentially be explored
into if time permitted. There was originally an intention to cover complex elliptic curves in here instead,
leading to a brief exposition of Fermat’s last theorem, but was omitted due to lack of time.

The appendices include the aforementioned preliminaries, as well as proofs of two algorithms and listings
of code. The proofs are placed here as they are deemed less relevant and too lengthy to be included in the
main text. All code under code listings are in the functional Haskell programming language compiled by
the Glassgow Haskell Compiler, which is markedly different from many implementations publicly available.

I will also present several remarks regarding the style of the report, which is an attempt to imitate typical
lecture notes and textbooks. Definitions are all given in bold, while italics are reserved for less important
terms that are undefined, all of which provided with adequate examples whenever possible. Theorems are
important results and propositions those less important, while lemmas serve as intermediate checkpoints to
theorems and propositions. All of these are provided immediate proofs after their statements, or postponed
for later as Proof of statement. Remarks are largely irrelevant to the flow of the main discussion and can
be disregarded, but are included for interesting points, which may include previously undefined terms.

In terms of notation, most of the symbols I have used are those found in books, such as Fp, Z, or Q,
and should be unambiguous. While there are unfortunate cases of equivalent symbols being used to mean
completely different objects due to limitations of the English and Greek alphabet system, I have tried to
minimise these or make them clear from context. An example being f, g, h being used for general functions,
while homomorphisms are always denoted φ, ψ, χ or their variants. In examples like the following,

f (x, y) = xg (y) + yh (x) , g ∈ F [y] , h ∈ F [x] ,

g and h are always existentially quantified, while f and F are initially fixed or explicitly universally quantified.
A function f ′ will always be distinct, but possibly related, to the function f , while differentiation with respect
to a variable x will always be denoted d/dx or ∂/∂x. No distinction will be made between sums and formal
sums, or derivatives and formal derivatives, as they are clear from the context of this report.

I would like to thank my supervisor Prof Johannes Nicaise for his support and guidance throughout the
duration of this project. I had many doubts and questions early on, all of which he clarified with great detail.
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1 Introduction

Informally, an elliptic curve is a cubic curve with no cusps, self-intersections, or isolated points, whose
solutions are confined to a region of space topologically equivalent to a torus. It can represented by a cubic
equation in two variables, with its coefficients being elements of a specified field. Two elliptic curves over
the field of real numbers are illustrated below.

1.1 Definition

A formal definition is as follows.

Definition (Elliptic curve). An elliptic curve over a perfect field F is an ordered pair (E,OE) such that
E is a smooth projective plane curve of genus one over F and OE ∈ E is an F -rational base point.

This definition uses several terms in other fields of mathematics, which are briefly covered in the appen-
dices. In particular, one of the many characterisations of a perfect field is given in Appendix A.1, while
several fundamental notions in projective and algebraic geometry such as projective planes and smoothness
are laid out in Appendix A.2. Appendix A.3 defines a curve and the genus due to the genus-degree formula.

Remark. The genus in algebraic geometry is usually defined in general literature by the Riemann-Roch
theorem, which does coincide with the topological definition.

As the report is a gentle introduction to elliptic curves, further delving into the vast world of algebraic
geometry will be avoided, and so explicit formulae will be provided whenever possible. To this end, the
various definitions in the appendix can be summarised in the following proposition.

Proposition 1.1.1. Let (E,OE) be an elliptic curve over a perfect field F . Then:

1. I (E) = 〈e〉 for some homogeneous irreducible polynomial e of three variables,

2. any point P ∈ E has multiplicity mP (e) = 1, and

3. e have roots confined to a torus and is cubic.

Proof. This follows directly from the appendices.

Thus an elliptic curve can be fully defined in terms of its defining polynomial, which would need to
satisfy certain conditions. As per the appendix, an abuse of notation will be used to denote an elliptic curve
(E,OE) over F given by a polynomial e, namely

E : e (X,Y, Z) = 0 ⇐⇒ E : e (x, y) = 0,

which are respectively the homogenised and dehomogenised forms of a polynomial that can be used inter-
changeably. For the rest of this section, let E : e (x, y) = 0 and E′ : e′ (x, y) = 0 be two elliptic curves over a
perfect field F with algebraic closure K = F . The notion of an isomorphism, as for any algebraic geometric
structure, would be useful. This is captured in the following definition.

Definition (Isomorphism). (E,OE) and (E′,OE′) are isomorphic, denoted by (E,OE) ∼= (E′,OE′), iff
there is an isomorphism φ : E → E′ such that φ (OE) = OE′ .
Remark. Isomorphism defines an equivalence relation of elliptic curves, such that two elliptic curves from
an equivalence class are indistinguishable.

Again, this abstract notion can be made explicit later by the defining polynomials of the elliptic curves.
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1.2 Weierstrass equations

The definition of an elliptic curve boils down to its defining polynomial, which will be made explicit in this
subsection. A family of curves related to elliptic curves will be defined beforehand.

Definition (Weierstrass curve). A Weierstrass curve is a projective plane curve W over F given by the
Weierstrass equation

W : w (x, y) = 0 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ F,

with associated quantities:

b2 = a2
1 + 4a2, b4 = a1a3 + 2a4, b6 = a2

3 + 4a6, b8 = a2
1a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a2

4,

c4 = b22 − 24b4, c6 = 36b2b4 − b32 − 216b6, ∆W = 9b2b4b6 − b22b8 − 8b34 − 27b26, jW = c34/∆W .

It holds that 4b8 = b2b6 − b24 and 1728∆W = c34 − c26. It can be easily verified that Weierstrass curves,
with the additional condition of smoothness, would almost satisfy Proposition 1.1.1. The only remaining
requirement is having an additional base point in its definition, which can be easily fixed as follows.

Definition (Point at infinity). The point at infinity of E is the point O = [0, 1, 0].

In contrast to general projective geometry, the line at infinity L : l (X,Y, Z) = Z = 0 intersects a
Weierstrass curve only at O, where X = Z = 0 and Y 6= 0. As such, any other point would have Z 6= 0 and
can be treated as an affine point (a, b). Now since 0, 1 ∈ F , the point O is actually an F -rational point, and
can be paired with a smooth Weierstrass curve W to give an elliptic curve (W,O). Conversely, any elliptic
curve can also be explicitly given by a smooth Weierstrass curve through an isomorphism as follows.

Proposition 1.2.1. (E,OE) ∼= (W,O) for some smooth Weierstrass curve W over F .

Proof. Omitted, see III.3.1a in [2].

There are even computerised algorithms to transform a general smooth projective plane cubic curve with
a given arbitrary F -rational flex point, or an elliptic curve, into a Weierstrass curve with the F -rational
point O. The following algorithm summarises the process in [4] proven in the appendix.

Algorithm 1.2.2 (Transformation of a cubic curve into Weierstrass form). Input: a cubic curve E over F
with an F -rational flex point P ∈ E. Output: E in Weierstrass form.

1. Get the unique tangent line L at P .

2. Find the intersection L ∩ E to get a point Q ∈ L \ E distinct to P .

3. Write down an invertible matrix M =
(
Q P R

)
, where R ∈ {[1, 0, 0] , [0, 1, 0] , [0, 0, 1]}.

4. Transform [X,Y, Z] 7→M [X,Y, Z]
T

to get a scaled Weierstrass equation.

5. Rescale [X,Y, Z] 7→ [X,Y, cZ] for some c ∈ K∗ to get a Weierstrass equation.

The following example illustrates an implementation of the algorithm.

Example. Let E : e (X,Y, Z) = 0 : X3 + Y 3 = Z3 be a smooth projective plane cubic curve over R with an
R-rational flex P = [1,−1, 0] ∈ E. Then the unique tangent at P is

L :

(
1

1, 0, 0

)
∂e

∂X

∣∣∣∣
P

(X − 1) +

(
1

0, 1, 0

)
∂e

∂Y

∣∣∣∣
P

(Y + 1) +

(
1

0, 0, 1

)
∂e

∂Z

∣∣∣∣
P

Z = 3 (X + Y ) = 0,

which intersects E at X3 + (−X)
3

+ Z3 = 0, or Z = 0. Hence L ∩ E = {P} and let Q = [1,−1, 1] ∈ L \ E.
Then there is an invertible affine transformation matrix

M =

 1 1 1
−1 −1 0
1 0 0

 =⇒ M−1 =

0 0 1
0 −1 −1
1 1 0

 .
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such that the affine transformation [X,Y, Z] 7→M [X,Y, Z]
T

gives

(X + Y + Z)
3

+ (−X − Y )
3

= X3 =⇒ 3Y 2Z + 6XY Z + 3Y Z2 = X3 − 3X2Z − 3XZ2 − Z3.

Thus the affine transformation [X,Y, Z] 7→
[
X,Y, 1

3Z
]

gives a Weierstrass curve

E : Y 2Z + 2XY Z + 1
3Y Z

2 = X3 −X2Z − 1
3XZ

2 − 1
27Z

3.

This characterisation allows a smooth Weierstrass curve to act as an alternative definition for an elliptic
curve, and will be done for ease of future discussions. For the rest of this subsection, let E and E′ be
respectively given by the two Weierstrass curves over F

W : w (x, y) = 0 : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, ai ∈ F,

W ′ : w′ (x, y) = 0 : y2 + a′1xy + a′3y = x3 + a′2x
2 + a′4x+ a′6, a′i ∈ F,

and write them interchangeably as an abuse of notation by

(E,OE) = E : e (x, y) = 0 ⇐⇒ (W,O) = W : w (x, y) = 0,

(E′,OE′) = E′ : e′ (x, y) = 0 ⇐⇒ (W ′,O) = W ′ : w′ (x, y) = 0.

With these explicit equations at hand, the abstract notion of isomorphism between elliptic curves can now
be made explicit by considering affine transformations of these equations, which is given below.

Proposition 1.2.3. E ∼= E′ iff there is an affine transformation

(x, y) 7→
(
u2x+ r, u3y + u2sx+ t

)
, u ∈ K∗, r, s, t ∈ K

from W to W ′.

Proof. Omitted, see III.3.1b in [2].

Remark. This affine transformation also transforms the coefficients and quantities of W and W ′ by

a1 7→
a1 + 2s

u
, a2 7→

a2 − sa1 + 3r − s2

u2
, a3 7→

a3 + ra1 + 2t

u3
,

a4 7→
a4 − sa3 + 2ra2 − (t+ rs) a1 + 3r2 − 2st

u4
, a6 7→

a6 + ra4 − ta3 + r2a2 − rta1 + r3 − t2

u6
,

b2 7→
b2 + 12r

u2
, b4 7→

b4 + rb2 + 6r2

u4
, b6 7→

b6 + 2rb4 + r2b2 + 4r3

u6
,

b8 7→
b8 + 3rb6 + 3r2b4 + r3b2 + 3r4

u8
, c4 7→

c4
u4
, c6 7→

c6
u6
, ∆W 7→

∆W

u12
, jW 7→ jW

which can be tediously verified.

Again, this will be treated as the definition of isomorphism between elliptic curves. Now in the original
definition of a Weierstrass curve, it is given by a Weierstrass equation that is somewhat perverse. This
long Weierstrass equation can in fact be greatly simplified, provided there are small restrictions on the
characteristic of the underlying field.

Proposition 1.2.4. If char (F ) 6= 2, then

E : y2 = x3 +Ax2 +Bx+ C, A,B,C ∈ F.

If char (F ) 6= 3 as well, then
E : y2 = x3 +Ax+B, A,B ∈ F.

6
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Proof. Let char (F ) 6= 2, then the affine transformation (x, y) 7→
(
x, y − 1

2 (a1x+ a3)
)

gives an isomorphism
from E to the curve given by the medium Weierstrass equation

y2 = x3 +Ax2 +Bx+ C, A = 1
4b2, B = 1

2b4, C = 1
4b6.

Let char (F ) 6= 3 as well, then the affine transformation (x, y) 7→
(
x− 1

12b2, y
)

gives an isomorphism from
E to the curve given by the short Weierstrass equation

y2 = x3 +Ax+B, A = − 1
48c4, B = − 1

864c6.

Medium and short Weierstrass equations greatly reduce the tedium when manipulating them, since
there is a symmetry to the equation itself, giving two y opposite in sign for each x. As there are only
two characteristics that do not permit the affine transformation to a short Weierstrass equation, they will
be disregarded for ease of future discussions. Hence always assume that char (F ) /∈ {2, 3} and write the
Weierstrass equations of W and W ′ as

W : w (x, y) = 0 : y2 = x3 +Ax+B, A,B ∈ F,

W ′ : w′ (x, y) = 0 : y2 = x3 +A′x+B′, A′, B′ ∈ F.
The following example illustrates the affine transformation to a short Weierstrass equation.

Example. Let
E : y2 + 2xy + 1

3y = x3 − x2 − 1
3x−

1
27

be the Weierstrass curve over R from the example above. Since char (R) = 0 /∈ {2, 3}, there is an affine
transformation (x, y) 7→

(
x, y − x− 1

6

)
such that(

y − x− 1
6

)2
+ 2x

(
y − x− 1

6

)
+ 1

3

(
y − x− 1

6

)
= x3 − x2 − 1

3x−
1
27 =⇒ y2 = x3 + 1

108 ,

which is a short Weierstrass equation.

Among the quantities associated with Weierstrass curves, most are used in defining the simplified Weier-
strass equations, while the last two, the discriminant ∆W and the j-invariant jW , encode various properties
of the curve itself. As only short Weierstrass equations are considered, these two quantities can be restated
in an equivalent form in terms of the new coefficients. The discriminant is redefined as follows.

Definition (Discriminant). The discriminant of W is

∆W = −16
(
4A3 + 27B2

)
.

The discriminant is transformed as ∆W 7→ ∆W /u
12 by the affine transformation in Proposition 1.2.3.

It encodes behaviours at the singularities of Weierstrass curves, and whether they exist. The following
proposition allows for an easy method of checking the smoothness of a Weierstrass curve.

Proposition 1.2.5. W is smooth iff ∆W 6= 0.

Proof. Assume that W is not smooth and P = (a, b) ∈W is singular. Then

0 =
∂w

∂X

∣∣∣∣
P

= −3a2 −A, 0 =
∂w

∂Y

∣∣∣∣
P

= 2b, 0 =
∂w

∂Z

∣∣∣∣
P

= b2 − 2Aa− 3B.

Since b = 0 and A = −3a2, it holds that 0 = 2Aa + 3B = −6a3 + 3B, so B = 2a3. Hence ∆W =

−16
(

4
(
−3a2

)3
+ 27

(
2a3
)2)

= 0. Conversely assume that ∆W = −16
(
4A3 + 27B2

)
= 0, such that the

discriminant of x3 + Ax + B is −
(
4A3 + 27B2

)
= 0. Then there is a repeated root x = a ∈ K, so

P = (a, 0) ∈W and

W : y2 = (x− a)
2

(x− a′) , a′ ∈ K.
Then

∂w

∂x

∣∣∣∣
P

= −2 (a− a) (a− a′)− (a− a)
2

= 0,
∂w

∂y

∣∣∣∣
P

= 2 (0) = 0.

Thus P is singular and W is not smooth.

7



The Arithmetic of Elliptic Curves David Kurniadi Angdinata

Hence W is eligible as an elliptic curve iff ∆W 6= 0, and by the proof above, iff x3 +Ax+B has distinct
factors. The following example illustrates the discriminant.

Example. Let E be the Weierstrass curve over R from the example above. Then

∆E = −16
(

4 (0)
3

+ 27
(

1
108

)2)
= − 1

27 < 0,

so E is smooth. Thus E is an elliptic curve over R.

The j-invariant, defined only for smooth Weierstrass curves where ∆W 6= 0, is redefined as follows.

Definition (j-invariant). The j-invariant of W is

jW = 1728

(
4A3

4A3 + 27B2

)
.

The j-invariant is transformed as jW 7→ jW by the affine transformation in Proposition 1.2.3. It stays
invariant between elliptic curves that are isomorphic, which gives its name. The following proposition allows
for an alternative characterisation of an isomorphism.

Proposition 1.2.6. E ∼= E′ iff jW = jW ′ .

Proof. Assume that E ∼= E′, then the affine transformation maps jW to jW , so jW = jW ′ . Conversely
assume that jW = jW ′ , so

1728

(
4A3

4A3 + 27B2

)
= 1728

(
4A′3

4A′3 + 27B′2

)
=⇒ A3B′2 = A′3B2.

If A = 0, then B 6= 0 and A′ = 0. Then there is an affine transformation

(x, y) 7→

(
3

√
B

B′
x,

√
B

B′
y

)
=⇒ B

B′
y2 =

B

B′
x3 +A′

3

√
B

B′
x+B′,

such that y2 = x3 + B′ = x3 + A′x + B′. If B = 0, then A 6= 0 and B′ = 0. Then there is also an affine
transformation

(x, y) 7→

(√
A

A′
x,

4

√
A

A′

3

y

)
=⇒

√
A

A′

3

y2 =

√
A

A′

3

x3 +A′
√
A

A′
x+B′,

such that y2 = x3 +A′x = x3 +A′x+B′. Otherwise A 6= 0 and B 6= 0, then there is an affine transformation
from W to W ′ equal to the two affine transformations above. Thus E ∼= E′.

While j-invariant affine transformations preserve elliptic curves, this does not necessarily hold for their
set of rational points. The following illustrates the j-invariant.

Example. Let E be the elliptic curve over R from the example above. Then

jE = −1728

(
4 (0)

3

4 (0)
3

+ 27
(

1
108

)2
)

= 0.

Hence E is isomorphic to any elliptic curve with zero j-invariant. Now let E′ : y2 = x3 +B for some B ∈ R
such that jE′ = 0, then there is an affine transformation

(x, y) 7→

(
1

3 3
√

2
2
B
x,

1

2
√

3
3
B
y

)
.

from E to E′. Thus E ∼= E′.

The definition and isomorphism classes of elliptic curves are now fully characterised.

Remark. There are alternate characterisations of elliptic curves by other families of curves, which will not
be discussed here. One of these is the Legendre form of a Weierstrass curve, written as

E : y2 = x (x− 1) (x− λ) , λ ∈ K \ {0, 1} .

This is merely a transformation, but proves useful when studying elliptic curves over the reals.
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1.3 Group law

An elliptic curve has an additional group theoretic property that makes it an algebraic group. This subsection
provides a full definition of the additive group induced by an elliptic curve, as well as an attempt to prove
that it is indeed one. The following lemma will be used in the definition of the addition operation.

Lemma 1.3.1. Let P = [a, b, c] ∈ E and Q = [a′, b′, c′] ∈ E be points. Then:

1. if P 6= Q, there is a unique line joining P and Q given by

L : (bc′ − b′c)X + (a′c− ac′)Y + (ab′ − a′b)Z = 0,

2. if P = Q, there is a unique tangent at P given by

L :
(
−3a2 −Ac2

)
X + 2bcY +

(
b2 − 2Aac− 3Bc2

)
Z = 0,

3. there is a unique third point R ∈ E such that L intersects E at P , Q, and R.

Proof. Let L : l (X,Y, Z) = 0.

1. If P 6= Q, then

l (X,Y, Z) =

XY
Z

 ·
ab

c

×
a′b′
c′

 .

2. If P = Q, then

l (X,Y, Z) =

(
1

1, 0, 0

)
∂e

∂X

∣∣∣∣
P

(X − a) +

(
1

0, 1, 0

)
∂e

∂Y

∣∣∣∣
P

(Y − b) +

(
1

0, 0, 1

)
∂e

∂Z

∣∣∣∣
P

(Z − c) .

3. Since deg (l) = 1 and deg (gcd (e, l)) = 0, Bézout’s theorem gives that L intersects E at three points
up to multiplicity. Assume that P = [a, b, c] 6= Q = [a′, b′, c′]. If IP (e, l) = 1 and IQ (e, l) = 1, then
there is a unique third point R ∈ E such that R 6= P,Q and IR (e, l) = 1. Otherwise IP (e, l) = 2 or
IQ (e, l) = 2, then there is also a unique third point R = P or R = Q respectively. Otherwise assume
that P = Q = [a, b, c]. Since {l} = TP (l) ∈ TP (e), it holds that IP (e, l) > mP (e)mP (l) = 1. If
IP (e, l) = 2, then there is a unique third point R ∈ E such that R 6= P and IR (e, l) = 1. Otherwise
IP (e, l) = 3, then there is also a unique third point R = P .

The following example illustrates the unique lines and tangents above.

Example. Let E : y2 = x3 + 2x + 1 be an elliptic curve over R with points P = (0,−1) ∈ E and
Q = (1, 2) ∈ E. Then the unique line joining P and Q is L : y = 3x − 1, while the tangent at P is
LP : y = −x− 1, and the tangent at Q is LQ : y = 5

4x+ 3
4 .

Instead of defining the addition operation right away, it is clearer to define an intermediate operation
with the above lemma as follows.

Definition (∗). ∗ : E ×E → E is defined by P ∗Q = R, where R is the unique third point in Lemma 1.3.1.

The addition operation can then be defined immediately in terms of this intermediate operation, which
are both symmetric and hence commutative.

Definition (+). + : E × E → E is defined by P +Q = (P ∗Q) ∗ O.

This definition is chosen carefully so as to make a group law possible. While it might be slightly convo-
luted, there is an easy geometrical interpretation. While P ∗Q ∈ E is simply the unique third intersection
point of two points P ∈ E and Q ∈ E, reflecting it along the horizontal axis gives P + Q. This motivates
writing out several explicit formulae relating the affine coordinates of P , Q and P + Q, which will allow
equation manipulations in later sections. The following algorithm summarises the explicit formulae for +,
which are proven in the appendix.

9
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Algorithm 1.3.2 (Group law explicit formulae). Input: points P,Q ∈ E. Output: P +Q.

P +Q =


R P = (a, b) , Q = (a′, b′) , a 6= a′

S P = Q = (a, b) , b 6= 0

P Q = O
O P = Q = (a, 0)

,

where

R =

(
(A+ aa′) (a+ a′) + 2 (B − bb′)

(a− a′)2 ,

(
Ab′ − a′2b

)
(3a+ a′) +

(
a2b′ −Ab

)
(a+ 3a′)− 4B (b− b′)

(a− a′)3

)
,

S =

(
a4 − 2Aa2 − 8Ba+A2

4b2
,
a6 + 5Aa4 + 20Ba3 − 5A2a2 − 4ABa−A3 − 8B2

8b3

)
.

The first case is referred to as the addition formula, while the second case is referred to as the duplication
formula. The last two cases allows the definition of a negation operation used for inverses in the group law.
This is referred to as the negation formula, where −O = O and − (a, b) = (a,−b). Now the group law
explicit formulae for characteristic two and three are more complicated and given in full under code listings
in the appendix. The following example illustrates an implementation of the algorithm in the appendix.

Example. Let E be the elliptic curve over R and let L, LP , LQ be the lines for the points P,Q ∈ E

from the example above. Then L intersects E at (3x− 1)
2

= x3 + 2x + 1, or x (x− 1) (x− 8) = 0. Hence

P ∗Q = (8, 23), so P +Q = (8,−23). Similarly LP intersects E at (−x− 1)
2

= x3 +2x+1, or x2 (x− 1) = 0,

while LQ intersects E at
(

5
4x+ 3

4

)2
= x3 + 2x + 1, or (x− 1)

2
(16x+ 7) = 0. Thus P ∗ P = (1,−2) and

Q ∗Q = (−7/16, 13/64), so P + P = (1, 2) and Q+Q = (−7/16,−13/64).

An alternative formulation for + is such that three points P,Q,R ∈ E are collinear iff

P +Q+R = P + (Q+R) = (P +Q) +R = O.

This formulation will help in proving that certain maps obey some property later, but also allows for a
pictorial description for ∗. As per the notation in the appendix: the first pane describes (∗)2; the second
pane describes (∗)3; the third pane describes (∗)1 and (∗)5; the fourth pane describes (∗)4; the unillustrated
line at infinity describes (∗)6.

10
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The group structure of an elliptic curve with respect to + can now be stated in the following theorem.

Theorem 1.3.3 (Group law). (E,O,+) is an abelian group.

As full proofs for associativity such as in III.3.4 of [2] require further prerequisites on algebraic curves,
particularly on divisors and differentials, only the sketch of an alternative geometric proof is given, of which
the special case of nine pairwise distinct points is assumed.

Proof. The unique right identity is O ∈ E and unique right inverses are given by the negation formula.
Symmetry of + gives the unique identity, unique right inverses, and commutativity. Associativity of +
can be checked with various methods, such as by tediously verifying cases of the explicit formulae in [5].
Alternatively, let P,Q,R ∈ E be points, and let

• L1 : l1 (X,Y, Z) = 0 be the line joining P , Q, and P ∗Q = − (P +Q),

• L2 : l2 (X,Y, Z) = 0 be the line joining Q, R, and Q ∗R = − (Q+R),

• L3 : l3 (X,Y, Z) = 0 be the line joining P +Q, O, and (P +Q) ∗ O = − (P +Q),

• L4 : l4 (X,Y, Z) = 0 be the line joining Q+R, O, and (Q+R) ∗ O = − (Q+R),

• L5 : l5 (X,Y, Z) = 0 be the line joining P +Q, R, and (P +Q) ∗R = − ((P +Q) +R), and

• L6 : l6 (X,Y, Z) = 0 be the line joining P , Q+R, and P ∗ (Q+R) = − (P + (Q+R)),

assuming that these points are pairwise distinct except for − ((P +Q) +R) and − (P + (Q+R)). Now let

C1 : (l1l4l5) (X,Y, Z) = 0, C2 : (l2l3l6) (X,Y, Z) = 0,

be cubics such that

I = {O, P,Q,R, P +Q,Q+R,− (P +Q) ,− (Q+R)} ⊆ C1 ∩ C2.

Then Bézout’s theorem gives that E, C1, and C2 pairwise intersect at nine points up to multiplicity. Hence

E ∩ C1 = I ∪ {− ((P +Q) +R)} , E ∩ C2 = I ∪ {− (P + (Q+R))} , C1 ∩ C2 = I ∪ {S} ,

for some ninth point S ∈ C1 ∩ C2. Since I ⊆ E, the Cayley-Bacharach theorem gives S ∈ E, so

− ((P +Q) +R) = S = − (P + (Q+R)) .

Thus (P +Q) +R = P + (Q+R).

With an abelian group at hand, some group theoretic properties of an elliptic curve can be explored. In
particular, restricting an elliptic curve onto its F -rational points retain the group structure.

Proposition 1.3.4. (E (F ) ,O,+) ≤ (E,O,+).

Proof. Since 0, 1 ∈ F , it holds that O ∈ E (F ). Let P,Q ∈ E (F ) be points, then the explicit formulae give
−P, P +Q ∈ E (F ). Thus (E (F ) ,O,+) ≤ (E,O,+).

Additionally, the n-torsion points of an elliptic curve also form a group, provided O is included. The
following example illustrates the structure of the 2-torsion subgroup.

Example. Let P = (a, b) ∈ E [2], then b = −b = 0. Since x3 + Ax + B = 0 has three distinct solutions,
there are three distinct points P1 = (a1, 0), P2 = (a2, 0), and P3 = (a3, 0) in E [2]. Thus (E [2] ,O,+) =
({O, P1, P2, P3} ,O,+) ∼=

(
Z2

2, 0,+
)
.

Hence b = 0 iff ord (a, b) = 2.

Remark. In fact, the n-torsion points of E form a subgroup E [n] of E, such that (E [p] ,O,+) ∼=
(
Z2
p, 0,+

)
if char (F ) - p, and either (E [pe] ,O,+) ∼= ({0} , 0,+) or (E [pe] ,O,+) ∼= (Zpe , 0,+) for all e ∈ Z>0 if
char (F ) | p.
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1.4 Isogenies

Prior to this section, the only maps between elliptic curves that have been defined were affine transformations.
Now that the group law is defined, group homomorphisms can also be considered. However, a slightly
different approach to this will be taken with the following definition, noting that morphisms of curves are
either constant or surjective.

Definition (Isogeny). An isogeny from E to E′ is a surjective morphism φ : E → E′ such that φ (O) = O.

As isomorphisms are defined as invertible morphisms that preserve the point at infinity, they are isogenies
as well. Now despite the simple condition, isogenies are actually group homomorphisms, which also preserve
the point at infinity. The following proposition then gives an equivalent definition.

Proposition 1.4.1. Let φ : E → E′ be an isogeny. Then φ is a group homomorphism.

Proof. Omitted, see III.4.8 in [2].

The following is a typical example of an isogeny.

Example. The multiplication by n map [n] : E → E defined by [n] (P ) = nP is an isogeny such that
Ker ([n]) = E [n].

Let φ : E → E′ be an isogeny. While isomorphisms are easily characterised by j-invariant affine trans-
formations, the smaller restriction on isogenies allow for a wider range of coordinate transformations that
still obey the group homomorphism property. In particular, rational functions that define isogenies can be
characterised by the following lemma.

Lemma 1.4.2. Let f ∈ F (E) be a rational function. Then

f (x, y) =
f ′ (x) + f ′′ (x) y

f ′′′ (x)
, f ′, f ′′ ∈ F [x] , f ′′′ ∈ F [x] \ {0} .

Proof. Let f = g/h for some g ∈ F [x, y] and some h ∈ F [x, y] \ {0}. Then g (x, y) =
∑n
i=0 gi (x) yi for some

gi ∈ F [x], some hi ∈ F [x] \ {0}, and some n,m ∈ Z≥0, so:

g (x, y) =

n∑
i=0

gi (x) yi =

n/2∑
i=0

g2i (x) y2i +

n/2∑
i=0

g2i+1 (x) y2i+1

=

n/2∑
i=0

g2i (x)
(
x3 +Ax+B

)i
+

n/2∑
i=0

g2i+1 (x)
(
x3 +Ax+B

)i
y

= g′ (x) + g′′ (x) y, g′, g′′ ∈ F [x] .

Similarly h (x, y) = h′ (x) + h′′ (x) y for some h′, h′′ ∈ F [x]. Thus

f (x, y) =
g (x, y)

h (x, y)
=
g′ (x) + g′′ (x) y

h′ (x) + h′′ (x) y
=

(g′ (x) + g′′ (x) y) (h′ (x)− h′′ (x) y)

(h′ (x) + h′′ (x) y) (h′ (x)− h′′ (x) y)

=
g′ (x)h′ (x)− g′′ (x)h′′ (x) y2 − g′ (x)h′′ (x) y + g′′ (x)h′ (x) y

h′ (x)
2 − h′′ (x)

2
y2

=
g′ (x)h′ (x)− g′′ (x)h′′ (x)

(
x3 +Ax+B

)
− g′ (x)h′′ (x) y + g′′ (x)h′ (x) y

h′ (x)
2 − h′′ (x)

2
(x3 +Ax+B)

=
f ′ (x) + f ′′ (x) y

f ′′′ (x)
, f, f ′ ∈ F [x] , f ′′ ∈ F [x] \ {0} .
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An entire isogeny can now be characterised similarly, noting the group homomorphism property. The
following proposition gives the explicit standard form of an isogeny, defined in terms of its image.

Proposition 1.4.3. Let P = (a, b) ∈ E \Ker (φ) be a point. Then

φ (P ) =

(
r (a)

s (a)
,
u (a)

v (a)
b

)
r, u ∈ F [x] , s, v ∈ F [x] \ {0} ,

such that gcd (r, s) = gcd (u, v) = 1.

Proof. Let φ = [φx, φy, φz] for some φx, φy, φz ∈ F (E). Since φ (P ) 6= O, it holds that φz (P ) 6= 0, so

φ (P ) = [φx (P ) , φy (P ) , φz (P )] =

(
φx (P )

φz (P )
,
φy (P )

φz (P )

)
.

Then φx (P ) /φz (P ) , φy (P ) /φz (P ) ∈ F (E) are rational functions, so

φx (P )

φz (P )
=
ψ (a) + ψ′ (a) b

ψ′′ (a)
,

φy (P )

φz (P )
=
χ (a) + χ′ (a) b

χ′′ (a)
, ψ, ψ′, χ, χ′ ∈ F [x] , ψ′′, χ′′ ∈ F [x] \ {0} .

Since φ (−P ) = −φ (P ),(
ψ (a) + ψ′ (a) (−b)

ψ′′ (a)
,
χ (a) + χ′ (a) (−b)

χ′′ (a)

)
= φ (−P ) = −φ (P ) =

(
ψ (a) + ψ′ (a) b

ψ′′ (a)
,−χ (a) + χ′ (a) b

χ′′ (a)

)
.

Hence ψ′ (a) = χ (a) = 0. Now let g = gcd (ψ,ψ′′) and g′ = gcd (χ′, χ′′). Thus let

r =
ψ

g
, u =

χ′

g′
∈ F [x] , s =

ψ′′

g
, v =

χ′′

g′
∈ F [x] \ {0} ,

such that gcd (r, s) = gcd (u, v) = 1.

In the above proof, the assumption that a point P ∈ E is not in the kernel allows for the isogeny to be
scaled appropriately. If P is in the kernel, it would be mapped to the point at infinity, which would mean
that φz, and hence s or v, is zero. With this in mind, an abuse of notation allows for the standard form to
be written as

φ (x, y) =

(
r (x)

s (x)
,
u (x)

v (x)
y

)
, r, s, u, v ∈ F [x] , gcd (r, s) = gcd (u, v) = 1,

remembering that φ (O) = O, and φ (a, b) = O whenever s (a) = 0 or v (a) = 0 for any point (a, b) ∈ E. The
following example rewrites the multiplication by two map with the familiar duplication formula.

Example. By the duplication formula,

[2] (x, y) =

(
x4 − 2Ax2 − 8Bx+A2

4y2
,
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2

8y3

)
=

(
x4 − 2Ax2 − 8Bx+A2

4 (x3 +Ax+B)
,
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2

8 (x3 +Ax+B)
2 y

)
,

which is in standard form. Then [2] (a, b) = O iff b2 = a3 +Aa+B = 0 for any point (a, b) ∈ E.

There are also two useful notions of an isogeny, the first of which is its degree.

Definition (Isogeny degree). The degree of φ is deg (φ) = max {deg (r) ,deg (s)}.

The degree of the constant morphism, while not an isogeny, is defined to be zero. The degrees of two
trivial isogenies are given in the following example.

Example. The identity isogeny, or the multiplication by one map [1] has degree deg ([1]) = max {1, 1} = 1.
Similarly, the multiplication by negative one map [−1] also has degree deg ([−1]) = 1.
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The second invariant notion of an isogeny is its separability.

Definition (Separable isogeny). φ is separable iff d (r/s) /dx 6= 0.

Remark. The isogeny φ induces an injection φ∗ : F (E′) → F (E) of function fields. Its separability is
equivalently formulated as that of F (E) /φ∗F (E′), which reflects the definition of a separable extension.

The following example of the multiplication by two map illustrates these two notions.

Example. [2] has degree deg ([2]) = max {4, 3} = 4 and is separable since

d

dx

(
x4 − 2Ax2 − 8Bx+A2

4 (x3 +Ax+B)

)
=
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2

4 (x3 +Ax+B)
2 6= 0.

Separability always holds in char (F ) = 0, but there are inseparable isogenies in char (F ) = p for some
prime p ∈ Z>0. More on separable isogenies will be discussed in a later section. Now since + is a morphism,
the set of all isogenies between E and E′, together with the constant morphism, forms an abelian group
Hom (E,E′) under the operation

(φ+ ψ) (P ) = φ (P ) + ψ (P ) .

Isogenies in the group can also compose to form a ring when E = E′ in the following definition.

Definition (Endomorphism). φ is an endomorphism of E iff E = E′. The endomorphism ring End (E)
of E is the ring of all endomorphisms of E with respect to + and ◦, where

(φ ◦ ψ) = φ (ψ (P )) .

The following example gives an endomorphism of elliptic curves over fields of non-zero characteristic that
is of particular interest.

Example. Let F = Fp for some prime p ∈ Z>0. Then the Frobenius endomorphism Fr : E → E defined by
Fr (x, y) = (xp, yp) is an inseparable endomorphism with degree deg (Fr) = p.

The Frobenius endomorphism will be formally defined in a later section. On a final note, endomorphisms
with inverses also form a multiplicative subgroup.

Definition (Automorphism). φ is an automorphism of E iff it is an endomorphism and an isomorphism.
The automorphism group Aut (E) is the group of all automorphisms of E.

Unlike the endomorphism ring, the automorphism group of an elliptic curve is easily characterised.

Proposition 1.4.4.

Aut (E) ∼=


Z6 jE = 0

Z4 jE = 1728

Z2 jE /∈ {0, 1728}
.

Proof. Let φ ∈ Aut (E). Then φ induces a j-invariant affine transformation

(x, y) 7→
(
u2x+ r, u3y + u2sx+ t

)
, u ∈ K∗, r, s, t ∈ K

from W to itself. Since φ is an automorphism, it holds that r = s = t = 0, and A = A/u4 and B = B/u6.
If jE = 0, then A = 0 and B 6= 0, so u6 = 1. Hence u is a sixth root of unity and Aut (E) ∼= Z6. If
jE = 1728, then A 6= 0 and B = 0, so u4 = 1. Hence u is a fourth root of unity and Aut (E) ∼= Z4. Otherwise
jE /∈ {0, 1728}, then A 6= 0 and B 6= 0, so u6 = 1 and u4 = 1. Hence u2 = 1 and u is a second root of unity.
Thus Aut (E) ∼= Z2.

Remark. If char (F ) ∈ {2, 3}, then the above list of cases for Aut (E) with jE = 0, 1728 is not exhaustive.
In particular, if char (F ) = 2, then Aut (E) ∼= Z4 n Z3, otherwise char (F ) = 3, then Aut (E) ∼= Z3 nQ8.

The above definitions are defined for E (F ) as well, and are written HomF (E,E′), EndF (E), and
AutF (E) respectively.
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2 Elliptic curves over finite fields

When studying elliptic curves over a field or a family of fields, an important question would be to determine
the set of solutions existing in that field. For instance, it is desirable to count the rational solutions in that
field, which would have far fetching applications in number theory and cryptography. For finite fields, there
is a finite process to compute the rational points that would always work. The following example illustrates
a naive approach for this.

Example. Let E : y2 = x3 + x + 1 be an elliptic curve over F5. Since there are five distinct values for
x ∈ F5 = {0, 1, 2, 3, 4}, computing x3 + x+ 1 for each value of x and checking if it is a quadratic residue y2

in F5 gives the following

• If x = 0, then y2 = x3 + x+ 1 = 1 = 12 = 42, so y = 1 or y = 4.

• If x = 1, then y2 = x3 + x+ 1 = 3 is not a quadratic residue.

• If x = 2, then y2 = x3 + x+ 1 = 1 = 12 = 42, so y = 1 or y = 4.

• If x = 3, then y2 = x3 + x+ 1 = 1 = 12 = 42, so y = 1 or y = 4.

• If x = 4, then y2 = x3 + x+ 1 = 4 = 22 = 32, so y = 2 or y = 3.

Since O ∈ E (F5), there are exactly nine F5-rational points

E (F5) = {O, (0, 1) , (0, 4) , (2, 1) , (2, 4) , (3, 1) , (3, 4) , (4, 2) , (4, 3)} .

Hence E (F5) ∼= Z2
3 or E (F5) ∼= Z9. Now Lagrange’s theorem gives that ord (P ) = 3 or ord (P ) = 9 for any

non-zero point P ∈ E (F5). Let P = (0, 1) ∈ E (F5). By the addition and duplication formulae, it holds that
3P = (2, 1) and 9P = O, so it has order ord (P ) = 9 and is a generator of E (F5). Thus E (F5) ∼= Z9.

This finite process is straightforward in the sense that it always terminates. However, as it runs with an
asymptotic time complexity of O (q) for a finite field Fq, the approach becomes rather intractable for large
prime powers q ∈ Z>0. This section will attempt to develop several techniques to compute E (Fq), or more
specifically |E (Fq)|, which will span the next few subsections. Now let E be an elliptic curve over the perfect
field F = Fq = Fpe for some prime p ∈ Z>0 \ {2, 3} and some e ∈ Z>0, given by the Weierstrass curve

E : y2 = x3 +Ax+B, A,B ∈ F,

with the group of rational points E (F ) = (E (F ) ,O,+).

2.1 Hasse’s theorem: inseparable isogenies

The following theorem bounds the maximum cardinality of the group of rational points.

Theorem 2.1.1 (Hasse). |E (F )| = q − t+ 1 for some trace t ∈ Z such that |t| ≤ 2
√
q.

Remark. This is a special case of the Hasse-Weil theorem, which states that |C (F )| = q − t + 1 for some
|t| ≤ 2g

√
q for any projective algebraic curve C over F of genus g.

Proof of Hasse’s theorem concerns the properties of separable and inseparable isogenies, which are given
by separable and inseparable polynomials. The following lemma allows inseparable polynomials to be written
in a reduced form.

Lemma 2.1.2. Let f ∈ F [x] be an inseparable polynomial. Then f (x) = g (xp) for some g ∈ F [x].

Proof. Let f (x) =
∑n
i=0 aix

i =
∑
ai 6=0 aix

mi for some ai ∈ F and some n,mi ∈ Z>0. Since f is separable,

it holds that 0 = df/dx =
∑
ai 6=0miaix

mi−1. Then miai = 0 for each ai 6= 0, so p | mi and mi = pk for

some k ∈ Z≥0. Thus f (x) =
∑
ai 6=0 ai (xp)

k
= g (xp) for some g ∈ F [x].
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The polynomial g would then be of a smaller degree than f , which justifies why it is deemed as reduced.
A similar argument allows inseparable isogenies to be reduced, so let E′ be another elliptic curve over F
given by the Weierstrass curve

E′ : y2 = x3 +A′x+B′, A′, B′ ∈ F,

and let φ : E → E′ be an isogeny. The following lemma again allows inseparable isogenies to be written in
a reduced form.

Lemma 2.1.3. Let φ be inseparable. Then

φ (x, y) =

(
r′ (xp)

s′ (xp)
,
u′ (xp)

v′ (xp)
yp
)
, r′, s′, u′, v′ ∈ F [x] .

Proof. Since φ is inseparable,

0 =
d

dx

(r
s

)
=

1

s2

(
dr

dx
s− ds

dx
r

)
=⇒ dr

dx
s =

ds

dx
r.

Since gcd (r, s) = 1, it holds that r | dr/dx. Since deg (dr/dx) < deg (r), it also holds that dr/dx = 0,
so r is inseparable and r (x) = r′ (xp) for some r′ ∈ F [x]. Similarly s is inseparable, so ds/dx = 0 and
s (x) = s′ (xp) for some s′ ∈ F [x]. Now(u

v
y
)2

=
(r
s

)3

+A′
r

s
+B′ =⇒ u2s3y2 = v2t, t = r3 +A′rs2 +B′s3.

Then dr/dx = 0 and ds/dx = 0 gives dt/dx = 0, which gives d
(
u2y2/v2

)
/dx = d

(
t/s3

)
/dx = 0. Hence

u (x)
2
y2 = y′ (xp) and v (x)

2
= v′ (xp) for some y′, v′ ∈ F [x] similarly. Now since y2 = x3 + Ax + B has

distinct factors, let y2 = (x− α1) (x− α2) (x− α3) for some αi ∈ K. Then each (x− αi) is a factor of
y′ (xp), so (xp − αpi ) = (x− αi)p is also a factor of y′ (xp) and of u (x) y2. Hence y′ (xp) = t′ (xp)

(
y2
)p

for
some t′ ∈ F [x]. Now any factor (x− α) of u (x) is such that (x− α)

p
= (xp − αp) is a factor of t′ (xp). Since

gcd (p, 2) = 1, it holds that ((x− α)
p
)
2

is also a factor of t′ (xp), so t′ (xp) = u′ (xp)
2

for some u′ ∈ F [x].

Thus u (x)
2
y2 = u′ (xp)

2
(yp)

2
and

φ (x, y) =

(
r (x)

s (x)
,
u (x)

v (x)
y

)
=

(
r′ (xp)

s′ (xp)
,±u

′ (xp)

v′ (xp)
yp
)
.

Now the above lemma might feel slightly arbitrary due to the presence of xp and yp in the isogeny.
This brings the discussion to a particular endomorphism defined as follows, which would simplify the above
expression.

Definition (Frobenius endomorphism). The Frobenius endomorphism Fr : E → E is defined by
Fr (x, y) = (xp, yp) if e = 1. The q-th power Frobenius endomorphism Frq : E → E is defined by
Frq (x, y) = (xq, yq).

The Frobenius endomorphism is also injective by virtue of the field characteristic, and hence bijective,
which allows for an inverse isogeny to be easily defined.

Remark. A remarkable equivalent characterisation of a perfect field is that the Frobenius endomorphism of
a field with positive characteristic is an automorphism, which induces a similar property for isogenies defined
over this field.

The above lemmas for inseparable φ can now be written in terms of the Frobenius endomorphism φ =
φ′ ◦ Fr, where

φ′ (x, y) =

(
r′ (x)

s′ (x)
,
u′ (x)

v′ (x)
y

)
, r′, s′, u′, v′ ∈ F [x] ,

which is a reduced standard form of an isogeny. In fact, any isogeny can be written as the composition of a
Frobenius endomorphism. The following proposition summarises the above lemmas nicely.

16
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Proposition 2.1.4. φ = φs ◦ Frn for some separable isogeny φs : E → E′ and some n ∈ Z≥0.

Proof. If φ is separable, then let φs = φ and n = 0. Otherwise φ = φ1 ◦ Fr for some φ1 : E → E′. If
φi : E → E′ is inseparable, then φi = φi+1 ◦ Fri for some φi+1 : E → E′. Since deg (φ) is finite, by
induction, there is some n ∈ Z≥0 such that n ≤ deg (φ) and φn : E → E′ is separable. Thus let φs = φn.

Remark. Since F is a perfect field, the isogeny φ can also be written as φ = Frn ◦ φ′s for some separable
isogeny φ′s : E → E′ such that deg (φs) = deg (φ′s). If F is not a perfect field, the Frobenius endomorphism
is not necessarily an automorphism, so Im (Fr) ⊆ E and the domain of φs is only a subset of E.

Hence any isogeny can be decomposed as the unique composition of a separable isogeny and a Frobenius
endomorphism, so φ will be written as

φ = φs ◦ Frn, φs ∈ F [E] , n ∈ Z≥0,

where φs is a separable isogeny. Two additional notions of degree of an isogeny can then be defined as
follows.

Definition (Separable degree). The separable degree of φ is degs (φ) = deg (φs). The inseparable
degree of φ is degi (φ) = pn.

It is clear that the degree of an isogeny is related to these two degrees by

deg (φ) = degs (φ) degi (φ) .

If an isogeny is separable, its decomposition to a Frobenius endomorphism is trivial, so its separable degree
is equal to its degree and its inseparable degree is one.

Remark. An inseparable isogeny does not necessarily have its inseparable degree equal to its degree and
its separable degree equal to one. If this is the case, then the isogeny is purely inseparable. However,
purely inseparable isogenies are not always inseparable, as with the case for degree one isogenies, which are
isomorphisms, with all three degree equal to one.

The following example illustrates the two additional notions of degree.

Example. Fr has separable degree degs (Fr) = 1 and inseparable degree degi (Fr) = p, while [2] has
separable degree degs ([2]) = deg ([2]) = 4 and inseparable degree degi ([2]) = 1.

This digression leads to an important proposition relating the kernel and the separable degree of an
isogeny as follows, which is crucial to the proof of Hasse’s theorem.

Proposition 2.1.5. |Ker (φ)| = degs (φ).

Proof. Let

S1 = {(a, 0) ∈ E′} = E [2] , S2 = {(0, b) ∈ E′} , S3 = {(a, b) ∈ E′ | deg (r − as) < deg (φs)} ,

S4 =

{
(a, b) ∈ E′

∣∣∣∣∣ (rs) (a′) = a,
d

dx

(r
s

)
(a′) = 0, (a′, b′) ∈ E

}
, S = S1 ∪ S2 ∪ S3 ∪ S4.

Then |S1| ≤ 3 and |S2| ≤ 2 are finite. Since deg (φs) is finite, it holds that |S3| ≤ 2 deg (φs) is also finite.
Since φs is separable, it holds that d (r/s) /dx 6= 0, so |S4| ≤ deg (r) is also finite. Hence S is finite and
E′ \ S is non-empty. Now let P = (a, b) ∈ E′ \ S and P ′ = (a′, b′) ∈ E be points, and let ψ = r− as ∈ K [x]
be such that deg (ψ) = deg (φs). Then φs (P ′) = P iff (r/s) (a′) = a and (u/v) (a′) b′ = b. Since b 6= 0 gives
u (a′) 6= 0, this also holds iff ψ (a′) = r (a′)−as (a′) = 0 and b′ = (v/u) (a′) b. Hence

∣∣φ−1
s (P )

∣∣ is the number
of distinct roots of ψ. Suppose for a contradiction that a′ is a repeated root of ψ. Then

0 = ψ (a′) = r (a′)− as (a′) , 0 =
dψ

dx
(a′) =

dr

dx
(a′)− a ds

dx
(a′) ,

17
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such that (r
s

)
(a′) = a,

dr

dx
(a′) s (a′) =

ds

dx
(a′) r (a′) =⇒ d

dx

(r
s

)
(a′) = 0,

so P ′ ∈ S4, which is a contradiction. Hence ψ splits over K and
∣∣φ−1
s (P )

∣∣ = deg (ψ). Since χ : Ker (φs)→
φ−1
s (P ) defined by χ (Q) = Q+ P is a bijection, it holds that |Ker (φs)| =

∣∣φ−1
s (P )

∣∣. Since Fr is bijective,
so are Frn and Frn|Ker(φ) : Ker (φ)→ Ker (φs), so |Ker (φ)| = |Ker (φs)|. Thus

|Ker (φ)| = |Ker (φs)| =
∣∣φ−1
s (P )

∣∣ = deg (ψ) = deg (φs) = degs (φ) .

Motivated by the endomorphism ring, composition of isogenies with appropriate domains can be seen as
multiplication. In particular, their degrees multiply out naturally in the following lemma.

Lemma 2.1.6. Let E′′ be an elliptic curve over F such that ψ : E′ → E′′ is an isogeny. Then

deg (ψ ◦ φ) = deg (ψ) deg (φ) , degs (ψ ◦ φ) = degs (ψ) degs (φ) , degi (ψ ◦ φ) = degi (ψ) degi (φ) .

Proof. Since φ and ψ are surjective, so is ψ ◦ φ, so the first isomorphism theorem gives

E

Ker (φ)
∼= E′,

E′

Ker (ψ)
∼= E′′,

E

Ker (ψ ◦ φ)
∼= E′′,

such that

|Ker (ψ ◦ φ)| = |E|
|E′′|

=
|E′| |Ker (φ)|
|E′| / |Ker (ψ)|

= |Ker (ψ)| |Ker (φ)| .

Hence degs (ψ ◦ φ) = degs (ψ) degs (φ). Now let ψ = ψs ◦ Frm and ψ ◦ φ = χs ◦ Frk for some isogenies
ψs : E′ → E′′ and χs : E → E′′ and some m, k ∈ Z≥0. Then

χs ◦ Frk = ψs ◦ Frm ◦ φs ◦ Frn.

Since degs (Fr) = 1, it holds that degs (Frm) = 1, so

degs (Frm ◦ φs) = degs (Frm) degs (φs) = degs (φs) .

Then Frm ◦ φs = χ′s ◦ Frm for some isogeny χ′s : E → E′ such that deg (φs) = deg (χ′s), so

χs ◦ Frk = ψs ◦ χ′s ◦ Frn+m.

Since ψs ◦ χ′s is separable, it holds that k = n+m. Hence degi (ψ ◦ φ) = degi (ψ) degi (φ). Thus

deg (ψ ◦ φ) = degs (ψ) degi (ψ) degs (φ) degi (φ) = deg (ψ) deg (φ) .

This paves the way to the proof of the following proposition on inseparable isogenies, which is also crucial
to the proof of Hasse’s theorem. Now let ψ : E → E′ be an isogeny.

Proposition 2.1.7. Let φ and ψ be inseparable, and let E′′ and E′′′ be elliptic curves over F such that
χ : E′′ → E and χ′ : E′ → E′′′ are isogenies. Then φ ◦ χ, χ′ ◦ φ, and φ− ψ are inseparable.

Proof. Since degi (φ ◦ χ) = degi (φ) degi (χ) > 1 and degi (χ′ ◦ φ) = degi (φ) degi (χ) > 1, it holds that φ ◦ χ
and χ′ ◦φ are inseparable. Now let φ = φs ◦Frn and ψ = ψs ◦Frm for some separable isogenies φs : E → E′

and ψs : E → E′ and some n,m ∈ Z>0. Then

φ− ψ = φs ◦ Frn − ψs ◦ Frm =
(
φs ◦ Frn−1 − ψs ◦ Frm−1

)
◦ Fr.

Thus φ− ψ is inseparable.

Hence adding a separable isogeny with an inseparable isogeny will give a separable isogeny. Returning to
the initial motivation, letting E = E′ = E′′ = E′′′ in the above results implies that the set of all inseparable
endomorphisms of E is an ideal of End (E).
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2.2 Hasse’s theorem: quadratic forms

Now the degree map deg : Hom (E,E′)→ Z≥0 has a particular property that allows a form of the Cauchy-
Schwarz inequality to be defined on it. This property can be defined with the aid of the following notion.

Definition (Bilinear pairing). A pairing b : G × G → F of an group G is bilinear iff b (x+ y, z) =
b (x, z) + b (y, z) and b (x, y + z) = b (x, y) + b (x, z) for any x, y, z ∈ G.

In other words the pairing is linear in both components. A bilinear pairing can be defined in terms of the
degree map, with the set of isogenies Hom (E,E′) as the abelian group, which has the following property.

Definition (Quadratic form). A quadratic form is a map d : A → F of an abelian group A such that
d (x) = d (−x) for any x ∈ A, and the associated pairing bd : A×A→ F defined by

bd (x, y) = 1
2 (d (x+ y)− d (x)− d (y))

is bilinear.

The associated bilinear pairing is usually written 〈·, ·〉 : A × A → F with context, and inherits all the
definitions from linear algebra, such as the notions of being symmetric and positive definite.

Remark. Conversely, for any symmetric bilinear pairing 〈·, ·〉 : A× A→ F , the map d : A→ F defined by
d (x) = 〈x, x〉 is a quadratic form, so notions related to symmetric bilinear pairings and quadratic forms are
interchangeable, provided char (F ) 6= 2.

Hence an aim would be to show that the degree map indeed is a positive definite quadratic form, as
symmetry follows by definition. This could be done by proving a particular fundamental property that holds
for all quadratic forms, which is given in the following theorem. Now denote −φ = [−1] ◦ φ and

φ+ · · ·+ φ = nφ = [n] ◦ φ, ψ + · · ·+ ψ = mψ = [m] ◦ ψ, n,m ∈ Z,

to ease the proofs below.

Theorem 2.2.1 (Parallelogram law). deg (φ+ ψ) + deg (φ− ψ) = 2 deg (φ) + 2 deg (ψ).

Proof. If φ = 0 or ψ = 0, then deg (φ+ ψ) + deg (φ− ψ) = 2 deg (φ) + 2 deg (ψ) holds. If φ = ψ or φ = −ψ,
then

deg (φ+ ψ) + deg (φ− ψ) = deg (2φ) = deg ([2]) deg (φ) = 4 deg (φ) = 2 deg (φ) + 2 deg (ψ)

also holds. Otherwise let

φ (x, y) = (w1, z1) , ψ (x, y) = (w2, z2) , (φ+ ψ) (x, y) = (w3, z3) , (φ− ψ) (x, y) = (w4, z4) ,

for each wi = ri (x) /si (x) and zi = ui (x) y/vi (x) for some homogeneous polynomials ri, si, ui, vi ∈ F [x]
such that each gcd (ri, si) = gcd (ui, vi) = 1 and

deg (φ) = deg (r1) = deg (s1) , deg (ψ) = deg (r2) = deg (s2) ,

deg (φ+ ψ) = deg (r3) = deg (s3) , deg (φ− ψ) = deg (r4) = deg (s4) .

By the addition formula,

w3 =
(A+ w1w2) (w1 + w2) + 2 (B − z1z2)

(w1 − w2)
2 , w4 =

(A+ w1w2) (w1 + w2) + 2 (B + z1z2)

(w1 − w2)
2 .

Adding these two equations gives (w3 + w4) (w1 − w2)
2

= 2 (A+ w1w2) (w1 + w2) + 4B, so

r3s4 + r4s3

s3s4
=

2 (As1s2 + r1r2) (r1s2 + r2s1) + 4Bs2
1s

2
2

(r1s2 − r2s1)
2 .
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Hence let

R = r3s4 + r4s3, S = s3s4, U = 2 (As1s2 + r1r2) (r1s2 + r2s1) + 4Bs2
1s

2
2, V = (r1s2 − r2s1)

2
.

Similarly multiplying these two equations gives

w3w4 (w1 − w2)
4

= (A+ w1w2)
2

(w1 + w2)
2

+ 4B (A+ w1w2) (w1 + w2) + 4B2 − 4z2
1z

2
2

=
(
A2 + 2Aw1w2 + w2

1w
2
2

) (
w2

1 + 2w1w2 + w2
2

)
+ 4B

(
Aw1 +Aw2 + w2

1w2 + w1w
2
2

)
+ 4B2 − 4

(
w3

1 +Aw1 +B
) (
w3

2 +Aw2 +B
)

= A2w2
1 − 2A2w1w2 +A2w2

2 − 4Bw3
1 + 4Bw2

1w2 + 4Bw1w
2
2 − 4Bw3

2

− 2Aw3
1w2 + 4Aw2

1w
2
2 − 2Aw1w

3
2 + w4

1w
2
2 − 2w3

1w
3
2 + w2

1w
4
2

= A2 (w1 − w2)
2 − 4Bw2

1 (w1 − w2) + 4Bw2
2 (w1 − w2)

− 2Aw1w2 (w1 − w2)
2

+ w2
1w

2
2 (w1 − w2)

2

=
(
A2 − 2Aw1w2 + w2

1w
2
2

)
(w1 − w2)

2 − 4B
(
w2

1 − w2
2

)
(w1 − w2)

= (A− w1w2)
2

(w1 − w2)
2 − 4B (w1 + w2) (w1 − w2)

2
,

such that w3w4 (w1 − w2)
2

= (A− w1w2)
2 − 4B (w1 + w2), so

r3r4

s3s4
=

(As1s2 − r1r2)
2 − 4B (r1s2 + r2s1) s1s2

(r1s2 − r2s1)
2 .

Hence also let
T = r3r4, W = (As1s2 − r1r2)

2 − 4B (r1s2 + r2s1) s1s2,

such that
deg (R) = deg (S) = deg (T ) = deg (φ+ ψ) + deg (φ− ψ) ,

deg (U) = deg (V ) = deg (W ) = 2 deg (φ) + 2 deg (ψ) .

Suppose for a contradiction that gcd (R,S, T ) 6= 1, so g | gcd (R,S, T ) for some irreducible homogeneous
polynomial g ∈ F [x]. If g | r3, then g - s3, so g | s4 and g - r4 gives g - r3s4 +r4s3 = R. Otherwise g - r3, then
g | r4, so g - s4 and g | s3 also gives g - r3s4 + r4s3 = R, which is a contradiction. Hence gcd (R,S, T ) = 1.
Now let g′ = gcd (U, V,W ), so

U = g′U ′, V = g′V ′, W = g′W ′, U ′, V ′,W ′ ∈ F [x] , gcd (U ′, V ′,W ′) = 1,

such that
deg (U ′) = deg (V ′) = deg (W ′) = deg (U)− deg (g′) .

Combining the two equations from adding and multiplying gives a ratio

[R,S, T ] =

[
R

S
, 1,

T

S

]
=

[
U

V
, 1,

W

V

]
= [U, V,W ] = [g′U ′, g′V ′, g′W ′] = [U ′, V ′,W ′] ,

such that R = U ′, T = W ′, and S = V ′. Hence

deg (φ+ ψ) + deg (φ− ψ) = deg (R) = deg (U ′) = deg (U)− deg (g′) ≤ deg (U) = 2 deg (φ) + 2 deg (ψ) .

Now replacing (φ, ψ) 7→ (φ+ ψ,ψ + φ) gives the converse

2 deg (φ+ ψ) + 2 deg (φ− ψ) ≥ deg (φ+ ψ + φ− ψ) + deg (φ+ ψ − φ+ ψ)

= deg ([2]) deg (φ) + deg ([2]) deg (ψ)

= 4 deg (φ) + 4 deg (ψ) ,

Thus deg (φ+ ψ) + deg (φ− ψ) = 2 deg (φ) + 2 deg (ψ).
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An application of the parallelogram law would be a simple inductive proof of the following lemma, which
has many other proofs.

Lemma 2.2.2. Let n ∈ Z. Then deg ([n]) = n2.

Proof. deg ([0]) = 0 and deg ([1]) = 1. Assume that deg ([m]) = m2 for any m ≤ n for some n ∈ Z≥0. Then

deg ([n+ 1]) = 2 deg ([n]) + 2 deg ([1])− deg ([n− 1]) = 2n2 + 2− (n− 1)
2

= n2 + 2n+ 1 = (n+ 1)
2
.

Hence deg ([n]) = n2 for any n ∈ Z≥0 by induction. Similarly deg ([−n]) = deg ([−1]) deg ([n]) = deg ([n])
for any n ∈ Z≥0. Thus deg ([n]) = n2 for any n ∈ Z.

In fact, the above lemma can be generalised for arbitrary isogenies, as follows.

Lemma 2.2.3. Let n,m ∈ Z. Then deg (nφ+mψ) = n2 deg (φ) + 2nm 〈φ, ψ〉+m2 deg (ψ).

Proof. Since 〈φ, φ〉 = 1
2 (deg (2φ)− 2 deg (φ)) = 2 deg (φ)− deg (φ) = deg (φ), it holds that

deg (nφ+mψ) = 〈nφ+mψ,nφ+mψ〉 = n2 deg (φ) + 2nm 〈φ, ψ〉+m2 deg (ψ) .

The initial aim can then be proven in the following lemma.

Lemma 2.2.4. deg : Hom (E,E′)→ Z≥0 is a positive definite quadratic form.

Proof. deg (−φ) = deg ([−1]) deg (φ) = deg (φ). Let χ : E → E′ be an isogeny. Since

deg (φ+ ψ + χ) = 2 deg (φ+ ψ) + 2 deg (χ)− deg (φ+ ψ − χ)

= 2 deg (φ+ ψ) + 2 deg (χ)− 2 deg (φ− χ)− 2 deg (ψ) + deg (φ− ψ − χ)

= 2 deg (φ+ ψ) + 2 deg (χ)− 2 deg (φ− χ)− 2 deg (ψ)

+ 2 deg (ψ + χ) + 2 deg (φ)− deg (φ+ ψ + χ) ,

it holds that deg (φ+ ψ + χ) = deg (φ+ ψ) + deg (χ)− deg (φ− χ)− deg (ψ) + deg (ψ + χ) + deg (φ). Hence

〈φ+ ψ, χ〉 = 1
2 (deg (φ+ ψ + χ)− deg (φ+ ψ)− deg (χ))

= 1
2 (−deg (φ− χ)− deg (ψ) + deg (ψ + χ) + deg (φ))

= 1
2 (−2 deg (φ)− 2 deg (χ) + deg (φ+ χ)− deg (ψ) + deg (ψ + χ) + deg (φ))

= 1
2 (deg (φ+ χ)− deg (φ)− deg (χ) + deg (ψ + χ)− deg (ψ)− deg (χ)) = 〈φ, χ〉+ 〈ψ, χ〉 .

Similarly 〈φ, ψ + χ〉 = 〈φ, ψ〉+ 〈φ, χ〉 by symmetry. Thus since deg (φ) > 0 for any φ 6= 0 and deg (0) = 0, it
holds that deg is a positive definite quadratic form.

Replacing the degree map with any map satisfying the parallelogram law also gives a quadratic form.
The following variant of the Cauchy-Schwarz inequality generalises to quadratic forms similarly.

Theorem 2.2.5 (Cauchy-Schwarz). 〈φ, ψ〉2 ≤ deg (φ) deg (ψ).

Proof. Let n = −〈φ, ψ〉 and m = deg (φ). Then

0 ≤ 〈φ, ψ〉2 deg (φ)− 2 〈φ, ψ〉2 deg (φ) + deg (φ)
2

deg (ψ) = deg (φ)
(

deg (φ) deg (ψ)− 〈φ, ψ〉2
)
.

Thus 〈φ, ψ〉2 ≤ deg (φ) deg (ψ).

Hasse’s theorem can finally be proven.

Proof of Theorem 2.1.1. A point P = [a, b, c] ∈ E (F ) iff aq = a, bq = b, and cq = c by Fermat’s little
theorem, or [aq, bq, cq] = [a, b, c]. This holds iff the q-th power Frobenius endomorphism Frq : E → E is such
that Frq (P ) = P , or P ∈ Ker (Frq − [1]). Hence E (F ) = Ker (Frq − [1]). Since [1] is separable and Frq
is inseparable with degree deg (Frq) = degi (Frq) = q, it holds that Frq − [1] is separable, so

Ker (Frq − [1]) = degs (Frq − [1]) = deg (Frq − [1]) = deg (Frq)−2 〈Frq, [1]〉+deg ([1]) = q−2 〈Frq, [1]〉+1.

Then let t = 2 〈Frq, [1]〉, so Cauchy-Schwarz gives t2 = 4 〈Frq, 1〉2 ≤ 4 deg (Frq) deg ([1]) = 4q. Thus
|E (F )| = q − t+ 1 for |t| ≤ 2

√
q.
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2.3 Riemann hypothesis

Hasse’s theorem, or more accurately the Hasse-Weil theorem, is also sometimes referred to as the Riemann
hypothesis for smooth projective algebraic curves over finite fields. It has an alternative formulation that
makes it analogous to the famous classical Riemann hypothesis, an open problem in number theory deemed
worthy of being called one of the Millennium Prize Problems by the Clay Mathematics Institute with a
monetary prize of a million dollars. The conjecture revolves around zeroes of the following complex function.

Definition (Riemann zeta function). The Riemann zeta function ζ : C→ C is defined for any < (s) > 1 as
the power series ζ (s) =

∑∞
n=1 n

−s, and extended to C by analytic continuation.

Riemann himself proved the analytic continuation, as well as a functional equation satisfied by the
Riemann zeta function given by

ξ (s) = ξ (1− s) , ξ (s) = 1
2

√
π
−s
s (s− 1) Γ

(
1
2s
)
ζ (s) .

The conjecture is then formulated in [6] as follows.

Conjecture 2.3.1 (Riemann). Let s ∈ C be such that s /∈ −2Z>0. If ζ (s) = 0, then < (s) = 1
2 .

The connection to this still open problem can be seen via a powerful theorem known as the Weil con-
jectures, proposed by Weil and proven in steps later by himself, Dwork, Deligne, Grothendieck, and many
others. The so-called conjectures also involve a related zeta function encoding the number of rational points
of a smooth projective algebraic varieties variety, which is defined as follows.

Definition (Local zeta function). The local zeta function of a projective algebraic variety V over F is
the power series

ZV (t) = exp

( ∞∑
n=1

|V (Fn)| t
n

n

)
, |V (Fn)| = 1

(n− 1)!

dn

dtn
ln (ZV (t))

∣∣∣∣
t=0

.

where Fn = Fqn .

The following example is a trivial application the local zeta function.

Example. Let V (0) be the trivial projective algebraic variety over F . Then |V (Fn)| = 1 for any n ∈ Z>0,
so

ZV (t) = exp

( ∞∑
n=1

tn

n

)
= exp

(
ln

(
1

1− t

))
=

1

1− t
.

His three conjectures are then formulated as follows, which are easily satisfied by the above example.

Theorem 2.3.2 (Weil conjectures). Let V be a smooth projective algebraic variety over F of dimension
n ∈ Z≥0.

• Rationality. ZV (t) = P (t) / (1− t) (1− qnt) ∈ Q [t], where

P (t) =

2n−1∏
i=1

Pi (t)
(−1)i+1

, Pi ∈ Z [t] .

• Functional equation. Let ε ∈ Z be the Euler characteristic of V . Then

ZV

(
1

qnt

)
= ±√qnεtεZV (t) .

• Riemann hypothesis. Let Si =
{
α ∈ C | |α| = √qi

}
and Pi be as per above. Then each

Pi (t) =
∏
α∈S′i

(1− αt) ,

over some S′i ⊆ Si such that Pi ∈ Z (t).

Proof. Omitted, see [7], [8], and [9].
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Remark. There is a fourth Weil conjecture on Betti numbers that states if V is a reduction modulo q of a
smooth projective algebraic variety W over a number field, then deg (Pi) is the ith topological Betti number
of W for each Pi.

In the special case where V is a smooth projective algebraic curve C of genus gC , its dimension is n = 1
and its Euler characteristic is ε = 2 − 2gC , which greatly simplifies Theorem 2.3.2. The following is a
formulation for the elliptic curve E of genus one.

Theorem 2.3.3 (Weil conjectures for elliptic curves). ZE satisfies the following properties.

• Rationality. ZE (t) = P (t) / (1− t) (1− qt) ∈ Q (t) for some P ∈ Z (t).

• Functional equation. ZE (1/qt) = ±ZE (t).

• Riemann hypothesis. P (t) =
∏
α (1− αt) for some α ∈ C such that |α| = √q and P ∈ Z (t).

As full proofs of the Weil conjectures, even just for elliptic curves, requires further prerequisites on
algebraic geometry, particularly on the Tate module and the Weil pairing, only the final part of the proof is
given, of which the following lemma will be assumed.

Lemma 2.3.4. |E (Fn)| = 1 + qn − αn − αn for some α ∈ C such that |α| = √q.
Proof. Omitted, see V.2.3 in [2].

Letting n = 1 in the above lemma for Theorem 2.3.3 gives ||E (F )| − 1− q| = |−α− α| ≤ 2 |α| = 2
√
q,

which proves Hasse’s theorem once again. The final part of the proof is as follows.

Proof of Theorem 2.3.3. The above lemma on the zeta function gives α ∈ C such that |α| = √q, and

ln (ZE (t)) =

∞∑
n=1

(1 + qn − αn − αn)
tn

n
= − ln (1− t)− ln (1− qt) + ln (1− αt) + ln (1− αt) .

Thus

ZE (t) =
(1− αt) (1− αt)
(1− t) (1− qt)

, |α| = √q,

which satisfies rationality and the Riemann hypothesis, and gives the functional equation

ZE

(
1

qt

)
=

(
1− α

qt

)(
1− α

qt

)
(

1− 1

qt

)(
1− 1

t

) =

qt2 − (α+ α) t+
αα

q

(qt− 1) (t− 1)
=

(1− αt) (1− αt)
(1− t) (1− qt)

= ZE (t) .

By the above proof, the connection to the classical Riemann hypothesis can then be seen as follows. An
analogue of the Riemann zeta function can be defined for elliptic curves over F as ζE (s) = ZE (q−s). It then
satisfies a similar functional equation,

ζE (s) = ZE
(
q−s
)

= ZE
(
qs−1

)
= ζE (1− s) .

If ζE (s) = 0, Theorem 2.3.3 also gives

(1− αq−s) (1− αq−s)
(1− q−s) (1− q1−s)

= 0, |α| = √q.

Hence 1 = αq−s or 1 = αq−s, so q<(s) = |qs| = √q. Thus < (s) = 1
2 .

Remark. The Weil conjectures is a generalisation of Riemann hypothesis, which those for elliptic curves is
in turn a special case of. In general, there are many zeta functions analogous to the Riemann zeta function.
One such family of zeta functions is for a finitely generated algebra R over Z, defined as

ζR (s) =
∏
M

1

1− |R/M |−s
,

over all maximal ideals M ⊂ R.
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2.4 Schoof’s algorithm

In light of Hasse’s theorem, there were improved algorithms to compute E (F ) similar to the naive approach
described in a previous subsection. Lagrange’s theorem gives that ord (P ) | |E (F )| for any point P ∈ E (F ),
the latter of which is bounded by Hasse’s theorem. After obtaining a random point P ∈ E (F ) by inspection
or otherwise, simply try all values of n ∈ Z such that q − 2

√
q + 1 ≤ n ≤ q + 2

√
q + 1 to catch whenever

nP = O. If this n is unique, the point P is a generator of E (F ) and hence |E (F )| = ord (P ) = n. Otherwise
obtain a different random point P ∈ E (F ) and repeat. This process can be illustrated with a prior example.

Example. Let E : y2 = x3 + x+ 1 be an elliptic curve over F5 and P = (0, 1) ∈ E (F5) be a point. Hasse’s
theorem gives |E (F5)| = 5− t+ 1 for some |t| ≤ 2

√
5, so |E (F5)| ∈ {2, . . . , 10}. Then the addition formula

gives only 9P = O, so |E (F5)| = 9.

There is then room for algorithms like baby-step giant-step that trades a space complexity of O
(√
q
)

for a time complexity of also O
(√
q
)
, speeding up the computation further. However, discussions here will

be on a different algorithm for computing |E (F )|, which also builds upon Hasse’s theorem. A high-level
description of the deterministic polynomial time algorithm is as follows.

Algorithm 2.4.1 (Schoof’s algorithm). Input: an elliptic curve E over Fq. Output: |E (Fq)|.

1. Generate a set S of distinct primes excluding p with product N ∈ Z>0, such that N > 4
√
q.

2. Compute t mod n for each n ∈ S.

3. Obtain t mod N from each t mod n.

4. Reduce t into a value between −2
√
q and 2

√
q.

5. Calculate |E (F )| = q − t+ 1.

The proof of this algorithm will be done in reverse. The first and last two steps will be made clear later,
but several results will be proven for the second and third. In particular, the former generates a system of
prime congruences for the latter, which in turn employs a classical theorem in number theory as follows.

Theorem 2.4.2 (Chinese remainder). Let n1, . . . , nk ∈ Z>1 be pairwise coprime with product N ∈ Z>0,
and let t1, . . . , tk ∈ Z. Then there is a unique t ∈ Z≥0 such that t < N and each t ≡ ti mod ni.

Proof. Let k = 2. Bézout’s identity gives m1n1 +m2n2 = 1 for some mi ∈ Z. Let t′ = t2m1n1 + t1m2n2, so

t′ = (t2 − t1)m1n1 + t1 (m1n1 +m2n2) ≡ t1 mod n1,

t′ = t2 (m1n1 +m2n2)− (t2 − t1)m2n2 ≡ t2 mod n2.

If t′′ ∈ Z is such that t′′ ≡ t1 mod n1 and t′′ ≡ t2 mod n2, then t′ ≡ t′′ mod n1 and t′ ≡ t′′ mod n2, so
n1 | t′ − t′′ and n2 | t′ − t′′. Then N = n1n2 | t′ − t′′, so t′ ≡ t′′ mod N and t′ is unique up to congruences.
Hence division gives a unique t ∈ Z≥0 such that t < N and t ≡ t′ mod N . Now let k ∈ Z≥2 with product
Nk ∈ Z>0 and assume that there is a unique t′ ∈ Z≥0 such that t′ < Nk and each t′ ≡ ti mod ni. Since Nk
and nk+1 are coprime, the case k = 2 gives a unique t ∈ Z≥0 such that t < Nknk+1, and t ≡ t′ mod Nk and
t ≡ tk+1 mod nk+1. Thus the unique t ∈ Z≥0 holds by induction.

Remark. The Chinese remainder theorem can be generalised to ideals Ii of arbitrary commutative unital
rings R, replacing the coprime condition with In + Im = R for all n,m ∈ Z and modulo with respect to Ii.

A general process for computing this unique t ∈ Z≥0 can be inferred directly from the proof of the Chinese
remainder theorem, using the extended Euclidean algorithm for Bézout’s identity, illustrated as follows.

Example. Let
t ≡ 1 mod 2, t ≡ 2 mod 3, t ≡ 3 mod 5

be a system of congruences for t ∈ Z≥0. Bézout’s identity gives (−1) (2) + (1) (3) = 1, so let t′ = 2 (−1) (2) +
1 (1) (3) = −1 be such that t′ ≡ 1 mod 2 and t′ ≡ 2 mod 3. Hence division gives t′′ = 1 (6) + (−1) = 5 < 6
such that t′′ ≡ t′ mod 6. Similarly Bézout’s identity gives (1) (6) + (−1) (5) = 1, so let t′′′ = 3 (1) (6) +
5 (−1) (5) = −7 be such that t′′′ ≡ 5 mod 6 and t′′′ ≡ 3 mod 5. Thus division gives t = 1 (30) + (−7) =
23 < 30 such that t ≡ t′′′ mod 30 similarly.
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For the rest of this section, let S be as in the first step of Schoof’s algorithm and n ∈ S be a prime.
Now invoking the Chinese remainder theorem on the system of congruences t′ ≡ t mod n generated by the
second step gives a unique t′′ ∈ Z≥0 such that t′′ < N and t′′ ≡ t′ mod N , as in the third step. The fourth
step then ensures this t′′ falls within the required bound using careful Euclidean division to give the trace
t ∈ Z, of which the first step has made possible by forcing S to span the entire interval over which it could
lie in. The fifth step is merely a simple application of Hasse’s theorem. It only remains to understand the
second step of Schoof’s algorithm. This uses the properties of a general system of polynomials allowing for
recursive operations, given in the following definition.

Definition (Division polynomial). The n-th division polynomial ψn ∈ F [x, y] is defined for n ∈ Z by

ψ0 (x, y) = 0,

ψ1 (x, y) = 1,

ψ2 (x, y) = 2y,

ψ3 (x, y) = 3x4 + 6Ax2 + 12Bx−A2,

ψ4 (x, y) = 4y
(
x6 + 5Ax4 + 20Bx3 − 5A2x2 − 4ABx−A3 − 8B2

)
,

recursively defined for n > 4 by

ψ2m = 1
2yψm

(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1,

and for n < 0 by ψ−n = −ψn, with associated polynomials φn, ωn ∈ F [x, y] defined for n ∈ Z≥0 by

φn = xψ2
n − ψn+1ψn−1,

ωn = 1
4y

(
ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

)
.

It holds that φ−n = −φn and ω−n = −ωn, and ψ2m = 2ωnψn. The following lemma allows certain
division polynomials to be written solely in terms of x.

Lemma 2.4.3. If n ∈ Z is even, then

ψn ∈ 2yZ [x,A,B] , φn ∈ Z [x,A,B] , ωn ∈ Z [x,A,B] ,

otherwise n ∈ Z is odd, then

ψn ∈ Z [x,A,B] , φn ∈ Z [x,A,B] , ωn ∈ yZ [x,A,B] .

Proof. Let Z = Z [x,A,B], then ψ0, ψ2, ψ4 ∈ 2yZ and ψ1, ψ3 ∈ Z. Assume that ψn ∈ 2yZ for any even
n ∈ Z≥0 and ψn ∈ Z for any odd n ∈ Z≥0 such that n < 2m. If m is even, then

ψm, ψm+2, ψm−2 ∈ 2yZ, ψm−1, ψm+1 ∈ Z =⇒ ψ2m ∈ 2yZ, ψ2m+1 ∈ Z.

Otherwise m is odd, then similarly

ψm−1, ψm+1 ∈ 2yZ, ψm, ψm+2, ψm−2 ∈ Z =⇒ ψ2m ∈ 2yZ, ψ2m+1 ∈ Z.

Hence ψn ∈ 2yZ for any even n ∈ Z and ψn ∈ Z for any odd n ∈ Z. If n is even, then

ψ2
n ∈ y2Z = Z, ψn+1ψn−1 ∈ Z =⇒ φn ∈ Z.

Otherwise n is odd, then similarly

ψ2
n ∈ Z, ψn+1ψn+1 ∈ 4y2Z = Z =⇒ φn ∈ Z.

Now if n is even, then also

ψn+2, ψn−2 ∈ 2yZ, ψn−1, ψn+1 ∈ Z =⇒ ωn ∈ Z.

Otherwise n is odd, then similarly also

ψn−1, ψn+1 ∈ 2yZ, ψn+2, ψn−2 ∈ Z =⇒ ωn ∈ yZ.
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The division polynomials φn (x, y), ψn (x, y)
2
, and ωn (x, y)

2
can then be written as φn (x), ψn (x)

2
, and

ωn (x)
2

respectively as an abuse of notation without ambiguity. Now the familiar expression for ψ4 is that
of the multiplication by two map, generalised as follows.

Proposition 2.4.4. Let n ∈ Z. Then

[n] (x, y) =

(
x− ψn+1 (x, y)ψn−1 (x, y)

ψn (x)
2 ,

ψ2n (x, y)

2ψn (x, y)
4

)
=

(
φn (x)

ψn (x)
2 ,

ωn (x, y)

ψn (x, y)
3

)
.

The proof of this proposition is through induction on n ∈ Z≥0 with base cases n ∈ {0, . . . , 4}, while
n ∈ Z<0 follows directly from the above observation. While it is completely elementary through the group
law explicit formulae, it is extremely tedious and computational and hence are omitted altogether.

Proof. Omitted, see III.E.3.7 in [2].

Remark. This proof can be approached via other ways, such as through properties of the Weierstrass elliptic
function ℘ in 9.33 of [10], which will not be discussed. The fact that gcd

(
φn, ψ

2
n

)
= 1 and deg (φn) = n2

also lends itself to another proof that deg ([n]) = n2 for any n ∈ Z.

Relating this back to the standard form of isogenies, it holds that ψn (a, b) = 0 iff [n] (P ) = O for
any point P = (a, b) ∈ E, which is the case whenever P ∈ E [n]. Group operations in End (E [n]) can
be more easily done since the polynomials involved in the endomorphisms have bounded degrees in the
coordinate ring F [x, y] /

〈
y2 − x3 −Ax−B,ψn

〉
, provided ψn is already precomputed. Now arithmetic in

End (E [n]) is motivated by the second step of Schoof’s algorithm, where all congruences are modulo n and
endomorphisms are computed modulo ψn. A characteristic equation that all endomorphisms satisfy will be
given in the following lemma.

Lemma 2.4.5. Let φ ∈ End (E) be an endomorphism, and let d = deg (φ) and t = 2 〈φ, [1]〉. Then
φ2 − tφ+ [d] = 0.

Proof. Let n ∈ {−1, 1}. Since deg φ+ [n] = deg (φ) + 2n 〈φ, [1]〉+ deg ([n]) = d+ nt+ 1, it holds that〈
φ2, [1]

〉
= − 1

2

(
deg

(
φ2 − [1]

)
− deg

(
φ2
)
− deg (− [1])

)
= − 1

2

(
deg (φ− [1]) deg (φ+ [1])− deg (φ)

2 − 1
)

= − 1
2

(
(d+ t+ 1) (d− t+ 1)− d2 − 1

)
= − 1

2

(
2d− t2

)
.

Since also〈
φ2, φ

〉
= 1

2

(
deg

(
φ2 + φ

)
− deg

(
φ2
)
− deg (φ)

)
= 1

2 deg (φ) (deg (φ+ [1])− deg (φ)− [1]) = d 〈φ, [1]〉 = 1
2dt,

it holds that

deg
(
φ2 − tφ+ [d]

)
= deg

(
φ2
)

+ deg (tφ) + deg ([d])− 2
〈
φ2, tφ

〉
+ 2

〈
φ2, [d]

〉
− 2 〈tφ, [d]〉

= deg (φ)
2

+ t2 deg (φ) + d2 − 2t
〈
φ2, φ

〉
+ 2d

〈
φ2, [1]

〉
− 2dt 〈φ, [1]〉

= 2d2 − 2t
〈
φ2, φ

〉
+ 2d

〈
φ2, [1]

〉
= 2d2 − 2

(
1
2dt

2
)

+ 2d
(
− 1

2

(
2d− t2

))
= 0.

Thus φ2 − tφ+ [d] = 0.

In particular, the q-th Frobenius endomorphism satisfies the characteristic equation, so it can be written
as tFrq = Fr2

q + [q]. While it is possible to compute the right hand side directly and try all values of t
until one satisfies the characteristic equation, the polynomials involved in Frq and Fr2

q will have rapidly
increasing degrees, which is highly impractical for huge q. The second step handles exactly this by reducing
the equation in End (E) to one in End (E [n]) with affine points, as seen in the following lemma.
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Lemma 2.4.6. Let P = (a, b) ∈ E [n] be a point. Then there are unique tn ∈ Z≥0 and qn ∈ Z>0 such that
tn ≡ t, qn ≡ q mod n with |tn| , |qn| < n, and

tn (aq, bq) =
(
aq

2

, bq
2
)

+ (aq, bq) , qnP = (aq, bq) ∈ E [n] .

Proof. Since Frq is injective, so is Fr2
q , so Frq (P ) = (aq, bq) and Fr2

q (P ) =
(
aq

2

, bq
2
)

. Hence

t (aq, bq) =
(
aq

2

, bq
2
)

+ q (a, b) .

Now Lagrange’s theorem gives that P ∈ E [n] iff ord (P ) = n. Since q is prime and q 6= n, it holds that
gcd (q, n) = 1, so qP 6= O. Then division gives a unique qn ∈ Z>0 such that qn ≡ q mod n with |qn| < n.
Hence qnP = qP = (aq, bq) for some point (aq, bq) ∈ E [n]. Similarly division gives a unique tn ∈ Z≥0 such
that tn ≡ t mod n and |tn| < n. Since Frq has a trivial kernel and nFrq (P ) = Frq (nP ) = Frq (O) = O,
it holds that ord (Frq (P )) = n = ord (P ), so tnFrq (P ) = tFrq (P ) similarly. Thus

tn (aq, bq) =
(
aq

2

, bq
2
)

+ (aq, bq) .

Hence it boils down to obtaining a suitable tn ∈ Z≥0 satisfying

tn (xq, yq) =
(
xq

2

, yq
2
)

+ qn (x, y) ,

all of which can be computed as per usual, but in the coordinate ring F [x, y] /
〈
y2 − x3 −Ax−B,ψn

〉
. The

following algorithm illustrates the process of computing this tn, with further details given in [10].

Algorithm 2.4.7 (Computation of the trace modulo prime). Input: an elliptic curve E over Fq and a prime
n ∈ S. Output: tn. If n = 2, then

tn =

{
0 g 6= 1

1 g = 1
, g = gcd

(
xq − x, x3 +Ax+B

)
.

Otherwise n > 2, then compute ψn and qn, and reduce qn into a value between −n/2 and n/2. Let

(x′, y′) =
(
xq

2

, yq
2
)

+ qn (x, y) , (x′′, y′′) = (xq, yq) .

If x′ = xi, where (xi, yi) = i (x′′, y′′) for some i ∈ {1, . . . , (n− 1) /2}, then

tn =

{
i y′ = yi

−i y′ = −yi
.

Otherwise if qn ≡ r2
n mod n for some rn ∈ {1, . . . , (n− 1) /2}, then let (xr, yr) = rn (x, y) and(
r (x)

s (x)
,
u (x)

v (x)
y

)
= (x′′ − xr, y′′ − yr) , gcd (r, s) = gcd (u, v) = 1.

If gcd (r, ψn) = 1, then

tn =

{
2rn g′ 6= 1

−2rn g′ = 1
, g′ = gcd (u, ψn)

Otherwise tn = 0.

An analysis of Schoof’s algorithm shows that it has a time complexity of O
(
log8 (q)

)
, which is asymp-

totically faster than that of the naive approach. Subsequently, there were refinements that restricted the
primes in S into Elkies primes and Atkin primes rather than arbitrary small primes, and made use of modu-
lar polynomials rather than division polynomials. Now known as the Schoof-Elkies-Atkin algorithm, it has a
time complexity of O

(
log6 (q)

)
and is widely used in practicality when the prime q in question is huge, seen

in the ellcard command in the PARI programming language. In implementations when maximum efficiency
is required, a probabilistic version is used, which allows even faster computations of many operations.
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2.5 Point counting

As per the aim of this section, Schoof’s algorithm computes the number of rational points of elliptic curves
over finite fields. Although computations are generally done by code due to routine tedium, the following
simple example illustrates a possible execution process.

Example. Let E : y2 = x3 + 2x + 1 be an elliptic curve over F19, so let S = {2, 3, 5} be such that
N = (2) (3) (5) = 30 > 20 = 4

√
25 > 4

√
19.

• Let n = 2. Then

x19 = x (−2x− 1)
6

= 7x7 + 2x6 + 12x5 + 8x4 + 3x3 + 12x2 + x

= 7x (−2x− 1)
2

+ 2 (−2x− 1)
2

+ 12x2 (−2x− 1) + 8x (−2x− 1) + 3 (−2x− 1) + 12x2 + x

= 4x3 + x2 + 2x+ 18 = 4 (−2x− 1) + x2 + 2x+ 18 = x2 + 13x+ 14,

so gcd
(
x19 − x, x3 + 2x+ 1

)
= gcd

(
x2 + 12x+ 14, x3 + 2x+ 1

)
= 1. Hence t2 = 1.

• Let n = 3. Then q3 = 1 ≡ 19 mod 3 such that −3/2 ≤ 1 ≤ 3/2, and ψ3 (x) = 3x4 + 12x2 + 12x+ 15.

Since ψ3 (8) = 3 (8)
4

+ 12 (8)
2

+ 12 (8) + 15 = 0, it holds that (8, b) ∈ E (F19) [3] for some b ∈ F19.
Lagrange’s theorem gives 3 | |E (F19)|, so 19− t+ 1 ≡ 0 mod 3 and t ≡ 20 ≡ 2 mod 3. Hence t3 = 2.

• Let n = 5. Then q5 = −1 ≡ 19 mod 5 such that −5/2 ≤ 1 ≤ 5/2, and

ψ5 (x) = ψ4 (x, y)ψ2 (x, y)
3 − ψ1 (x, y)ψ3 (x, y)

3

= 4y
(
x6 + 10x4 + x3 + 18x2 + 11x+ 11 + 11

)
(2y)

3 − 1
(
3x4 + 12x2 + 12x+ 15

)3
= 13

(
x3 + 2x+ 1

)2 (
x6 + 10x4 + x3 + 18x2 + 11x+ 3

)
+ 11x12 + 18x10 + 18x9 + 9x8 + 11x7 + 6x6 + 12x5 + 10x4 + 18x3 + 12x2 + 13x+ 7

= 5x12 + 10x10 + 17x8 + 5x7 + x6 + 9x5 + 12x4 + 2x3 + 5x2 + 8x+ 8,

so let (x′, y′) =
(
x361, y361

)
− (x, y) and (x′′, y′′) =

(
x19, y19

)
. It can be tediously verified that x′ 6= x1

but x′ = x2, where (xi, yi) = i (x′′, y′′), so tn ≡ 2 mod 5 or tn ≡ −2 mod 5. Another tedious
verification gives y′ = −y2, so tn ≡ −2 ≡ 3 mod 5. Hence t5 = 3.

The Chinese remainder theorem from the example above gives t ≡ 23 mod 30 such that 0 ≥ 23 < 30 = N .
Thus t = 23− 30 = −7 is such that |−7| < 8 = 4

√
4 < 4

√
19 and |E (F19)| = 19− (−7) + 1 = 27.

While just counting F -rational points may have many practical applications, a subtler question would be
characterising their group structure. This would be more than just Schoof’s algorithm, but machinery from
previous subsections can finally combine to give the following proposition.

Proposition 2.5.1. E (F ) ∼= Zn1
or E (F ) ∼= Zn1

⊕ Zn2
for some n1, n2 ∈ Z>0 such that n1 | n2.

Proof. The fundamental theorem of finite abelian groups gives

E (F ) ∼=
m⊕
i=1

Zni
, m ∈ Z≥0, ni ∈ Z>0,

such that each ni | ni+1. Let Gi = {x ∈ Zni
| ord (x) | n1} ≤ Zni

be subgroups. Then each φi : Zn1
→ Gi

defined by φi (x) = nix/n1 is an isomorphism, so each |Gi| = |Zn1
| = n1. Hence

nm1 =

∣∣∣∣∣
m⊕
i=1

Gi

∣∣∣∣∣ = |E (F ) [n1]| ≤ |E [n1]| = |Ker (n1)| = degs ([n1]) ≤ deg ([n1]) = n2
1.

Since q /∈ {2, 3}, it holds that |E (F )| = q− t+ 1 ≥ q− 2
√
q+ 1 > 1. Thus |E (F )| � {0} and m ∈ {1, 2}.

Both cases can arise from different elliptic curves and finite fields, as seen in the following example.

Example. E (F5) ∼= Z9 in the above example, while E′ : y2 = x3 + x over F5 has E′ (F5) ∼= Z2 ⊕ Z2.

Remark. If q ∈ {2, 3}, then E (F ) could be trivial, but the only examples with this property are E2 :
y2 +y = x3 +x+1 and E′2 : y2 +y = x3 +x2 +1 over F2 and E3 : y2 = x3−x−1 over F3, up to isomorphism.
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3 Elliptic curves over the rationals

After the discussion of elliptic curves over finite fields, the focus redirects to the field of rational numbers.
Again, the question of computing the rational points arises again, with the unfortunate answer that it is
not as straightforward as finite fields. Due to the countably infinite nature of the rationals, enumerating
all possible rational solutions of all elliptic curves is not possible, so other techniques will be deployed. In
particular, there will be an attempt to prove one of the most fundamental theorems of elliptic curves over the
rationals, namely that the rational points form a finitely generated group. While finite groups arising from
finite fields can be fully characterised by the fundamental theorem of finite abelian groups, finitely generated
groups arising from the rationals can be fully characterised by the fundamental theorem of finitely generated
abelian groups,

E (Q) ∼= Zr ⊕
m⊕
i=1

Zni , r,m ∈ Z≥0, ni ∈ Z>1,

such that each ni | ni+1, which is given in full in Appendix A.4. However, there are issues with computing
r ∈ Z≥0, which will be discussed later. Now let E be an elliptic curve over the perfect field Q, given by the
Weierstrass curve

E : y2 = x3 +A′x+B′, A′ =
p

q
,B′ =

p′

q′
∈ Q,

with the group of rational points E (Q) = (E (Q) ,O,+). Since there is a j-invariant affine transformation
(x, y) 7→

(
q−2q′−2x, q−3q′−3y

)
, there is an isomorphism from E to the curve given by the Weierstrass equation(

1

q3q′3
y

)2

=

(
1

q2q′2
x

)3

+
p

q

(
1

q2q′2
x

)
+
p′

q′
=⇒ y2 = x3 + pq3q′4x+ p′q6q′5.

Hence for this section, assume without loss of generality that

E : y2 = x3 +Ax+B, A,B ∈ Z.

3.1 Nagell-Lutz theorem

For the following sections, let ∆′E = 1
16∆E be the reduced discriminant. Then the following theorem charac-

terises the affine coordinates of torsion points.

Theorem 3.1.1 (Nagell-Lutz). Let P = (a, b) ∈ E (Q) be a non-zero torsion point. Then:

1. a, b ∈ Z, and

2. b = 0 or b2 | ∆′E .

Proof of the first part of the Nagell-Lutz theorem will be split into several definitions and lemmas, many
of which follows from the properties of p-adic numbers, which will not be discussed. Now let p ∈ Z>0 be
a prime. A particular valuation in the construction of p-adic numbers describing how a prime divides the
numerator or denominator of a rational number is given in the following definition.

Definition (p-adic valuation). The p-adic valuation is a valuation vp : Q→ Z ∪ {∞} defined by

vp (x) =

{
max

{
v ∈ Z≥0

∣∣∣ x =
q

r
pv, q ∈ Z, r ∈ Z>0, p - r

}
x 6= 0

∞ x = 0
.

Hence any x ∈ Q will be uniquely written as

x =
q

r
pv, q ∈ Z, r ∈ Z>0,

such that p, q, r are pairwise coprime, where v = vp (x). It is clear that vp (q/r) is positive whenever p divides
q and vp (q/r) is negative whenever p divides r, while vp (q/r) is zero otherwise. This can be illustrated in
the following example.
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Example.

v5

(
100

10

)
= v5

(
2

1
51

)
= 1, v5

(
10

100

)
= v5

(
1

2
5−1

)
= −1, v5 (1) = v5

(
50
)

= 0.

Three properties given in the following lemma will come in handy when computing p-adic valuations of
sums and products.

Lemma 3.1.2. Let x, y ∈ Q. Then:

1. vp (1/x) = −vp (x),

2. vp (xy) = vp (x) + vp (y), and

3. vp (x+ y) ≥ min {vp (x) , vp (y)}, with equality if vp (x) 6= vp (y).

Proof. Let

x =
q

r
pv, y =

q′

r′
pv
′
, q, q′ ∈ Z, r, r′ ∈ Z>0,

such that p, q, r are pairwise coprime and p, q′, r′ are pairwise coprime, where v = vp (x) and v′ = vp (y).

1. Since gcd (r, q) = 1,

vp

(
1

x

)
= vp

(
r

q
p−v

)
= −v = −vp (x) .

2. Since gcd (p, qq′) = gcd (p, rr′) = 1,

vp (xy) = vp

(
qq′

rr′
pv+v′

)
= v + v′ = vp (x) + vp (y) .

3. Assume that v = v′. Then

vp (x+ y) = vp

(
qr′pv + q′rpv

rr′

)
= vp

(
qr′ + q′r

rr′
pv
)
≥ v = min {v, v′} = min {vp (x) , vp (y)} .

Assume otherwise that v > v′. Since gcd (rr′) = gcd
(
p, qr′pv−v

′
+ q′r

)
= 1,

vp (x+ y) = vp

(
qr′pv + q′rpv

′

rr′

)
= vp

(
qr′pv−v

′
+ q′r

rr′
pv
′

)
= v′ = min {v, v′} = min {vp (x) , vp (y)} .

Similarly, if v < v′, then vp (x+ y) = min {vp (x) , vp (y)}.

The following example illustrates the above lemma.

Example.

v5

(
25

5

)
= v5 (5) = 1 = 2− 1 = v5 (25)− v5 (5) , v2 (8) = 3 > 2 = min {v2 (4) , v2 (4)} .

With this trick, a relation between the p-adic valuated coordinates of any affine rational point in an
elliptic curve can be seen in the following lemma.

Lemma 3.1.3. Let P = (a, b) ∈ E (Q) be a point. Then vp (a) < 0 iff vp (b) < 0, for which vp (a) = −2v
and vp (b) = −3v for some v ∈ Z>0.
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Proof. Assume that vp (a) < 0. Since A,B ∈ Z, it holds that vp (A) , vp (B) ≥ 0, so

2vp (b) = vp
(
b2
)

= vp
(
a3 +Aa+B

)
= min {3vp (a) , vp (A) + vp (a) , vp (B)} = 3vp (a) .

Hence 2 | vp (a) and 3 | vp (b), so vp (a) = −2v and vp (b) = −3v for some v ∈ Z>0. Conversely assume that
vp (a) ≥ 0. Then 2vp (b) ≥ min {3vp (a) , vp (A) + vp (a) , vp (B)} ≥ 0. Thus vp (b) ≥ 0.

Hence for any point P = (a, b) ∈ E (Q),

a =
q

d2
, b =

r

d3
, q, r ∈ Z, d ∈ Z>0

such that gcd (q, d) = gcd (r, d) = 1. This fact will be proven explicitly here as it will be used several times
in later subsections. Now a change of coordinates will be undertaken to ease discussions, namely

t = T =
X

Y
, s = S =

Z

Y
, [X,Y, Z] 7→ [T, 1, S] = (t, s) ,

which is an invertible projective transformation

E : Y 2Z = X3 +AXZ2 +BZ3 ⇐⇒ E′ : S = T 3 +ATS2 +BS3 : s = t3 +Ats2 +Bs3.

This has the effect that

O 7→ (0, 0) , (a, b) 7→
(
a

b
,

1

b

)
for any point (a, b) ∈ E (Q) such that b 6= 0, while the three 2-torsion points (a, 0) map to three points at
infinity and can be disregarded for now. The modified group law is then given in the following lemma.

Lemma 3.1.4. Let P = (a, b) ∈ E′ (Q) and Q = (a′, b′) ∈ E′ (Q) be points such that P + Q = (a′′, b′′) ∈
E′ (Q). Then −P = (−a,−b) and

a′′ = a+ a′ +
2Aλµ+ 3Bλ2µ

1 +Aλ2 +Bλ3
, λ =

a2 + aa′ + a′2 +Ab′2

1−Aa (b+ b′)−B (b2 + bb′ + b′2)
, µ = b− λa.

Proof. Since (a, b) 7→ (a/b, 1/b), it holds that − (a, b) = (a,−b) 7→ (−a/b,−1/b). Let P ∗Q = − (P +Q) =
(−a′′,−b′′). If a 6= a′, then the line joining P and Q is

L : s = λ1t+ µ1, λ1 =
b− b′

a− a′
, µ1 = b− λ1a.

Otherwise a = a′, then the tangent at P is

L : s = λ2t+ µ2, λ2 =
3a2 +Ab2

1− 2Aab− 3Bb2
, µ2 = b− λ2a.

Since

b− b′ = a3 +Aab2 +Bb3 − a′3 −Aa′b′2 −Bb′3

= a3 − a′3 +Aab2 −Aab′2 +Aab′2 −Aa′b′2 +Bb3 −Bb′3

= (a− a′)
(
a2 + aa′ + a′2

)
+Aa (b− b′) (b+ b′) +Ab′2 (a− a′) +B (b− b′)

(
b2 + bb′ + b′2

)
,

it holds that

(b− b′)
(
1−Aa (b+ b′)−B

(
b2 + bb′ + b′2

))
= (a− a′)

(
a2 + aa′ + a′2 +Ab′2

)
,

so (b− b′) / (a− a′) = λ = λ1 = λ2 and µ = µ1 = µ2. Now L : s = λt+ µ intersects E′ at(
1 +Aλ2 +Bλ3

)
t3 +

(
2Aλµ+ 3Bλ2µ

)
t2 +

(
Aµ2 + 3Bλµ2 − λ

)
t−
(
µ−Bµ3

)
= 0.

Thus comparing coefficients gives −
(
2Aλµ+ 3Bλ2µ

)
/
(
1 +Aλ2 +Bλ3

)
= a+ a′ − a′′.
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The above proof is brief but can be verified manually. Now let

E (pv) = {O} ∪ {(a, b) ∈ E (Q) | vp (a) ≤ −2v, vp (b) ≤ −3v}

be a subset of E (Q). Rewriting coordinates accordingly gives vp (a/b) ≥ v and vp (1/b) ≥ 3v, so let

E′ (pv) = {(0, 0)} ∪ {(a, b) ∈ E′ (Q) | vp (a) ≥ v, vp (b) ≥ 3v}

be a subset of E′ (Q) bijective to E (pv). These two sets induce two decreasing sequences of subsets.

Definition (Filtration). A filtration is a decreasing sequence of subsets Si such that Si ⊇ Sj for any i ≤ j.

A simple rephrasal gives that E (pv) and E′ (pv) induce two p-adic filtrations

E (Q) ⊇ E (p) ⊇ E
(
p2
)
⊇ E

(
p3
)
⊇ · · · ⊇ {O} , E′ (Q) ⊇ E′ (p) ⊇ E′

(
p2
)
⊇ E′

(
p3
)
⊇ · · · ⊇ {(0, 0)} .

The individual subsets in these filtrations are actually subgroups, giving a filtration of subgroups, which will
be proven in the following lemma.

Lemma 3.1.5. Let v ∈ Z>0 and P = (a, b) ∈ E′ (pv) and Q = (a′, b′) ∈ E′ (pv) be points such that
P +Q = (a′′, b′′) ∈ E′ (Q). Then −P, P +Q ∈ E′ (pv) and vp (a+ a′ + a′′) ≥ 5v.

Proof. Since −P = (−a,−b), it holds that vp (−a) = vp (a), so −P ∈ E′ (pv). Since A,B ∈ Z, it holds that
vp (A) , vp (B) ≥ 0. Now the group law gives

a′′ = a+ a′ +
2Aλµ+ 3Bλ2µ

1 +Aλ2 +Bλ3
, λ =

a2 + aa′ + a′2 +Ab′2

1−Aa (b+ b′)−B (b2 + bb′ + b′2)
, µ = b− λa.

Then

vp
(
a2 + aa′ + a′2 +Ab′2

)
≥ min {2vp (a) , vp (a) + vp (a′) , 2vp (a′) , vp (A) + 2vp (b′)} ≥ 2v,

vp (Aa (b+ b′)) ≥ min {vp (a) + vp (a′) + vp (b) , vp (a) + vp (a′) + vp (b′)} ≥ 5v,

vp
(
B
(
b2 + bb′ + b′2

))
≥ min {vp (B) + 2vp (b) , vp (B) + vp (b) + vp (b′) , vp (B) + 2vp (b′)} ≥ 6v,

so vp (λ) ≥ 2v −min {0, 5v, 6v} = 2v and vp (µ) ≥ min {3v, 3v} = 3v. Hence

vp
(
2Aλµ+ 3Bλ2µ

)
≥ min {vp (2) + vp (A) + vp (λ) + vp (µ) , vp (3) + vp (B) + 2vp (λ) + vp (µ)} ≥ 5v,

vp
(
1 +Aλ2 +Bλ3

)
= min {vp (1) , vp (A) + 2vp (λ) , vp (B) + 3vp (λ)} = 0,

so vp (a′′) ≥ min {a, a′, 5v} ≥ v. Thus P +Q ∈ E′ (pv) and vp (a+ a′ − a′′) ≥ 5v.

Note that the second part of the lemma proves something stronger, that the x coordinates of three collinear
points add to give a large p-adic valuation. Now letR = {x ∈ Q | vp (x) ≥ 0} be a unique factorisation domain
such that 〈pv〉 = {x ∈ Q | vp (x) ≥ v} ⊆ R is a principal ideal. This also induces a filtration of subgroups

R ≥ 〈p〉 ≥
〈
p2
〉
≥
〈
p3
〉
≥ . . . {0} .

Then vp (a+ a′ − a′′) ≥ 5v from the previous lemma can be rephrased as a+ a′− a′′ ∈
〈
p5v
〉
, or even better

as
〈
p5v
〉

+ a+ a′ =
〈
p5v
〉

+ a′′. The following lemma attempts to makes use of this fact.

Lemma 3.1.6. There is an injective group homomorphism

φ : E (pv) /E
(
p5v
)
→ 〈pv〉 /

〈
p5v
〉
, φ

(
E
(
p5v
)

+ P
)

=

{〈
p5v
〉

+
a

b
P = (a, b)〈

p5v
〉

P = O
.
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Proof. Let ψ : E (pv)→ 〈pv〉 /
〈
p5v
〉

be defined by

ψ (P ) =

{〈
p5v
〉

+
a

b
P = (a, b)〈

p5v
〉

P = O
,

and let P,Q ∈ E (pv) be points. If P = O, then

ψ (P ) + ψ (Q) =
〈
p5v
〉

+
〈
p5v
〉

+
a′

b′
=
〈
p5v
〉

+
a′

b′
= ψ (Q) = ψ (P +Q) ,

or similar for Q = O. If P = (a, b) and Q = (a,−b), then

ψ (P ) + ψ (Q) =
〈
p5v
〉

+
a

b
+
〈
p5v
〉
− a

b
=
〈
p5v
〉

= ψ (O) = ψ (P +Q) .

Otherwise P = (a, b) and Q = (a′, b′) such that P +Q = (a′′, b′′), then

ψ (P ) + ψ (Q) =
〈
p5v
〉

+
a

b
+
〈
p5v
〉

+
a′

b′
=
〈
p5v
〉

+
a

b
+
a′

b′
=
〈
p5v
〉

+
a′′

b′′
= ψ (P +Q) .

Hence ψ is a group homomorphism. Now O ∈ Ker (ψ), and (a, b) ∈ Ker (ψ) iff vp (a/b) ≥ 5v. This holds iff
(a/b, 1/b) ∈ E′

(
p5v
)

and (a, b) ∈ E
(
p5v
)
, so Ker (ψ) = E

(
p5v
)
. Thus the first isomorphism theorem gives

a natural injective group homomorphism

φ :
E (pv)

E (p5v)
→ Im (ψ) ⊆ 〈p

v〉
〈p5v〉

.

Now the subgroup E (p) can be proven to be torsion-free with a proof by contradiction in the following
lemma, from which the first part of the Nagell-Lutz theorem can be deduced.

Lemma 3.1.7. E (p) has no non-zero torsion points.

Proof. Let P = (a, b) ∈ E (Q) be an n-torsion point. Suppose for a contradiction that P ∈ E (p), so
vp (a) = −2v for some v ∈ Z>0 and vp (a/b) = v. Then〈

p5v
〉

= φ
(
E
(
p5v
))

= φ
(
E
(
p5v
)

+ nP
)

= nφ
(
E
(
p5v
)

+ P
)

= n
(〈
p5v
〉

+
a

b

)
=
〈
p5v
〉

+ n
a

b
,

so n (a/b) ∈
〈
p5v
〉
. Assume that p - n, so a/b ∈

〈
p5v
〉

and v = vp (a/b) ≥ 5v, which is a contradiction. Hence
P /∈ E (p). Otherwise assume that p | n, then n = mp for some m ∈ Z>0. Now let Q = mP = (a′, b′) ∈ E (Q)
be a p-torsion point. Since P ∈ E (p), it holds that Q ∈ E (p), so vp (a′) = −2v′ for some v′ ∈ Z>0 and
vp (a′/b′) = v′. Then〈

p5v′
〉

= φ
(
E
(
p5v′

))
= φ

(
E
(
p5v′

)
+ pQ

)
= pφ

(
E
(
p5v′

)
+Q

)
= p

(〈
p5v′

〉
+
a′

b′

)
=
〈
p5v
〉

+ p
a′

b′
,

so p (a′/b′) ∈
〈
p5v′

〉
. Then 5v′ ≤ vp (p (a′/b′)) = vp (p) + vp (a′/b′) = 1 + v′, which is again a contradiction.

Hence Q /∈ E (p) and P /∈ E (p). Thus E (p) has no non-zero torsion points.

Both parts of the Nagell-Lutz theorem can finally be proven here, the second part a corollary of the first.

Proof of Theorem 3.1.1. Let P = (a, b) ∈ E (Q) be a non-zero n-torsion point.

1. Since P /∈ E (p) for any prime p ∈ Z>0, it holds that vp (a) ≥ 0 and vp (b) ≥ 0. Thus a, b ∈ Z.

2. Assume that b 6= 0 and let 2P = (a′, b′) ∈ E (Q). By the duplication formula,

a′ =
a4 − 2Aa2 − 8Ba+A2

4b2
.

Since P and 2P are torsion points, it holds that a, b, a′, b′ ∈ Z, so b2 | a4 − 2Aa2 − 8Ba+A2. Thus

b2 |
(
a4 − 2Aa2 − 8Ba+A2

) (
3a2 + 4A

)
−
(
a3 +Aa+B

) (
3a3 − 5Aa− 27B

)
= 4A3 + 27B2 = ∆′E .
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3.2 Torsion computation

An application of the Nagell-Lutz theorem is as follows. Assuming the fundamental theorem of finite abelian
groups,

E (Q) ∼= Zr ⊕ E (Q)tors , r ∈ Z≥0,

the Nagell-Lutz theorem can be used to compute the torsion subgroup E (Q)tors, since there are only finitely
many torsion points (a, b) ∈ E (Q) such that b2 | ∆′E . The following example illustrates the full computation
of the torsion subgroup of an elliptic curve.

Example. Let E : y2 = x3 + 4 be an elliptic curve over Q and P = (a, b) ∈ E (Q) be a torsion point.

Then either b = 0 or b2 | 4 (0)
3

+ 27 (4)
2

= 3 (12)
2
, so b ∈ {0,±1,±2,±3,±4,±6,±12}, of which only

P1 = (0, 2) ∈ E (Q) and P2 = (0,−2) ∈ E (Q). Then

2P1 =

(
0

4 (4)
,

22 − 3 (4)

2 (2)

)
= (0,−2) = P2,

so ord (P1) = ord (P2) = 3. Thus the torsion subgroup is E (Q)tors = {O, P1, P2} ∼= Z3.

The following algorithm summarises the process and code in the appendix.

Algorithm 3.2.1 (Computation of the torsion subgroup). Input: an elliptic curve E over Q. Output:
E (Q)tors.

1. Calculate ∆′E and get all non-negative b coordinates such that b2 | ∆′E .

2. Get all a coordinates for each non-negative b coordinate such that b2 = a3 +Aa+B.

3. Add points (a, b) with itself repeatedly and stop at O or non-integer coordinates.

4. Negate each point (a, b) to (a,−b) and do the same.

5. Insert O into the list of all points that add to O.

The torsion subgroups of the following examples of elliptic curves given by the Weierstrass equations
y2 = x3 − px for p ∈ Z>0 can be computed similarly. This information will be used in a later subsection.

Example. The elliptic curves E : y2 = x3−x has torsion subgroup E (Q)tors = {O, (0, 0) , (1, 0) , (−1, 0)} ∼=
Z2

2, while the elliptic curves E : y2 = x3−5x, E : y2 = x3−17x, E : y2 = x3−226x all have torsion subgroup
E (Q)tors = {O, (0, 0)} ∼= Z2.

The converse to the Nagell-Lutz theorem does not generally hold. It cannot be used to prove that a
certain point is a torsion point, but it can be used to show the contrapositive, that a point is not a torsion
point, by duplicating it until its coordinates are not integers. The following example illustrates this.

Example. Let E : y2 = x3 − 4 be an elliptic curve over Q with torsion subgroup E (Q)tors = {O} ∼= Z1.
Now let P = (2, 2) ∈ E (Q) be a point. Then

2P = (5,−11) , 4P =

(
785

484
,− 5497

10648

)
.

Thus ord (P ) is infinite.

These are several examples of different torsion subgroups. In fact, there are even elliptic curves with as
large as 12-torsion elements, but there are strangely none with 11-torsion elements. The following difficult
theorem was proven to be an exhaustive list of all possible torsion subgroups of all elliptic curves.

Theorem 3.2.2 (Mazur). E (Q) is isomorphic to one of

Zn, n ∈ {1, . . . , 10, 12} ,

Z2 × Z2n, n ∈ {1, . . . , 4} .
Proof. Omitted, see [11].

As such, the torsion subgroup of an elliptic curve E (Q) can be computed in a finite number of steps.
However, computations may still be intensive if ∆′E has many squared factors, as the computation involves
solving a cubic equation. The next section provides an alternative method for this.
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3.3 Reduction modulo prime

Another method of computing the torsion subgroup is to reduce the elliptic curve over rationals into one over
a finite field, by applying isomorphisms that simplify the Weierstrass equation, then applying a particular
group homomorphism. The assumption of integer coefficients in a previous subsection makes the Weierstrass
equation integral, but a further reduction can be done as follows.

Definition (Minimal). A Weierstrass equation is minimal iff it is integral and g ∈ {−1, 1} if g4 | A and
g6 | B.

A minimal Weierstrass equation is unique up to sign. The above definition reflects the minimality of the
integer coefficients after j-invariant affine transformations, which is illustrated in the following example.

Example. Let E : y2 = x3 + n4x + n6 be an elliptic curve over Q for some n ∈ Q. Since there is a
j-invariant affine transformation (x, y) 7→

(
n2x, n3y

)
, there is an isomorphism from E to the curve given by

the Weierstrass equation y2 = x3 + x+ 1, which is integral and minimal.

Minimal Weierstrass equations can then be treated as if their coefficients are modulo a prime, which is
stated formally as a map in the following definition.

Definition (Reduction map). The reduction modulo p map rp : E (Q)→ Ep (Fp) for some prime p ∈ Z>0

is defined by

Ep : y2 = x3 + Ãx+ B̃, rp (P ) =

{(
ã, b̃
)

P = (a, b)

O P = O
,

where ·̃ : Z→ Fp denotes modulo p.

There is a minor hiccup with this definition, since Ep might not even define a smooth Weierstrass curve.
However, since 0 6= ∆E = p1 . . . pn for some primes pi ∈ Z>0 and ∆Ep = 0 only if any pi | p, this issue can
be easily fixed by considering only the primes that are not pi, which is given in the following definition.

Definition (Good reduction). A prime p ∈ Z>0 is of good reduction iff p - ∆E .

Hence rp has a well-defined codomain for infinitely many primes of good reduction, while those of bad
reduction will not be considered. Additionally since the discriminant has a coefficient of 16, the prime 2 will
always be considered one of bad reduction. Now rp is also well-defined, which is immediate considering the
following lemma.

Lemma 3.3.1. Let P = [a, b, c] ∈ E (Q) be a point. Then P = [a′, b′, c′] for some a′, b′, c′ ∈ Z such that
gcd (a′, b′, c′) = 1.

Proof. If c = 0, then P = O, so gcd (0, 1, 0) = 1. Otherwise c 6= 0, then P = (a/c, b/c). Then a/c = q/d2

and b/c = r/d3 for some q, r ∈ Z and some d ∈ Z>0 such that gcd (q, d) = gcd (r, d) = 1. Thus P =(
q/d2, r/d3

)
=
[
qd, r, d3

]
is such that gcd

(
qd, r, d3

)
= 1.

This integral and minimal condition will also be defined as follows.

Definition (Normalised). A point P ∈ E (Q) has normalised coordinates iff it satisfies Lemma 3.3.1.

With this representation, there must be one of a′, b′, c′ coprime to p for any prime p ∈ Z>0 of good

reduction, so rp (P ) =
[
ã′, b̃′, c̃′

]
∈ Ep (Fp) is well-defined. The normalised coordinates of any point is

unique up to sign, which is illustrated with the following example.

Example. Let P = (2/5,−1/3) ∈ E (Q) be a point. Then(
2

5
,−1

3

)
=

[
2

5
,−1

3
, 1

]
= [6,−5, 15] , [−6, 5,−15]

are its normalised coordinates.
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Let p ∈ Z>0 be a prime of good reduction. Then the following proposition characterises rp.

Proposition 3.3.2. rp : E (Q)→ Ep (Fp) is a group homomorphism such that Ker (rp) = E (p).

Proof. Let P,Q ∈ E (Q) be points with normalised coordinates and

L : l (X,Y, Z) = kX +mY + nZ = 0

be a line joining P and Q with coefficients in Q such that P,Q,− (P +Q) ∈ E (Q) ∩ L. Then normalising
[l,m, n] similarly gives [l′,m′, n′] for some l′,m′, n′ ∈ Z such that gcd (l,m, n) = 1. Hence the line

Lp : lp (X,Y, Z) = l̃X + m̃Y + ñZ = 0

with coefficients in Fp is well-defined. Now let P = [a, b, c]. Then

la+mb+ nc = 0 =⇒ l̃ã+ m̃b̃+ ñc̃ = 0,

so rp (P ) =
(
ã, b̃, c̃

)
∈ Ep (Fp)∩Lp. Similarly rp (Q) ∈ Ep (Fp)∩Lp. Since rp (−O) = rp (O) = −rp (O) and

rp (− (a, b)) = rp ((a,−b)) =
(
ã, −̃b

)
=
(
ã,−b̃

)
= −

(
ã, b̃
)

= −rp ((a, b))

for any point (a, b) ∈ E (Q), similarly −rp (P +Q) = rp (− (P +Q)) ∈ Ep (Fp) ∩ Lp. Since gcd (ep, lp) = 1
where ep (x, y) is the Weierstrass equation of Ep, Bézout’s theorem gives that Lp intersects Ep (Fp) at three
points up to multiplicity, so

Ep (Fp) ∩ Lp = {rp (P ) , rp (Q) ,−rp (P +Q)} .

Hence rp (P ) + rp (Q) = rp (P +Q). Now let R = (a, b) ∈ E (Q) be a point. Then a = q/d2 and b = r/d3 for
some q, r ∈ Z and some d ∈ Z>0 such that gcd (q, d) = gcd (r, d) = 1. Since R =

[
qd, r, d3

]
has normalised

coordinates, it holds that rp (R) =
[
q̃d̃, r̃, d̃3

]
∈ Ep (Fp). Then R ∈ Ker (rp) iff d̃3 = 0, or p | d. This holds

iff vp (a) ≤ −2 and vp (b) ≤ −3, or R ∈ E (p). Thus Ker (rp) = E (p).

Restricting rp into the torsion subgroup of its domain gives it a stronger property as follows.

Theorem 3.3.3 (Reduction). E (Q)tors
∼= G for some G ≤ Ep (Fp).

Proof. Since Ker (rp) = E (p), it holds that vp (a) ≤ −2 and vp (b) ≤ −3 for any point P = (a, b) ∈ Ker (rp),
so a, b /∈ Z. Then the Nagell-Lutz theorem gives that ord (P ) is infinite, so P /∈ E (Q)tors. Now let
r′p = rp|E(Q)tors

and G = Im
(
r′p
)
, so Ker

(
r′p
)

= Ker (rp) ∩ E (Q)tors = {O}. Thus the first isomorphism

theorem gives G ∼= E (Q)tors /Ker
(
r′p
) ∼= E (Q)tors.

Lagrange’s theorem then gives |E (Q)tors| | |Ep (Fp)|, which enforces a restriction of the possible torsion
subgroups. The following reignites a prior example, this time with the reduction theorem.

Example. Let E : y2 = x3 +4 be an elliptic curve over Q. Then ∆E = −16
(

4 (0)
3

+ 27 (4)
2
)

= − (2)
8

(3)
3
,

so let p = 5 be a prime of good reduction. Then the previous section gives |E5 (F5)| = 6. Since |E (Q)tors| |
|E5 (F5)|, it holds that |E (Q)tors| ∈ {1, 2, 3, 6}. Since ord ((0, 2)) = 3 and there are no points P ∈ E (Q)
such that ord (P ) = 2, it holds that E (Q)tors = {O, (0, 2) , (0,−2)} ∼= Z3.

While this might not seem much of a timesave, the following example begs to differ.

Example. Let E : y2 = x3 + 1680 be an elliptic curve over Q. Then ∆′E = 4 (0)
3

+ 27 (1680)
2

= 3 (5040)
2

=

(2)
8

(3)
5

(5)
2

(7)
2

and ∆E = − (2)
12

(3)
5

(5)
2

(7)
2
, so p ≥ 11 are primes of good reduction. Now 5040 is a

colossally abundant number with exactly 120 positive and negative divisors, so more than 120 values of b such
that b2 | ∆′E needs to be checked. Instead the previous section computes |E13 (F13)| = 9 and |E19 (F19)| = 28.
Since |E (Q)tors| | |E13 (F13)| and |E (Q)tors| | |E19 (F19)|, and gcd (9, 28) = 1, it holds that |E (Q)tors| = 1.
Thus E (Q)tors = {O}.

Counting points over finite fields can generally be done very efficiently, so the reduction theorem allows
for an immediate answer. In any case, computation of the torsion subgroup is relatively straightforward.
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3.4 Mordell’s theorem: descent

The following theorem is one of the most fundamental theorems of elliptic curves over the rationals, as stated
in a previous subsection.

Theorem 3.4.1 (Mordell). The Mordell-Weil group E (Q) is finitely generated.

Remark. This is a special case of the Mordell-Weil theorem, which states that E (K) is finitely generated
over any number field K.

Proof of Mordell’s theorem will be split into two distinct steps. The first step of the proof develops some
theory of a certain function that describes the size of points. The second step of the proof is a weak variant
of the theorem stating that the index of a subgroup is finite. These two steps are then used in a variant of
Fermat’s infinite descent, which can be stated in full generalisation for arbitrary abelian groups as follows.

Theorem 3.4.2 (Descent). Let G be an abelian group such that the index [G : 2G] is finite, and let
h : G→ R≥0 be such that:

• the set {P ∈ G | h (P ) ≤ C1} is finite for any C1 ∈ R≥0,

• for any Q ∈ G, there is a constant C2 ∈ R≥0 such that h (P +Q) ≤ 2h (P ) + C2 for any P ∈ G, and

• there is a constant C3 ∈ R≥0 such that h (2P ) ≥ 4h (P )− C3 for any P ∈ G.

Then G is finitely generated.

Proof. Let Q1, . . . , Qn ∈ G be representatives such that 2G+Qi ∈ G/2G are distinct cosets. For any P ∈ G,
the upper bound gives each h (P −Qi) ≤ 2h (P ) + Ci for some Ci ∈ R≥0, so

h (P −Qi) ≤ 2h (P ) + C, i ∈ {1, . . . , n} , C = max {Ci} ∈ R≥0.

For any P ∈ G, the lower bound also gives

h (2P ) ≥ 4h (P )− C ′, C ′ ∈ R≥0.

Then there is a finite set
S = {P ∈ G | h (P ) ≤ C + C ′} .

Now let P ∈ G. Then 2G+ P = 2G+Qi0 for some i0 ∈ {1, . . . , n}, so P = 2P0 +Qi0 for some P0 ∈ G. By
induction, for any j ∈ Z>0, there is some ij ∈ {1, . . . , n} such that 2G+ Pj−1 = 2G+Qij , so

Pj−1 = 2Pj +Qij , P = 2j+1Pj +

j∑
k=0

2kQik , Pj ∈ G.

Now for any j ∈ Z>0,

4h (Pj) ≤ h (2Pj) + C ′ = h
(
Pj−1 −Qij

)
+ C ′ ≤ 2h (Pj−1) + (C + C ′) ,

so that

h (Pj) ≤ 1
2h (Pj−1) + 1

4 (C + C ′) =
3

4
h (Pj−1)− 1

4 (h (Pj−1)− (C + C ′)) .

If h (Pj−1) > C+C ′ for some j ∈ Z>0, then h (Pj) <
3

4
h (Pj−1), so h (Pm) ≤ C+C ′ for some m ∈ Z>0 such

that m ≥ j and Pm ∈ S. Otherwise h (Pj−1) ≤ C + C ′ for all j ∈ Z>0, so let m = 1 such that Pm ∈ S as
well. Hence

P = 2m+1Pm +

m∑
k=0

2kQik =
∑
Si∈S

niSi +

n∑
i=1

miQi, ni,mi ∈ Z.

Thus G is finitely generated by S ∪ {Qi}.

Mordell’s theorem is simply an application of the general descent procedure.

Proof of Theorem 3.4.1. The three properties of the function h will be given in Propositions 3.5.1, 3.5.2,
3.5.3 of the next section. The weak version of the theorem will be given in Theorem 3.6.1 of the section after
the next. Applying descent to G = E (Q) with h gives that E (Q) is finitely generated.

The next subsections will be devoted to proving these claims.
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3.5 Mordell’s theorem: heights

The function h can be defined as follows.

Definition (Height). The height of a point P ∈ E (Q) is a function h (P ) : E (Q) → R≥0 defined by
h (P ) = log2 (H (P )), where

H (P ) =

max {|p| , |q|} P =

(
p

q
, y

)
, gcd (p, q) = 1

1 P = O
.

Remark. The above definition for heights is chosen due to its simplicity, and is not the canonical height in
the general literature. The theory of height functions will not be discussed here.

The three intended properties of height function will then be proven, the first of which states that there
are a finite number of points less than a given height. This property is trivial and stated as follows.

Proposition 3.5.1. The set S = {P ∈ E (Q) | h (P ) ≤ C1} is finite for any C1 ∈ R≥0.

Proof. Let C1 ∈ R≥0 and P ∈ E (Q) be a point. If P = O, then P ∈ S. Otherwise P = (p/q, y), then

max {|p| , |q|} ≤ 2C1 , so −2C1 ≤ p, q ≤ 2C1 . Thus |S| ≤
(
2C1+1 + 1

)2
+ 1 is finite.

The second property provides an upper bound for the height of added points. This is relatively easy and
is stated in the following proposition.

Proposition 3.5.2. Let Q ∈ E (Q). Then there is a constant C2 ∈ R≥0 such that h (P +Q) ≤ 2h (P ) +C2

for any P ∈ E (Q).

Proof. If P = O or Q = O or P +Q = O, let C2 = 2h (Q) such that h (P +Q) ≤ 2h (P )+2h (Q). Otherwise
P = (a, b) and Q = (a′, b′) for a 6= a′ or a = a′ and b = b′ 6= 0. Assume that a = a′ and b = b′ 6= 0, then
let C2 = h (2Q) such that h (P +Q) = h (2Q) ≤ 2h (P ) + h (2Q). Assume otherwise that a 6= a′, and let
C2 = log2 (max {K3,K2}), where

K1 =
√

1 + |A|+ |B|, K2 = 1 + |a′| , K3 = (|A|+ |a′|)K2 + 2 (|B|+ |b′|K1) .

Then a = p/d2 and b = q/d3 for some p, q ∈ Z and some d ∈ Z>0 such that gcd (p, d) = gcd (q, d) = 1, and

q2 = p3 +Apd4 +Bd6. Since H (P ) = max
{
|p| , |d|2

}
, it holds that |p| , |d|2 ≤ H (P ), so |d| ≤

√
H (P ) and

|q| |d| =
∣∣∣√p3 +Apd4 +Bd6

∣∣∣ |d| ≤√|p|3 |d|2 + |A| |p| |d|6 + |B| |d|8 ≤ K1H (P )
2
.

Now let P +Q = (a′′, b′′). By the addition formula,

a′′ =
(A+ aa′) (a+ a′) + 2 (B − bb′)

(a− a′)2 =

(
Ad2 + a′p

) (
p+ a′d2

)
+ 2

(
Bd4 − b′qd

)
(p− a′d2)

2 .

Thus

h (P +Q) ≤ log2

(
max

{∣∣(Ad2 + a′p
) (
p+ a′d2

)
+ 2

(
Bd4 − b′qd

)∣∣ , ∣∣∣(p− a′d2
)2∣∣∣})

≤ log2

(
max

{(
|A| |d|2 + |a′| |p|

)(
|p|+ |a′| |d|2

)
+ 2

(
|B| |d|4 + |b′| |q| |d|

)
,
(
|p|+ |a′| |d|2

)2
})

≤ log2

(
max

{
K3H (P )

2
,K2H (P )

2
})

= log2

(
H (P )

2
max {K3,K2}

)
= 2h (P ) + C2.
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The third property provides an lower bound for the height of doubled points. It is more difficult as it
involves seemingly arbitrary identities, and is stated in the following proposition.

Proposition 3.5.3. There is a constant C3 ∈ R≥0 such that h (2P ) ≥ 4h (P )− C3 for any P ∈ E (Q).

Proof. If P = O, let C3 = 0 such that h (2P ) ≥ 4h (P ). If P = (a, 0), let C3 = 4h (P ) such that h (2P ) ≥ 0.
Otherwise P = (a, b) for b 6= 0. Let a = p/q for some p ∈ Z and some q ∈ Z∗ such that gcd (p, q) = 1, and let

p′ = p4 − 2Ap2q2 − 8Bpq3 +A2q4,

q′ = 4p3q + 4Apq3 + 4Bq4,

λ = 12p2q + 16Aq3,

µ = −3p3 + 5Apq2 + 27Bq3,

λ′ =
(
16A3 + 108B2

)
p3 − 4A2Bp2q +

(
12A4 + 88AB2

)
pq2 +

(
12A3B + 96B3

)
q3,

µ′ = A2Bp3 +
(
5A4 + 32AB2

)
p2q +

(
26A3B + 192B3

)
pq2 −

(
3A5 + 24A2B2

)
q3,

K1 = 4 max {12, 16 |A|} ,
K2 = 4 max {3, 5 |A| , 27 |B|} ,

K3 = 4 max
{

16 |A|3 + 108B2, 4A2 |B| , 12A4 + 88 |A|B2, 12 |A|3 |B|+ 96 |B|3
}
,

K4 = 4 max
{
A2 |B| , 5A4 + 32 |A|B2, 26 |A|3 |B|+ 192 |B|3 , 3 |A|5 + 24A2B2

}
.

Then it can be tediously verified that λp′ + µq′ = 4∆′Eq
7 and λ′p′ + µ′q′ = 4∆′Ep

7. Since |p|2 |q| and |p| |q|2

are between |p|3 and |q|3, it holds that max
{
|p|3 , |p|2 |q| , |p| |q|2 , |q|3

}
= max

{
|p|3 , |q|3

}
. Then it can also

be verified that
|λ| ≤ K1M, |µ| ≤ K2M, |λ′| ≤ K3M, |µ′| ≤ K4M,

for M = max
{
|p|3 , |q|3

}
, so let C3 = log2 (2 max {K1,K2,K3,K4}). Since

4 |∆′E |max
{
|p|3 , |q|3

}
(max {|p| , |q|})4

= 4 |∆′E |max
{
|q|7 , |p|7

}
= max

{∣∣4∆′Eq
7
∣∣ , ∣∣4∆′Ep

7
∣∣}

≤ max {|λ| |p′|+ |µ| |q′| , |λ′| |p′|+ |µ′| |q′|}
≤ 2 max {|λ| , |µ| , |λ′| , |µ′|}max {|p′| , |q′|}
≤ 2M max {K1,K2,K3,K4}max {|p′| , |q′|} ,

it holds that

4 |∆′E |H (P )
4

= 4 |∆′E | (max {|p| , |q|})4 ≤ 2 max {K1,K2,K3,K4}max {|p′| , |q′|} .

Now let 2P = (a′, b′). By the duplication formula,

a′ =
a4 − 2Aa2 − 8Ba+A2

4b2
=
a4 − 2Aa2 − 8Ba+A2

4a3 + 4Aa+ 4B
=
p′

q′
.

Since g = gcd (p′, q′) | gcd
(
4∆′Ep

7, 4∆′Eq
7
)

= 4∆′E , it holds that 1 ≤ |g| ≤ 4 |∆′E |. Thus

h (2P ) = log2

(
max

{∣∣∣∣p′g
∣∣∣∣ , ∣∣∣∣q′g

∣∣∣∣}) = log2

(
max {|p′| , |q′|}

|g|

)
≥ log2

(
max {|p′| , |q′|}

4 |∆′E |

)
≥ log2

(
H (P )

4

2 max {K1,K2,K3,K4}

)
≥ 4h (P )− C3.

The properties of the height function h are now verified.
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3.6 Mordell’s theorem: weak Mordell

The weak version of Mordell’s theorem, restricted to Q, states that the index of the normal subgroup
2E (Q) = {2P | P ∈ E (Q)} is finite.

Theorem 3.6.1 (Weak Mordell). |E (Q) : 2E (Q)| is finite.

As full proofs of the weak theorem, such as in VIII.1 of [2], requires further prerequisites on algebraic
number theory, particularly finiteness of the ideal class group of number fields, only an alternative proof
is given, of which the special case of a rational 2-torsion point (a0, 0) is assumed. Since there is a j-
invariant affine transformation (x, y) 7→ (x+ a0, y), there is an isomorphism from E to the curve given by
the Weierstrass equation

y2 = (x+ a0)
3

+A (x+ a0) +B =⇒ y2 = x3 + 3a0x
2 +

(
3a2

0 +A
)
x.

Hence for this subsection and the next, assume without loss of generality that a0 = 0 and

T = (a0, 0) = (0, 0) ∈ E : y2 = x3 +Ax2 +Bx, A,B ∈ Z.

The modified discriminant and group law is then given in the following lemma.

Lemma 3.6.2. The following properties hold:

1. B 6= 0 and A2 − 4B 6= 0.

2. Let P = (a, b) ∈ E (Q) and Q = (a′, b′) ∈ E (Q) be points such that a 6= a′ and P + Q = (a′′, b′′) ∈
E (Q). Then aa′a′′ = µ2 for some µ ∈ Q.

3. Let P = (a, b) ∈ E (Q) be a point such that b 6= 0. Then

2P =

((
a2 −B

)2
4b2

,

(
a2 −B

) (
a4 +B2 + 2Aa3 + 2ABa+ 6Ba2

)
8b3

)
∈ E (Q) .

Proof. The negation formula remains unmodified, so − (a, b) = (a,−b) for any point (a, b) ∈ E.

1. Since E is smooth and the discriminant is

∆E = 9 (4A) (2B) (0)− 1
4 (4A)

2
(

(4A) (0)− (2B)
2
)
− 8 (2B)

3 − 27 (0)
2

= 16B2
(
A2 − 4B

)
,

16B2
(
A2 − 4B

)
6= 0. Thus B 6= 0 and A2 − 4B 6= 0.

2. The line joining P and Q is

L : y = λx+ µ, λ =
b− b′

a− a′
, µ =

ab′ − a′b
a− a′

,

which intersects E at x3 −
(
λ2 −A

)
x2 + (B − 2λµ)x − µ2 = 0. Let P ∗Q = − (P +Q) = (a′′,−b′′).

Thus comparing coefficients gives µ2 = aa′a′′.

3. The tangent at P is

L : y = λx+ µ, λ =
3a2 + 2Aa+B

2b
, µ =

b2 −Aa2 − 2Ba

2b
,

which intersects E at x3 −
(
λ2 −A

)
x2 + (B − 2λµ)x − µ2 = 0. Let P ∗ P = −2P = (a′,−b′), so

comparing coefficients gives λ2 −A = 2a+ a′. Thus

2P =
(
λ2 −A− 2a, µ− λ

(
λ2 −A− 2a

))
∈ E (Q) .
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The above proof is brief but can be verified manually. Let a related curve be

E′ : y2 = x3 +A′x2 +B′x, A′ = −2A, B′ = A2 − 4B,

such that T ∈ E′ and B′ 6= 0. Then A′2− 4B′ = (−2A)
2− 4

(
A2 − 4B

)
= 16B, and the group law is similar

to that of E but with A′ and B′ instead of A and B. Now let the two maps φ : E → E′ and ψ : E′ → E be
defined by

φ (P ) =


(
b2

a2
,
b
(
a2 −B

)
a2

)
P = (a, b) 6= T

O P ∈ {O, T}
, ψ (P ) =


(
b2

4a2
,
b
(
a2 −B′

)
8a2

)
P = (a, b) 6= T

O P ∈ {O, T}
.

These two maps are related in the obvious way, where one can be seen as the scaling of the other. They also
relate the two elliptic curves, as seen in the following lemma.

Lemma 3.6.3. φ : E → E′ and ψ : E′ → E are isogenies such that ψ ◦ φ = [2]E and φ ◦ ψ = [2]E′ .

Remark. Preserving the point at infinity induces a group homomorphism, but the full property can be
tediously verified in III.4 of [3] for each case of the group law.

Proof. For any point P = (a, b) ∈ E,(
b2

a2

)3

+A′
(
b2

a2

)2

+B′
b2

a2
=
b2

a4

((
b2 −Aa2

)2 − 4Ba4

a2

)
=
b2

a4

((
a3 +Ba

)2 − 4Ba4

a2

)
=

(
b
(
a2 −B

)
a2

)2

,

so φ (P ) ∈ E′. Since φ (T ) = φ (O) = O, it holds that φ is a well-defined non-constant morphism, and hence
an isogeny. Since ψ can be seen as applying χ ◦ φ to E, where χ is the j-invariant affine transformation
(x, y) 7→ (x/4, y/8), it is also a well-defined non-constant morphism, and hence an isogeny. Now let P ∈ E.
If P = O or P = (a, 0), then (ψ ◦ φ) (P ) = O = 2P . Otherwise P = (a, b) such that a 6= 0 and b 6= 0, then

(ψ ◦ φ) (P ) =

(b (a2 −B
)
/a2
)2

4 (b2/a2)
2 ,

(
b
(
a2 −B

)
/a2
) ((

b2/a2
)2 −B′)

8 (b2/a2)
2


=

((
a2 −B

)2
4b2

,

(
a2 −B

) (
b4 −

(
A2 − 4B

)
a4
)

8b3a2

)

=

((
a2 −B

)2
4b2

,

(
a2 −B

) (
a4 +B2 + 2Aa3 + 2ABa+ 6Ba2

)
8b3

)
= 2P.

Hence ψ ◦φ = [2]E . Similarly let P ′ ∈ E′. If P ′ = O or P ′ = (a, 0), then (φ ◦ ψ) (P ′) = O = 2P ′. Otherwise
P ′ = (a, b) such that a 6= 0 and b 6= 0, then

(φ ◦ ψ) (P ′) =

(b (a2 −B′
)
/8a2

)2
(b2/4a2)

2 ,

(
b
(
a2 −B′

)
/8a2

) ((
b2/4a2

)2 −B)
(b2/4a2)

2


=

((
a2 −B′

)2
4b2

,

(
a2 −B′

) (
b4 − 16

((
A′2 − 4B′

)
/16
)
a4
)

8b3a2

)

=

((
a2 −B′

)2
4b2

,

(
a2 −B′

) (
a4 +B′2 + 2A′a3 + 2A′B′a+ 6B′a2

)
8b3

)
= 2P ′.

Thus φ ◦ ψ = [2]E′ .

Hence the multiplication by 2 map can be decomposed into two isogenies φ and ψ. As only the image of
these isogenies will be used, their standard forms will not be used to prevent confusion.

Remark. These two isogenies are dual isogenies to each other. Any isogeny of degree n ∈ Z>0 has a dual
isogeny, which composes with it to give two multiplication by n maps in their respective domains.
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The image of the isogeny ψ depends on whether B is a perfect square or whether x coordinates are in the
normal subgroup (Q∗)2

=
{
q2 | q ∈ Q∗

}
. In particular, the equation x3 + A′x + B′ = 0 with discriminant

16
(
A′2 − 4B′

)
= 16B has two solutions in Q∗ iff 16B ∈ (Z∗)2

, or B ∈ (Z∗)2
, stated as follows.

Lemma 3.6.4. The image Im (ψ) is such that:

• O ∈ Im (ψ),

• T ∈ Im (ψ) iff B ∈ (Z∗)2
, and

• (a, b) 6= T ∈ Im (ψ) iff a ∈ (Q∗)2
.

Proof. Since ψ (O) = O, it holds that O ∈ Im (ψ). Now T ∈ Im (ψ) iff there is a point P = (a, b) ∈ E′ (Q)

such that ψ (P ) = T and 0 = b2/4a2. This holds iff a ∈ Q∗ and b = 0, or B ∈ (Z∗)2
. Now assume

that P = (a, b) 6= T ∈ Im (ψ). Then there is a point Q = (a′, b′) ∈ E′ (Q) such that ψ (Q) = P , so

a = b′2/4a′2 = (b′/2a)
2 ∈ (Q∗)2

. Conversely assume that P = (a, b) 6= T ∈ E (Q) and a ∈ (Q∗)2
. Then

a = c2 for some c ∈ Q∗, so

b2 = c6 − A′c4

2
+
A′2 − 4B′

16
c2 =⇒ B′ =

(
2c2 − A′

2
+

2b

c

)(
2c2 − A′

2
− 2b

c

)
.

Now let Q = (a′, b′), where a′ = 2c2 −A′/2 + 2b/c and b′ = 2a′c, such that B′ = a′ (a′ − 4b/c). Then

a′3 +A′a′2 +B′a′ = a′3 +A′a′2 + a′2
(
a′ − 2b

c

)
= 2a′2

(
a′ +

A′

2
− 4b

c

)
= 4a′2c2 = b′2,

so Q ∈ E′ (Q), and

ψ (Q) =

(
b′2

4a′2
,
b′
(
a′2 −B′

)
8a′2

)
=

(
4a′2c2

4a′2
,

2a′c
(
a′2 − a′ (a′ − 4b/c)

)
8a′2

)
=

(
c2,

c (4a′b/c)

4a′

)
= (a, b) = P.

Thus P ∈ Im (ψ).

The image of the isogeny φ can be characterised analogously, and will not be explicitly stated here. Now
let another map be defined as

α : E (Q)→ Q∗/ (Q∗)2
, α (P ) =


(Q∗)2

a P = (a, b) 6= T

(Q∗)2
B P = T

(Q∗)2
P = O

.

Then ψ and α induce an exact sequence E′ (Q)
ψ−→ E (Q)

α−→ Q∗/ (Q∗)2
, which can be stated more concretely

in the following lemma.

Lemma 3.6.5. α : E (Q)→ Q∗/ (Q∗)2
is a group homomorphism such that Im (ψ) = Ker (α).

Proof. Let P,Q ∈ E (Q) be points. If P = O,

α (P )α (Q) = (Q∗)2
α (Q) = α (Q) = α (P +Q) ,

or similar for Q = O. If P = (a, b) and Q = (a′, b′) such that a 6= a′ and P +Q = (a′′, b′′) ∈ E (Q), then

α (P )α (Q) = (Q∗)2
a (Q∗)2

a′ = (Q∗)2
aa′ = (Q∗)2 µ

2

a′′
= (Q∗)2

µ2a′′ = (Q∗)2
a′′ = α (P +Q) .

Otherwise P = (a, b) and Q = (a, b′), then

α (P )α (Q) = (Q∗)2
a (Q∗)2

a = (Q∗)2
a2 = (Q∗)2

= (Q∗)2

(
a2 −B

)2
4b2

= α (P +Q) .

Hence α is a group homomorphism. Now O ∈ Ker (α), the point T ∈ Ker (α) iff B ∈ (Q∗)2
, and a point

(a, b) 6= T ∈ Ker (α) iff a ∈ (Q∗)2
. Thus Im (ψ) = Ker (α).
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The image of the group homomorphism α can again be characterised, as being contained in a finite
subgroup of Q∗/ (Q∗)2

. Now let S (B) be the set of primes p ∈ Z>0 such that p | B, and let

G (B) =

(Q∗)2

∏
p∈S

p

 ∣∣∣∣∣ S ⊆ S (B)

 ∪
(Q∗)2

−∏
p∈S

p

 ∣∣∣∣∣ S ⊆ S (B)

 .

Recalling the fact that for any point (a, b) ∈ E (Q),

a = p/d2, b = q/d3, p, q ∈ Z, d ∈ Z>0,

such that gcd (p, d) = gcd (q, d) = 1, the following lemma characterises α.

Lemma 3.6.6. G (B) is a group such that |G (B)| = 2|S(B)|+1 and Im (α) ≤ G (B) ≤ Q∗/ (Q∗)2
.

Proof. Since ∅ ⊆ S (B), it holds that (Q∗)2 ∈ G (B). Let a, b ∈ G (B). Then

a = (Q∗)2
jp1 . . . pnp

′
1 . . . p

′
n′ , b = (Q∗)2

j′p1 . . . pnp
′′
1 . . . p

′′
n′′

for some j, j′ ∈ {−1, 1} and some distinct primes pi, p
′
i, p
′′
i ∈ S (B), so

a

b
=

(Q∗)2
jp1 . . . pnp

′
1 . . . p

′
n′

(Q∗)2
j′p1 . . . pnp′′1 . . . p

′′
n′′

= (Q∗)2 jp′1 . . . p
′
n′

j′p′′1 . . . p
′′
n′′

= (Q∗)2
jj′p′1 . . . p

′
n′p
′′
1 . . . p

′′
n′′ ∈ G (B) .

Hence G (B) ≤ Q∗/ (Q∗)2
and |G (B)| = 2|S(B)| + 2|S(B)| = 2|S(B)|+1. Now let P ∈ E (Q) be a point. If

P = O, then α (P ) = (Q∗)2 ∈ G (B). If P = T , then α (P ) = (Q∗)2
B ∈ G (B). Otherwise P = (a, b) 6= T ,

then a = r/d2 and b = s/d3 for some r, s ∈ Z and some d ∈ Z>0 such that gcd (r, d) = gcd (s, d) = 1
and s2 = r3 + Ar2d2 + Brd4 = r

(
r2 +Ard2 +Bd4

)
. Let g = gcd

(
r, r2 +Ard2 +Bd4

)
, then r = cg and

r2 + Ard2 + Bd4 = c′g for some c, c′ ∈ Z≥0 such that gcd (c, c′) = 1. Since s2 = (cg) (c′g) = cc′g2, it holds

that (s/g)
2

= cc′, so c = kq2
1 · · · q2

m for some k ∈ {−1, 1} and some primes qi ∈ Z>0. Since g | r and g | Bd4,
it also holds that g | B, so g = k′q′1 . . . q

′
m′ for some k′ ∈ {−1, 1} and some primes q′i ∈ Z>0 such that q′i | B,

and hence q′i ∈ S (B). Hence

α (P ) = (Q∗)2
a = (Q∗)2 r

d2
= (Q∗)2 kk

′q2
1 · · · q2

mq
′
1 . . . q

′
m′

d2
= (Q∗)2

kk′q′1 . . . q
′
m′ ∈ G (B) .

Thus Im (α) ≤ G (B).

A similar group homomorphism α′ : E′ (Q)→ Q∗/ (Q∗)2
can again be characterised analogously, and will

not be explicitly stated here. The weak theorem can then be proven here, for the special case of a rational
2-torsion point.

Proof of Theorem 3.6.1. The first isomorphism theorem with the preceding lemmas give two inclusions

E (Q)

Im (ψ)
=

E (Q)

Ker (α)
∼= Im (α) ≤ G (B) ,

E′ (Q)

Im (φ)
=

E′ (Q)

Ker (α′)
∼= Im (α′) ≤ G (B′) ,

which give finite indices

n = |E (Q) : Im (ψ)| ≤ |G (B)| = 2|S(B)|+1, m = |E′ (Q) : Im (φ)| ≤ |G (B′)| = 2|S(B′)|+1.

Let P1, . . . , Pn ∈ E (Q) be representative points such that Im (ψ) + Pi ∈ E (Q) /Im (ψ) are distinct cosets,
and let Q1, . . . , Qm ∈ E′ (Q) be representative points such that Im (φ) + Qi ∈ E′ (Q) /Im (φ) are distinct
cosets. Now let P ∈ E (Q) be a point. Then Im (ψ) + P = Im (ψ) + Pj for some j ∈ {1, . . . , n}, so
P = ψ (Q) + Pj for some Q ∈ E′ (Q) and ψ (Q) ∈ Im (ψ). Similarly Im (φ) + Q = Im (φ) + Qk for some
k ∈ {1, . . . ,m}, so Q = φ (P ′) +Qk for some P ′ ∈ E (Q) and φ (P ′) ∈ Im (φ). Hence

P = ψ (Q) + Pj = ψ (φ (P ′) +Qk) + Pj = ψ (φ (P ′)) + ψ (Qk) + Pj ∈ 2E (Q) + ψ (Qk) + Pj ,

and ψ (Qk) + Pj ∈ E (Q) represent all cosets in E (Q) /2E (Q). Thus

|E (Q) : 2E (Q)| ≤ nm = 2(|S(B)|+1)(|S(B′)|+1)

is finite.

The proof of Mordell’s theorem is now complete.
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3.7 Rank computation

A direct application of Mordell’s theorem would be the fundamental theorem of finite abelian groups,

E (Q) ∼= Zr ⊕
m⊕
i=1

Zni
, r,m ∈ Z≥0, ni ∈ Z>1,

such that each ni | ni+1. Thus for any point P ∈ E (Q),

P =

r∑
i=1

riPi +

m∑
i=1

miQi, ri ∈ Z, mi ∈ Zni
, Pi, Qi ∈ E (Q) .

While the torsion subgroup can be easily computed, the rank r is generally difficult to compute, and can
only be made slightly easier with Mordell’s theorem. Noting that

⊕
i (Gi/Hi) ∼= (

⊕
iGi) / (

⊕
iHi) for any

groups Gi, Hi, the following proposition gives a direct formula for the rank.

Proposition 3.7.1. The rank r = rk (E (Q)) is such that

2r = 1
4 |Im (α)| |Im (α′)| .

Proof. The fundamental theorem of finite abelian groups gives

E (Q)

2E (Q)
∼=

Zr ⊕
⊕m

i=1 Zni

r2Z⊕
⊕m

i=1 2Zni

∼= r

(
Z
2Z

)
⊕

m⊕
i=1

Zni

2Zni

.

Then Z/2Z ∼= Z2. If ni - 2, then 2−1 ∈ Zni
, so Zni

∼= 2Zni
and Zni

/2Zni
∼= 0, otherwise ni | 2. Now

P ∈ E (Q) [2] iff 2P = 0, or each ri = 0 and each 2mi = 0 mod ni, which holds iff mi = 0 or ni | 2, so
E (Q) [2] =

⊕
ni|2 Zni . Hence

E (Q)

2E (Q)
∼= Zr2 ⊕ E (Q) [2] =⇒ |E (Q) : 2E (Q)| = 2r |E (Q) [2]| .

Now let θ : E′ (Q) → Im (ψ) /2E (Q) be a surjective group homomorphism defined by θ (P ) = 2E (Q) +
ψ (P ). Then P ∈ Ker (θ) iff ψ (P ) ∈ 2E (Q), or ψ (P ) = ψ (φ (Q)) for some Q ∈ E (Q). This holds
iff ψ (P − φ (Q)) = 0, or P − φ (Q) ∈ Ker (ψ) and P ∈ Ker (ψ) + Im (φ). Then the three isomorphism
theorems with Ker (θ) = Ker (ψ) + Im (φ) give

Im (ψ)

2E (Q)
∼=

E′ (Q)

Ker (ψ) + Im (φ)
∼=

E′ (Q)

Im (φ)

Ker (ψ) + Im (φ)

Im (φ)

∼=

E′ (Q)

Im (φ)

Ker (ψ)

Ker (ψ) ∩ Im (φ)

.

Hence

|E (Q) : 2E (Q)| = |E (Q) : Im (ψ)| |E′ (Q) : Im (φ)|
|Ker (ψ) : Ker (ψ) ∩ Im (φ)|

=
|Im (α)| |Im (α′)|

|Ker (ψ) : Ker (ψ) ∩ Im (φ)|
.

Now B′ ∈ (Z∗)2
iff T ∈ Im (φ) and the equation x2 +Ax+B = 0 with discriminant 16

(
A2 − 4B2

)
= 16B′

has solutions in Z∗. Since Ker (ψ) = {O, T} and O ∈ Im (φ), this holds iff Ker (ψ)∩Im (φ) = {O, T}. Since
O, T ∈ E (Q) [2], this also holds iff (a, 0) , (a′, 0) ∈ E (Q) [2] for the solutions a, a′ ∈ Q∗ of x2 +Ax+B = 0.
Hence

E (Q) [2] =

{
{O, T, (a, 0) , (a′, 0)} B′ ∈ (Z∗)2

{O, T} B′ /∈ (Z∗)2 ,
Ker (ψ)

Ker (ψ) ∩ Im (φ)
=

{
{O} B′ ∈ (Z∗)2

{O, T} B′ /∈ (Z∗)2 ,

so |Ker (ψ) : Ker (ψ) ∩ Im (φ)| |E (Q) [2]| = 4. Thus

2r =
|Im (α)| |Im (α′)|

|Ker (ψ) : Ker (ψ) ∩ Im (φ)| |E (Q) [2]|
= 1

4 |Im (α)| |Im (α′)| .
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Computation of the rank simply reduces to determining images of α and α′. This in turn can be rephrased
as a question of Diophantine equations.

Proposition 3.7.2. The image Im (α) is such that

Im (α) =
{

(Q∗)2
β
∣∣∣ β,B/β ∈ Z∗, (X,Y, Z) ∈ Z3 \ {(0, 0, 0)} , Y 2 = βX4 +AX2Z2 + (B/β)Z4

}
.

Proof. Since (Q∗)2 ∈ Im (α), there is a solution (X,Y, Z) = (1, 1, 0) for β = 1. Since (Q∗)2
B ∈ Im (α), there

is also a solution (X,Y, Z) = (0, 1, 1) for β = B. Let P = (a, b) 6= T ∈ E (Q) such that (Q∗)2
a ∈ Im (α).

Then a = r/Z2
0 and b = s/Z3

0 for some r, s ∈ Z and some Z0 ∈ Z>0 such that gcd (r, Z0) = gcd (s, Z0) = 1.
Now let r = X2

0β0, where X0 = p1 . . . pn ∈ Z>0 for some primes pi ∈ Z>0 and β0 = jq1 . . . qn for some

j ∈ {−1, 1} and some distinct primes qi ∈ Z>0. Since (Q∗)2
β0 = (Q∗)2

X2
0β0/Z

2
0 = (Q∗)2

β0 ∈ G (B), each
qi | B, so β0 | B and hence B/β0 ∈ Z∗. Then(

s

Z3
0

)2

=

(
X2

0β0

Z2
0

)3

+A

(
X2

0β0

Z2
0

)2

+B
X2

0β0

Z2
0

=⇒ s2 = β2
0X

2
0

(
β0X

4
0 +AX2

0Z
2
0 + (B/β0)Z4

0

)
,

so let Y0 = s2/β2
0X

2
0 ∈ Z such that Y 2

0 = β0X
4
0 + AX2

0Z
2
0 + (B/β0)Z4

0 . Hence there is a non-zero solution
(X,Y, Z) = (X0, Y0, Z0) for β = β0. Conversely let (X,Y, Z) = (X0, Y0, Z0) be a non-zero solution for some
β = β0 ∈ Z∗, so Y 2

0 = β0X
4
0 +AX2

0Z
2
0 + (B/β0)Z4

0 . Then P =
(
β0X

2
0/Z

2
0 , β0X0Y0/Z

3
0

)
is such that(

β0X0Y0

Z3
0

)2

=
β2

0X
2
0

(
β0X

4
0 +AX2

0Z
2
0 + (B/β0)Z4

0

)
Z6

0

=

(
β0X

2
0

Z2
0

)3

+A

(
β0X

2
0

Z2
0

)2

+B
β0X

2
0

Z2
0

,

so P ∈ E (Q) and α (P ) = (Q∗)2 (
β0X

2
0/Z

2
0

)
= (Q∗)2

β0. Thus any non-zero solution is in Im (α).

Again, the image of α′ is similar to that of α but with B′ instead of B. The following example illustrates
the full computation of the rank of a simple elliptic curve.

Example. Let E : y2 = x3 − x be an elliptic curve over Q. Then β ∈ {±1}. Since β = 1 and β = −1 = B

have solutions, it holds that |Im (α)| = 2. Now E′ : y2 = x3 +4x gives β ∈ {±1,±2,±4}. Since (Q∗)2
(±1) =

(Q∗)2
(±4), the Diophantine equations to consider are:

1. β = 1 gives Y 2 = X4 + 4Z4, which has a solution (X,Y, Z) = (0, 2, 1).

2. β = 2 gives Y 2 = 2X4 + 2Z4, which has a solution (X,Y, Z) = (1, 2, 1).

3. β = −1 gives Y 2 = −X4 − 4Z4, which has no solutions by sign disparity.

4. β = −2 gives Y 2 = −2X4 − 2Z4, which has no solutions by sign disparity.

Hence |Im (α′)| = 2 and 2r = 1
4 (2) (2) = 1. Thus rk (E (Q)) = 0 and E (Q) = E (Q)tors

∼= Z2.

The following algorithm summarises the process and code in the appendix.

Algorithm 3.7.3 (Computation of the rank). Input: an elliptic curve E over Q. Output: rk (E (Q)).

1. Get all positive β such that β | B and free the squares from each β.

2. Print all Diophantine equations of the form Y 2 = βX4 +AX2Z2 + (B/β)Z4.

3. Write down the elliptic curve E′ : y2 = x3 − 2Ax2 +
(
A2 − 4B

)
x and do the same.

4. Check if there are non-zero solutions to the systems of Diophantine equations.

5. Compute the rank with the formula rk (E (Q)) = log2 |Im (α)|+ log2 |Im (α′)| − 2.

Unfortunately, there are no known effective method for the second to last step. In contrast to attempting
at a number theoretic algorithm like in [12], only ad-hoc congruences will be used to complete the computa-
tions in the following examples of elliptic curves given by the Weierstrass equations y2 = x3−px for p ∈ Z>0.
The following example is an elliptic curve of rank one.
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Example. Let E : y2 = x3 − 5x be an elliptic curve over Q, which gives β ∈ {±1,±5}. Since β = 1 and
β = −5 have trivial solutions, the Diophantine equations to consider are Y 2 = −X4 + 5Z4, which has a
solution (X,Y, Z) = (1, 2, 1), and Y 2 = 5X4 − Z4, which has a solution by symmetry. Hence |Im (α)| = 4.
Now E′ : y2 = x3 + 20x gives β ∈ {±1,±2,±5,±10}. If β < 0, there are no solutions by sign disparity.
Since β = 1 and β = 5 have trivial solutions, the Diophantine equations to consider are Y 2 = 2X4 + 10Z4

and Y 2 = 10X4 + 2Z4. Since gcd (X0, Y0) = 1, if the first has a solution (X,Y, Z) = (X0, Y0, Z0), then
Y 2

0 ≡ 2X4
0 ≡ 2 mod 5 gives no solutions for Y0, so both equations have no solutions. Hence |Im (α′)| = 2.

Thus rk (E (Q)) = log2 (4) + log2 (2)− 2 = 1 and E (Q) ∼= Z⊕ E (Q)tors
∼= Z× Z2.

The following example is an elliptic curve of rank two.

Example. Let E : y2 = x3 − 17x be an elliptic curve over Q, which gives β ∈ {±1,±17}. Since β = 1 and
β = −17 have trivial solutions, the Diophantine equations to consider are Y 2 = −X4 + 17Z4, which has a
solution (X,Y, Z) = (1, 4, 1), and Y 2 = 17X4 − Z4, which has a solution by symmetry. Hence |Im (α)| = 4.
Now E′ : y2 = x3 + 68x gives β ∈ {±1,±2,±17,±34}. If β < 0, there are no solutions by sign disparity.
Since β = 1 and β = 17 have trivial solutions, the Diophantine equations to consider are Y 2 = 2X4 + 34Z4,
which has a solution (X,Y, Z) = (1, 6, 1), and Y 2 = 34X4 + 2Z4, which has a solution by symmetry. Hence
|Im (α′)| = 4. Thus rk (E (Q)) = log2 (4) + log2 (4)− 2 = 2 and E (Q) ∼= Z2 ⊕ E (Q)tors

∼= Z2 × Z2.

The following example is an elliptic curve of rank three.

Example. Let E : y2 = x3− 226x be an elliptic curve over Q, which gives β ∈ {±1,±2,±113,±226}. Since
β = 1 and β = −226 have trivial solutions, the Diophantine equations to consider are Y 2 = −X4 + 226Z4,
Y 2 = 2X4− 113Z4, Y 2 = −2X4 + 113Z4, Y 2 = 113X4− 2Z4, Y 2 = −113X4 + 2Z4, and Y 2 = 226X4−Z4.
The first three have solutions (X,Y, Z) = (1, 15, 1), (X,Y, Z) = (3, 7, 1), and (X,Y, Z) = (1, 9, 2) respectively,
while the last three have solutions by symmetry. Hence |Im (α)| = 8. Now E′ : y2 = x3 + 904x gives
β ∈ {±1,±2,±113,±226}. If β < 0, there are no solutions by sign disparity. Since β = 1 and β = 226
have trivial solutions, the Diophantine equations to consider are Y 2 = 2X4 + 452Z4, which has a solution
(X,Y, Z) = (1, 22, 2), and Y 2 = 113X4+8Z4, which has a solution (X,Y, Z) = (1, 11, 1). Hence |Im (α′)| = 4.
Thus rk (E (Q)) = log2 (8) + log2 (4)− 2 = 3 and E (Q) ∼= Z3 ⊕ E (Q)tors

∼= Z3 × Z2.

The ranks of elliptic curves above are relatively small in value and easy to compute, but there are elliptic
curves with larger rank values. The record as of 2018 in [13] for the elliptic curve with the largest rank was
discovered by Elkies in 2006, and is given by the Weierstrass curve

E : y2 + xy + y = x3 − x2 − 20067762415575526585033208209338542750930230312178956502x

+34481611795030556467032985690390720374855944359319180361266008296291939448732243429,

which is proven to have rank at least 28. There are also elliptic curves with relatively large ranks known
exactly, the largest of which was also discovered by Elkies in 2009, and is given by the Weierstrass curve

E : y2 + xy + y = x3 − x2 + 31368015812338065133318565292206590792820353345x

+302038802698566087335643188429543498624522041683874493555186062568159847,

which has rank 19. In fact, it is conjectured that the rank of an elliptic curve does not have an upper bound.

Conjecture 3.7.4. There are elliptic curves over Q of arbitrary large rank.

However, while they exist, elliptic curves of rank greater than one are rare. This notion of rarity is
measured by the average rank of all elliptic curves, of which is conjectured to exist as a quantity.

Conjecture 3.7.5. The average rank of all elliptic curves over Q is 1
2 .

In particular, rank zero constitute a half and rank one constitute the other half, while all higher ranks
constitute zero percent, of all elliptic curves. While it has not been definitely proven, Bhargava and Shankar
showed in [14] that the average rank of all elliptic curves is at most 7/6.
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3.8 Birch and Swinnerton-Dyer conjecture

Ultimately, the rank of an elliptic curve is not completely understood. It was greatly studied for decades,
and had lead mathematicians to formalise one of the most influential conjectures in number theory, which
is also deemed worthy of being called one of the Millennium Prize Problems. The problem, now commonly
known as the Birch and Swinnerton-Dyer conjecture, relates the rank with Taylor expansion of a particular
complex series. Letting tp denote the trace in Hasse’s theorem applied to Ep (Fp) for any prime p ∈ Z>0 of
good reduction, the series can be given as follows.

Definition (Incomplete Hasse-Weil L-series). The incomplete Hasse-Weil L-series is defined for any
< (s) > 3/2 as the Euler product

L (E, s) =
∏
p

1

1− tpp−s + p1−2s

over all primes p ∈ Z>0 of good reduction, and extended to C by analytic continuation.

This analytic continuation, as well as a functional equation similar to that of the Riemann zeta function,
was originally known as the Hasse-Weil conjecture, but was subsequently implied by the modularity theorem.

Remark. The complete Hasse-Weil L-series is defined over all primes p ∈ Z>0 as the Euler product

L∗ (E, s) =
∏
p|∆E

1

1− tpp−s
∏
p-∆E

1

1− tpp−s + p1−2s
=

∞∑
n=1

an
ns
.

Now E might be a singular cubic curve, so that tp can be defined for primes of bad reduction as either tp = ±1
or tp = 0, depending on whether E has split or non-split multiplicative reduction or additive reduction, which
corresponds to whether Ep has a node or a cusp respectively.

Due to analyticity in C, it makes sense to consider the Taylor expansion of L (E, s) given by

L (E, s) =

∞∑
i=0

ci (s− s0)
i
, s0 ∈ C, ci ∈ C,

as well its order of vanishing ords=s0 or order of zero at s0, a value i such that ci 6= 0 but cj = 0 for any
j < i. A different notion of rank can then be defined for E, as follows.

Definition (Analytic rank). The analytic rank of E is rkan (E (Q)) = ords=1L (E, s).

The conjecture then relates both notions of ranks as follows.

Conjecture 3.8.1 (Birch and Swinnerton-Dyer). rk (E (Q)) = rkan (E (Q)).

Remark. There is also a refined version of the conjecture that involves the Tate-Shafarevich group, which
is omitted for further discussion. Proving this strong version will then indirectly lead to efficient algorithms
for rank computation.

A direct consequence of the conjecture is that E (Q) is infinite iff its ranks rk (E (Q)) and rkan (E (Q))
are positive. This holds iff L (E, s) does not have a constant term, or iff L (E, 1) computes to give a value
of 0. In other words, the finiteness of E (Q) holds iff L (E, 1) 6= 0. Now the conjecture has been supported
with much numerical evidence in [15], and can also be verified by prior examples with the Sage programming
language as follows.

Example. Let E : y2 = x3 − x be an elliptic curve over Q. Then rk (E (Q)) = 0 and

L (E, s) ≈ 0.655514388573030 + 0.447208159472739s− 0.233131198781643s2 + 0.0342258563577268s3 + . . . ,

Hence L (E, 1) ≈ 0.655514388573030 6= 0. Now let E′ : y2 = x3 − 5x be an elliptic curve over Q. Then
rk (E′ (Q)) = 1 and

L (E′, s) ≈ 0.000000000000000 + 2.22876814774675s− 2.06654309593994s2 + 0.549852427979257s3 + . . . .

Thus L (E′, 1) ≈ 0.000000000000000 = 0.

47



The Arithmetic of Elliptic Curves David Kurniadi Angdinata

However, only special cases of the conjecture have been proven to date. The first general result, proven
by Coates and Wiles, states that an elliptic curve E with L (E, 1) 6= 0 and complex multiplication, or when
|End (E)| is strictly larger than Z, has finite E (Q), and hence rk (E (Q)) = 0. A later result, proven
by Gross and Zagier with Heegner points, states that a modular elliptic curve E with L (E, 1) = 0 and
(d/ds)L (E, 1) 6= 0, or equivalently rkan (E (Q)) = 1, has a non-torsion rational point in E (Q), and hence
rk (E (Q)) > 0. Subsequently, Kolyvagin extended this proof by showing that rk (E (Q)) = 1 must hold for
this latter case, and that rk (E (Q)) = 0 if L (E, 1) 6= 0 instead. With the modularity theorem proven by
Breuil et al, it is now known that any elliptic curve over Q is modular, hence proving the following special
case of the Birch and Swinnerton-Dyer conjecture.

Theorem 3.8.2 (Breuil, Coates, Conrad, Diamond, Gross, Kolyvagin, Taylor, Wiles, Zagier). rk (E (Q)) =
rkan (E (Q)) for rkan (E (Q)) ∈ {0, 1}.
Proof. Omitted, see [16], [17], [18], and [19].

The very recent result due to Bhargava and Shankar in [14] also showed that a large proportion of
all elliptic curves must have either rank zero or one, but the conjecture still remain unproven for elliptic
curves with higher ranks. Now as a Millenium Prize Problem, the Birch and Swinnerton-Dyer conjecture
has significant implications in number theory, particularly on finiteness of the Tate-Shafarevich group, but
it also proves other more elementary results, one of which concerns integers with the following property.

Definition (Congruent number). n ∈ Z>0 is a congruent number iff it is the area of some right triangle
with sides in Q>0.

Congruent numbers can be illustrated with the following example.

Example. 5 = 1
2 (3/2) (20/3) is a congruent number since it is the area of the right triangle with sides

3/2, 20/3, 41/6 ∈ Q>0, while 10 is not a congruent number.

An open problem is the classification of all congruent numbers, known as the congruent number problem,
which boils down to obtaining simultaneous solutions for a2 + b2 = c2 and 2n = ab, for some n ∈ Z>0 and
some a, b, c ∈ Q>0. Considering the non-zero inverse transformations

(x, y) =

(
n (a+ c)

b
,

2n2 (a+ c)

b2

)
, (a, b, c) =

((
x2 − n2

)
y

,
2nx

y
,

(
x2 + n2

)
y

)
,

the system of equations can be transformed with a bijective correspondence to the Weierstrass equation
y2 = x3 − n2x. Hence checking whether n is a congruent number is in turn equivalent to determining
whether an affine rational point with non-zero coordinates exists in the elliptic curve E : y2 = x3−n2x over
Q. This prompts the following theorem that further classify the conditions for being a congruent number.

Theorem 3.8.3 (Tunnell). Let n ∈ Z>0 be a square-free congruent number. If n is odd, then

2
∣∣{(x, y, z) ∈ Z3 | n = 2x2 + y2 + 32z2

}∣∣ =
∣∣{(x, y, z) ∈ Z3 | n = 2x2 + y2 + 8z2

}∣∣ .
Otherwise n is even, then

2
∣∣{(x, y, z) ∈ Z3 | n = 2

(
4x2 + y2 + 32z2

)}∣∣ =
∣∣{(x, y, z) ∈ Z3 | n = 2

(
4x2 + y2 + 8z2

)}∣∣ .
Proof. Omitted, see [20].

The Birch and Swinnerton-Dyer conjecture, on the other hand, provides the converse to Tunnell’s the-
orem, hence giving a single criterion for any congruent number that can be checked by enumerating the four
sets involved. The following example illustrates the process, assuming the conjecture.

Example. Since 5 is an odd square-free congruent number, it holds that

2
∣∣{(x, y, z) ∈ Z3 | 5 = 2x2 + y2 + 32z2

}∣∣ = 0 =
∣∣{(x, y, z) ∈ Z3 | 5 = 2x2 + y2 + 8z2

}∣∣ .
Conversely, since 10 is an even square-free non-congruent number, it holds that

2
∣∣{(x, y, z) ∈ Z3 | n = 2

(
4x2 + y2 + 32z2

)}∣∣ = 8 6= 4 =
∣∣{(x, y, z) ∈ Z3 | n = 2

(
4x2 + y2 + 8z2

)}∣∣ .
As such, the conjecture, if proven even only for elliptic curves given by the Weierstrass equation y2 =

x3 − n2x, would allow the congruence number problem to be fully resolved.
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4 Applications

In this section, two elementary applications of elliptic curves are briefly touched on, together with a brief
history of their development prior to elliptic curves.

4.1 Arithmetic

In arithmetic, the widely known fact that Z is a unique factorisation domain acts as the modern rephrasing
of the fundamental theorem of arithmetic, which states that any integer can be uniquely written as a product
of primes up to rearrangement and sign. An classical problem in arithmetic is determining these primes, or
more commonly known as integer factorisation, for a given huge integer N ∈ Z>0 with tens of digits. Clearly
no work is required if N is prime, which can be verified for most cases by the following theorem.

Theorem 4.1.1 (Fermat’s little theorem). Let N be prime. Then aN−1 ≡ 1 mod N for any a ∈ Z>0 such
that N - a.

Proof. Since N - a, it holds that a 6≡ 0 mod N , so a ∈ Z∗N . Lagrange’s theorem gives ord (a) | |Z∗N | = N−1,
so aN−1 = 1. Thus aN−1 ≡ 1 mod N .

Unfortunately, its converse does not hold, due to the existence of Carmichael numbers, which are com-
posite integers that seemingly satisfy Fermat’s little theorem, the first of which being relatively small at 561.
These integers can be avoided manually due to their relative rarity, but there are indeed more reliable tests to
check if N is prime. Now simply assume that N is composite, with an unknown large prime factor p ∈ Z>0.
On first sight, there is a simple naive approach to factorise N involving trial division, applying Euclidean
division to every positive integer less than N . A clear improvement can be made by only considering 2, 3
and integers of the form 6m± 1, which is illustrated in the following example with a small value of N .

Example. Let N = 420 be composite. Trial division on {2, 3, 5, 7, . . .} gives 420 = 2 (210) + 0 and 210 =
2 (105) + 0, but 105 = 2 (52) + 1. Now 105 = 3 (35) + 0, but 35 = 3 (11) + 2. Then 35 = 7 (5) + 0, but
7 = 1 (5) + 2. Finally 7 = 1 (7) + 0. Thus L′ = {2, 2, 3, 5, 7} and N = (2) (2) (3) (5) (7).

It is immediately evident that this process of factorising N into p and N/p is laborious, and especially
difficult if N/p is also prime and relatively similar in magnitude to p, since every integer below p and N/p
will be checked for failure. In fact, while multiplying p and N/p to produce N is relatively easy, there are
no known efficient non-quantum polynomial time algorithms to deterministically do the reverse, of which is
exactly the basis of modern cryptography. The fastest methods for integer factorisation involve either sieves
or elliptic curves, the latter of which discussed here has motivations stemming from the classical Pollard’s
p− 1 method. The following definition, considering a fixed integer B ∈ Z>0, will be used.

Definition (B-power smooth). Let n ∈ Z>0 be such that n = pe11 . . . penn for some ei ∈ Z>0 and some primes
pi ∈ Z>0. Then n is B-power smooth iff each peii ≤ B.

This definition is illustrated in the following example.

Example. 420 is 7-smooth, and 2 (420) is not 7-smooth but is 8-smooth.

B is typically chosen to be fairly large, such that the composite integer p − 1 is likely to be B-power
smooth. Now let lB = lcm (2, . . . , B), so that any prime below B divides lB , and so p−1 | lB . The algorithm
again uses Fermat’s little theorem to give alB ≡ 1 mod p for any a ∈ Z>0 such that p - a. Hence p | alB − 1,
so letting gB = gcd

(
alB − 1, N

)
gives p | gB | N . Obtaining gB < N immediately implies that gB is a proper

divisor of N , so the process can be repeated replacing N with gB . The algorithm is summarised as follows.

Algorithm 4.1.2 (Pollard’s p− 1 method). Input: an integer N ∈ Z>0. Output: a proper divisor of N .

1. Choose a smoothness bound B ∈ Z>0.

2. Calculate lB = lcm (1, . . . , B).

3. Compute gB = gcd
(
alB − 1, N

)
for some a ∈ {2, . . . , N − 1}.

4. If gB = 1, then choose a larger smoothness bound B, else if gB = N , then choose a different a.

5. Otherwise 1 < gB < N , then return gB .
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Remark. In practicality, this B typically fixed, and a different algorithm is forcibly switched into if this
algorithm fails, which would mean that Pollard’s p− 1 algorithm only serves to simplify the problem.

A simple observation picks out several possible concerns in the algorithm, most obviously being the
question if the algorithm even terminates, which must be the case, as the smoothness bound B will eventually
be large enough for lB to exceed p− 1. Another issue might be the speed of computing lB and gB , with the
latter seemingly depending on the former. This is resolved by the realisation that lB is arbitrarily defined as
such to allow all factors below B to divide lB , so a purely multiplicative lB = B! can be used. While gB may
require further exponentiation, this is not a concern as modular exponentiation with successive squaring to
compute alB is fast, and the result of this can be used in the computation instead of alB − 1. In the highly
unlikely chance that p | a, a fix to this issue could be first doing trial division up to a small integer n ∈ Z>0

to rule out any possibility that p < n, and only considering the cases where a < n. With these concerns in
mind, Pollard’s p− 1 algorithm can be illustrated with the following example involving a small N , which on
modern computers can actually be done instantly even with trial division.

Example. Let N = 246082373. Then 2N−1 ≡ 114193013 6= 1 mod N , so Fermat’s little theorem gives that
N is composite. Now let B = 7 and lB = lcm (1, . . . , B) = 420, and let a = 2. Then alB ≡ 60592910 mod N ,
so gcd

(
alB − 1, N

)
= gcd (60592909, N) = 1. Hence choose B = 9 > 7 and lB = lcm (1, . . . , B) = 2520, and

let a = 2. Then alB ≡ 130940741 mod N , so gcd
(
alB − 1, N

)
= gcd (130940740, N) = 2521 < N . Thus

2521 | N and N = (2521) (97613), which are both prime.

A final serious concern would be overall efficiency of the algorithm that is only reasonable with the initial
supposition that p− 1 is B-power smooth, which may not always be the case, inevitably forcing large values
of B. Despite so, it may still be desirable to check the B-power smoothness of p+ 1, or even p± n for any
small n ∈ Z, to see if the initially fixed B is sufficient to factorise N . In this respect, Pollard’s p−1 algorithm
has no way of allowing for other values of p±n due to the restriction given by Fermat’s little theorem. Now
Lenstra’s elliptic curve factorisation method takes this flaw into account by considering multiple random
elliptic curves over finite fields. While the former considers the multiplicative group Z∗p of order

∣∣Z∗p∣∣ = p− 1

and checks if a ∈ Z∗p satisfies alB = 1, the latter considers the elliptic curve E (Fp) of order |E (Fp)| = p−t+1
and checks if P ∈ E (Fp) satisfies lBP = O. Hasse’s theorem gives |t| ≤ 2

√
p, allowing |E (Fp)| to vary wildly

within this interval and hence removing the aforementioned defect. The algorithm is stated as follows.

Algorithm 4.1.3 (Lenstra’s elliptic curve factorisation method). Input: an integer N ∈ Z>0. Output: a
proper divisor of N .

1. Set P = (a, b) and B = b2 − a3 −Aa for some A, a, b ∈ {1, . . . , N − 1}.

2. If g = gcd
(
4A3 + 27B2, N

)
= N , choose a different A, else if 1 < g < N , return g, else let E : y2 =

x3 +Ax+B be an elliptic curve over Q, treated as over the ring Z∗N .

3. Choose a smoothness bound C and calculate lC as per Pollard’s p− 1 method.

4. Compute lCP =
(
q/d2, r/d3

)
and gC = gcd (d,N).

5. If gC = 1, choose a larger C or a different A, else if gC = N , choose a smaller C, else return gC .

A couple of remarks will be made on Lenstra’s elliptic curve factorisation method, which has the first two
steps markedly differently from Pollard’s p− 1 method. The last three steps of the former mirror the latter,
but it is worth noting that lCP = O iff d = 0, which holds iff p | d, or p | gC = gcd (d,N) | N . While it is
possible to directly obtain a random elliptic curve E : y2 = x3 +Ax+B over Fp by choosing some random
A,B ∈ Z and treating A,B as elements of Fp, obtaining a point in E afterwards will involve the laborious
process of finding a modular square root, and so the above approach is taken. Moreover, to avoid having
P be a torsion point and hence resulting in N | d, a simple fix would be an additional condition to choose
b2 - 4A3 + 27

(
A3 +Aa

)
in this reverse approach, which by the contrapositive to the Nagell-Lutz theorem

forces P to have infinite order. Again, computation of lC will be done by successive duplication of points,
but a concern arises from possibly having denominators d ∈ ZN being zero. Considering the cases when an
inverse does not exist in Z∗N , or when gcd (d,N) > 1, either gcd (d,N) = N , for which it is sufficient to simply
choose a different curve E, or 1 < gcd (d,N) < N , for which gcd (d,N) can be returned as a proper divisor of
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N . In practice, the affine coordinates are computed modulo N , catching a division by zero error only when
the extended Euclidean algorithm fails to give a modular inverse, then computing gC separately. With these
remarks at hand, Lenstra’s elliptic curve factorisation method can be illustrated with the following example
involving a small N , which again can actually be done instantly with a modern computer.

Example. Let N = 1715761513. Then 2N−1 ≡ 114094409 6= 1 mod N , so Fermat’s little theorem gives
that N is composite. Let A = 1, a = 2, and b = 1, such that P = (2, 1) and B = 12 − 23 − 1 (2) = −9. Then
g = gcd

(
4A3 + 27B2, N

)
= 1, such that E : y2 = x3 + x− 9 is an elliptic curve over Q. Now let C = 17 and

lC = lcm (1, . . . , C) = 12252240. Then lCP = (1225303014, 142796033), so (d,N) = 1. Instead of choosing a
larger C, choose a different A ∈ {2, . . . , N} and recompute. Then A = 42 eventually returns (d,N) = 26927.
Thus 26927 | N and N = (26927) (63719), which are both prime.

As seen above, if choosing a different A does not work, a larger C could be tried, or even picking a different
P = (a, b) if all else fails, a sign of high algorithmic flexibility. While it may involve more sophistication
and possibly a larger overhead in maintaining the elliptic curve data structure than Pollard’s p− 1 method,
Lenstra’s elliptic curve factorisation method heuristically runs at sub-exponential time complexity, due to a
high probability that an integer is B-power smooth within the interval in Hasse’s theorem.

Remark. Using Pollard’s p− 1 algorithm for this example will require B ≥ 13463, which will take a while.

With the discussion on factorising the composite N completed, the initial question of checking if N is
prime makes a comeback. After all, probabilistic factorisation algorithms may never terminate if N was
never composite in the first place. Again, there is a trivial method to do this, which involves factoring N by
trial division, Fermat’s little theorem, or any other factorisation methods and hoping to result in a definite
failure. While there were subsequent developments on fast non-deterministic tests, such as Miller-Rabin, that
do not rely on factorisation but on Fermat’s little theorem instead, the remaining discussion here focuses on
one of the fastest primality tests that involves elliptic curves. In contrast to factorisation, currently doable
for tens to hundreds of digits, the primality of integers up to tens of thousands of digits have been proven.

Remark. These forms of primality testing hold for arbitrary integers, but there are certain classes of huge
integers that have been proven to be primes using specialised methods. For instance, the largest integer ever
proven to be a prime is a Mersenne prime that has tens of millions of digits.

The said primality test is also an elliptic curve version of another classical primality test, known as the
Pocklington-Lehmer primality test, which has its basis on the following theorem.

Theorem 4.1.4 (Pocklington-Lehmer). Let r ∈ Z>0 be such that r | N − 1 and r ≥
√
N . Then N is prime

if
aN−1
q ≡ 1 mod N, gcd

(
a(N−1)/q
q − 1, N

)
= 1, aq ∈ Z>0,

for any prime q ∈ Z>0 such that q | r.

Proof. Let p ∈ Z>0 be a prime such that p | N , so p is a prime of good reduction, and let v = vq (r) be the

q-adic valuation of r. Now let a ≡ a
(N−1)/qv

q mod p for some a ∈ Z∗p. Then aq
v

= aN−1
q ≡ 1 mod p and

aq
v−1

= a
(N−1)/q
q 6≡ 1 mod p. Hence ord (a) = qv. Lagrange’s theorem gives qv |

∣∣Z∗p∣∣ = p − 1, so r | p − 1

and p > r ≥
√
N . Thus p = N and N is prime.

Again, a simple observation points that integer factorisation is involved in finding r, as well as its prime
factors q. Similar to Pollard’s p − 1 method, a prior assumption is required for the algorithm to run at a
reasonable time, namely that p− 1 has many small factors q that allow r to be generated quickly with trial
division. It is also worth noting that finding aq is equivalent to finding a generator of the group Z∗p, which
might be laborious, but often letting aq = 2 works. The test algorithm then simply follows from the theorem,
but it is desirable to have a third party mechanism that checks validity of the primality proof, which will also
help ensure functional correctness of implementations. In particular, the notion of a primality certificate,
which is an ordered pair (r, c) as in Theorem 4.1.4, where c is a list of ordered pairs (q, aq), allows for a
verification by simple modular exponentiation. The Pocklington-Lehmer primality test can be illustrated
with a much larger value of N in the following example, owing to the fact that N −1 has many small factors.
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Example. Let N = 9223372036854775783. Then N − 1 = 9223372036854775782. Trial division for primes
less than 400000 gives r = (2) (3)

4
(17) (23) (319279) | N − 1, such that r = 20223770418 ≥

√
N . Then

2N−1 ≡ 3N−1 ≡ 1 mod N, gcd
(

2(N−1)/3 − 1, N
)

= gcd
(

3(N−1)/2 − 1, N
)

= 1,

gcd
(

2(N−1)/17 − 1, N
)

= gcd
(

2(N−1)/23 − 1, N
)

= gcd
(

2(N−1)/319279 − 1, N
)

= 1.

Thus N is prime with primality certificate (r, [(2, 3) , (3, 2) , (17, 2) , (23, 2) , (319279, 2)]).

As for Lenstra’s elliptic curve factorisation method, an elliptic curve analogue attempts to fix the p− 1
assumption by virtue of Hasse’s theorem. By first choosing A, a, b ∈ Z∗N , a valid elliptic curve over the ring
Z∗N is considered, giving the following analogous theorem.

Theorem 4.1.5 (Goldwasser-Kilian). Let E : y2 = x3 + Ax + B be an elliptic curve over Q such that

gcd
(
4A3 + 27B2, N

)
= 1, treated as over the ring Z∗N , and let m ∈ Z>0 be such that m >

(
4
√
N + 1

)2

.

Then N is prime if

mPq = O, m

q
Pq 6= O, Pq ∈ E (Q) \ {O} ,

for any distinct prime q ∈ Z>0 such that q | m.

Proof. Let p ∈ Z>0 be a prime such that p | N , and let v = vq (m) be the q-adic valuation of m. Now let
rp : E (Q)→ Ep (Fp) be the reduction modulo p map, and let P ′q = (m/qv) rp (Pq). Then qvP ′q = mrp (Pq) =

O and qv−1P ′q = (m/q) rp (Pq) 6= O. Hence ord
(
P ′q
)

= qv. Lagrange’s theorem gives qv | |Ep (Fp)|, so
m | |Ep (Fp)|. Now Hasse’s theorem gives(

4
√
N + 1

)2

< m ≤ |Ep (Fp)| ≤ p+ 2
√
p+ 1 = (

√
p+ 1)

2
.

Hence p >
√
N . Thus p = N and N is prime.

As for the Pocklington-Lehmer primality test, an appropriate primality certificate, possibly with the form
of an ordered triple (m,A, c) as in Theorem 4.1.4, where c is a list of ordered pairs (q, Pq), will act as the
output of a successful test. With all previous considerations, the Goldwasser-Kilian primality test can be
illustrated with an even larger value of N in the following example.

Example. Let N = 9223372036854775907. Instead let A = −2, a = 2, and b = 0, such that P = (2, 0) and
B = 02−23−−2 (−2) = −4. Then gcd

(
4A3 + 27B2, N

)
= 1, such that E : y2 = x3−2x−4 is an elliptic curve

over Q. Now let m = (2) (11) (13) (37) (269) (1327) = 3777382466 such that
(

4
√
N + 1

)2

< 3037110719 < m.

Then ord (P ) = 2, so mP = O, and

m

2
P 6= O, m

11
P 6= O, m

13
P 6= O, m

37
P 6= O, m

269
P 6= O, m

1327
P 6= O.

Thus N is prime with primality certificate (m,−2, [(2, P ) , (11, P ) , (13, P ) , (37, P ) , (269, P ) , (1327, P )]).

The heart of the algorithm lies on finding a suitable elliptic curve E (Q), which in the above example is
seemingly conjured from thin air. As for Lenstra’s elliptic curve factorisation method, many random values
of A, a, and b are generated, until their corresponding elliptic curve is found to have an order with enough

small distinct prime factors to multiply and exceed
(

4
√
N + 1

)2

. This order Ep (Fp) is in turn efficiently

computed through the Schoof-Elkies-Atkin algorithm.

Remark. Using the Pocklington-Lehmer primality test for this example will require r ≥ 273901883852669,
which is a prime and will take forever, even with a supercomputer.

Most algorithms in this subsection are given in full under code listings in the appendix. Unfortunately,
due to the difficulty in implementing Schoof’s algorithm, the Goldwasser-Kilian primality test is omitted.
Historically, Schoof’s algorithm was seen as too cumbersome to implement, such that the theory of complex
multiplication was utilised instead to construct an elliptic curve E with an easily computable order Ep (Fp).
This became known as the Atkin-Morain primality test, which remained the fastest primality proving al-
gorithm to date, despite the later advent of the much faster Schoof-Elkies-Atkin algorithm.
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4.2 Cryptography

Cryptography is the study of computational techniques to allow for secure communication of information
across public platforms in the presence of third party eavesdroppers. It is historically based on the com-
putational intractability of certain mathematical problems, such as integer factorisation. As the difficult
computations involved in elliptic curve point multiplication became more apparent, they saw great use in
modern cryptography, of which a very brief introduction will be provided in this short subsection. With the
standard notation of three parties, namely Alice, the sender, Bob, the receiver, and Eve, the eavesdropper,
the standard process of secure communication is as follows.

Algorithm 4.2.1 (Communication across a public domain). Alice sends a message to Bob.

1. Alice intends to send a plaintext message P to Bob, without Eve eavesdropping.

2. Alice encrypts P with an encryption key E, which is owned only by Alice.

3. The ciphertext message C = E (P ) is sent across a public domain, from Alice to Bob.

4. Bob decrypts C with a decryption key D, which is owned only by Bob.

5. Bob recovers P = D (C) from Alice.

In this setup, it is clear that Bob should never leak D to Eve so as to keep P secret, and that D must
be the left inverse of E. In the case of symmetric encryption, the right inverse property also holds, allowing
for the roles of E and D to swap. However, Alice and Bob would then need to secretly agree on E and
D in advance, which may be infeasible if there are no means for prior contact. Asymmetric encryption
solves this problem by introducing two pairs of inverse keys for Alice and Bob, such that they would publish
their respective encryption keys EA and EB , while hiding their respective decryption keys DA and DB .
Whenever Alice intends to send P to Bob, Alice would send C = EB (P ) across the public domain, so that
only Bob could recover P = DB (C), or vice versa. The modern Rivest-Shamir-Adleman cryptosystem, or
more commonly known as the RSA, is a asymmetric encryption system that has its basis on the difficulty of
integer factorisation, and is given in the following algorithm.

Algorithm 4.2.2 (Rivest-Shamir-Adleman cryptosystem). Outputs a pair of keys.

1. Choose two distinct huge prime numbers p, q ∈ Z>0 of similar magnitude and compute n = pq.

2. Compute λ (n) = lcm (p− 1, q − 1) and choose a small e ∈ Z>0 such that gcd (e, λ (n)) = 1.

3. Compute the multiplicative inverse d of e modulo λ (n).

4. Return the public encryption key (n, e) and function E (P ) ≡ P e mod n.

5. Return the private decryption key (n, d) and function D (C) ≡ Cd mod n.

The functional correctness of the algorithm trivially follows from Fermat’s little theorem, and as such
will not be discussed. Now e is typically chosen to be small enough for quick encryption computations, but
not too small so as to be insecure. Moreover P is also assumed to have been translated into an integer
beforehand with some form of padded cipher mechanism. The following example implements the RSA.

Example. Let p = 2147483647 and q = 2147483659 be primes. Then n = pq = 4611686039902224373 and
λ (n) = lcm (p− 1, q − 1) = 768614339267876178. Now choose a public encryption key n and e = 65537 such
that gcd (e, λ (n)) = 1. Thus the private decryption key is n and d = 73205833433176421 ≡ e−1 mod l.

Now the availability of increasingly powerful techniques imposes a minimum bit size of p and q in order to
make the RSA even remotely practical. Furthermore, the presence of specialised algorithms, such as Pollard’s
p− 1 method, forces a requirement on p− 1 and q− 1 to have large factors to prevent unprecedented attacks
as well. To date, a few hundred bits of n is easily factorisable by a desktop computer within hours, if not
seconds, with a suitably powerful algorithm. As such, the RSA generally chooses an n with thousands of bits,
which is somewhat cumbersome for massive amounts of data, and would require larger chip sizes and power
consumption in the process of encryption. On the other hand, this drawback is less evident in symmetric
encryption systems, which are generally faster if E and D were somehow agreed by Alice and Bob in advance.
This could be feasibly done without any prior contact with the following key exchange protocol.
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Algorithm 4.2.3 (Diffie-Hellman key exchange). Outputs a private symmetric key.

1. Alice and Bob agree on a huge prime p ∈ Z>0 and a small g ∈ Z>0 such that g < p.

2. Alice chooses a ∈ Z>0 such that a < p and sends ga ≡ ga mod p to Bob across the public domain.

3. Bob chooses b ∈ Z>0 such that b < p and sends gb ≡ gb mod p to Alice across the public domain.

4. Alice computes s ≡ gab ≡ gab mod p privately.

5. Bob computes s ≡ gba ≡ gab mod p privately.

The algorithm simply uses basic properties of modular exponentiation and produces a private symmetric
key s between Alice and Bob, which as aforementioned allows secure communication in a public domain. In
this process, only p, g, ga, and gb is immediately available to Eve, while a, b, and s are kept secret between
Alice and Bob. The following example implements the Diffie-Hellman key exchange.

Example. Let p = 2147483647 be prime and g = 65537. Alice chooses a = 16777259 and sends the
public key ga = 751856369 ≡ ga mod p to Bob, while Bob chooses b = 16777289 and sends the public key
gb = 1654172966 ≡ gb mod p to Alice. Thus the private symmetric key is s = 1288974049 ≡ gab mod p.

Reverse engineering these values as a third party attacker is known as the discrete logarithm problem,
which is, analogous to integer factorisation, computationally infeasible provided p is chosen to be huge.
While there is an impossibly slow, naive approach by simply trying gn for each n ∈ Z>0 until gn = ga or
gn = gb is obtained, there are no known algorithms efficient enough to crack the system.

Remark. Unfortunately, the non-existence of efficient polynomial time algorithms for integer factorisation
and the discrete logarithm problem is unproven. In fact, a quantum computer running Shor’s algorithm
would theoretically do both of these in polynomial time.

Rephrasing the Diffie-Hellman key exchange in terms of finite cyclic groups, modulo operations involving
p is equivalent to operating under the finite multiplicative cyclic group Z∗p, while g is simply any generator
of Z∗p. A elliptic curve variant of Diffie-Hellman can then be stated easily as follows.

Algorithm 4.2.4 (Elliptic curve Diffie-Hellman). Outputs a private symmetric key.

1. Alice and Bob agree on an elliptic curve E over Fp for some prime p ∈ Z>0 and a point P ∈ E (Fp).

2. Alice chooses a ∈ Z∗p and sends Pa = aP to Bob across the public domain.

3. Bob chooses b ∈ Z∗p and sends Pb = bP to Alice across the public domain.

4. Alice computes S = a (Pb) = a (bP ) = abP privately.

5. Bob computes S = b (Pa) = b (aP ) = abP privately.

The prior example can then be illustrated with elliptic curve Diffie-Hellman as follows.

Example. Let E : y2 = x3 +65537x+1 be an elliptic curve over Fp where p = 2147483647 and P = (0, 1) ∈
E (Fp). Alice chooses a = 16777259 and sends the public key Pa = aP = (675295473, 1821381850) to Bob,
while Bob chooses b = 16777289 and sends the public key Pb = bP = (294235749, 438747352) to Alice. Thus
the private symmetric key is S = abP = (1210475635, 471187571).

The discrete logarithm problem on certain elliptic curves over finite fields is also significantly harder than
that of generic finite fields, and as such a list of recommended elliptic curves for use in key exchanges was
published publicly by the National Institute of Standards and Technology. These elliptic curves are used in
several other cryptosystems, such as the underlying group of the ElGamal encryption system, or in other
cryptographic contexts, such as digital signatures, but will not be discussed further. Most of these elliptic
curve based systems require fewer bits than those based on traditional finite fields. An estimate places a key
size of less than 29 bits having an equivalent security to a key size of 212 bits for the RSA.

Remark. Unfortunately, the discrete logarithm problem for elliptic curves is still susceptible to attacks
from a quantum computer. The supersingular isogeny key exchange is an analogue of Diffie-Hellman that
considers isogenies, and would in theory resist quantum attacks, but has a higher performance overhead.
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A Preliminaries

A.1 Rings and fields

Let R be a commutative unital ring and F ⊆ K ⊆ L be fields.

Definition (Automorphism). An automorphism of R is an isomorphism from R to itself, which are
elements of the automorphism group Aut (R) with respect to composition.

Example. idR is an automorphism of R.

Definition (Prime ideal). An ideal I ⊂ R is prime iff ab ∈ I implies a ∈ I or b ∈ I for any two elements
a, b ∈ I.

Example. An irreducible element r ∈ R in a unique factorisation domain R generates a prime ideal 〈r〉.

Definition (Chain). A chain of subsets in R of length n ∈ Z≥0 is a sequence of distinct subsets S0 ⊂ · · · ⊂
Sn ⊂ R.

Example. 〈0〉 ⊂ 〈x1〉 ⊂ · · · ⊂ 〈x1, . . . , xn〉 ⊂ F [x1, . . . , xn] is a chain of prime ideals of length n.

Definition (Characteristic). The characteristic char (F ) of F is the smallest n ∈ Z>0, if it exists, such
that n · 1 = 1 + · · ·+ 1 = 0. Otherwise char (F ) is 0.

Example. char (C) = char (R) = char (Q) = 0 while char (Fpe) = p for prime p ∈ Z>0 and e ∈ Z≥0.

Definition (Field extension). K is a field extension of F , denoted by K/F , iff F is a subfield of K.

Example. C/R, R/Q, C/Q, and Fpe/Fpe′ for prime p ∈ Z>0 and e | e′ are field extensions.

Definition (F -homomorphism). An F -homomorphism from K/F to another field extension K ′/F is a
field homomorphism φ : K → K ′ such that φ|F = id|F . The definitions of F -isomorphism and F -
automorphism extend naturally, with AutF (K) denoting the F -automorphism group of K.

Example. Complex conjugation is an R-automorphism of C.

Definition (Finite extension). K/F is finite iff the dimension dimFK of K as a vector space over F is
finite.

Example. C/R is a finite extension with [C : R] = 2 since {1, i} is a basis of C over R.

Definition (Finitely generated). F (s1, . . . , sn) is finitely generated by s1, . . . , sn ∈ K over F iff F (S) is
the smallest subfield of K containing s1, . . . , sn and the elements of F .

Example. Q
(√

2,
√

3
)

is finitely generated by
{√

2,
√

3
}

over Q, by
{√

2
}

over Q
(√

3
)
, and by

{√
3
}

over

Q
(√

2
)
.

Definition (Number field). K is a number field iff K/F is finite and F = Q.

Example. Q
(√

d
)

for square-free d ∈ Z are number fields with
[
Q
(√

d
)

: Q
]

= 2.

Definition (Algebraic element). α ∈ K is algebraic over F iff it is a root of some non-zero polynomial in
F [x]. Otherwise α is transcendental over F .

Example. π is transcendental over Q but algebraic over R since it is the root of x− π.

Definition (Minimal polynomial). The minimal polynomial mα of α over F is the unique monic irredu-
cible polynomial in F [x] with α as a root.

Example. The minimal polynomial of
√

2 is x2 − 2 over Q and is x−
√

2 over R.

Definition (Algebraic extension). K/F is algebraic iff any element in K is algebraic over F . Otherwise
K/F is transcendental.
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Example. C/Q is not an algebraic extension since π is transcendental over Q.

Definition (Algebraically closed). F is algebraically closed iff any non-constant polynomial in F [x] has
a root in F .

Example. R is not algebraically closed since x2 + 1 ∈ R [x] has no roots in R.

Definition (Algebraic closure). An algebraic closure of F is an algebraically closed algebraic extension
of F that is unique up to F -isomorphism.

Example. R = C while Q is the field of algebraic numbers.

The existence and uniqueness of algebraic closures can be proven from Zorn’s lemma, which is equivalent
to the Axiom of choice.

Proposition A.1.1. An algebraic closure F of F exists and is unique up to F -isomorphism.

Definition (Splits). A polynomial f (x) ∈ F [x] of degree n > 0 splits over K iff f (x) = c
∏n
i=0 (x− ak)

for some c ∈ F and ak ∈ K.

Example. x2 − 2 splits over Q
(√

2
)

but not over Q since x2 − 2 =
(
x−
√

2
) (
x+
√

2
)

in Q
(√

2
)
.

Definition (Normal extension). K/F is normal iff K/F is algebraic and any irreducible polynomial in
F [x] with a root in K splits over F .

Example. Q
(√

2
)
/Q is a normal extension, while Q

(
3
√

2
)
/Q is not a normal extension since f (x) =

x3 − 2 =
(
x− 3
√

2
) (
x2 + 3

√
2x+ 3

√
4
)

has a root x = 3
√

2 but does not split over Q
(

3
√

2
)
.

Definition (Separable polynomial). An polynomial f ∈ F [x] is separable iff df/dx 6= 0.

Example. x2 − 2 ∈ Q [x] is a separable polynomial since d
(
x2 − 2

)
/dx = 2x 6= 0, while x2 − y2 ∈ F2

(
y2
)

is an inseparable polynomial since d
(
x2 − y2

)
/d
(
y2
)

= 0.

Definition (Separable extension). K/F is separable iff K/F is algebraic and the minimal polynomial of
any α ∈ K is separable.

Example. Q
(√

2
)
/Q is a separable extension, while F2 (y) /F2

(
y2
)

is an inseparable extension since the

minimal polynomial of y over F2

(
y2
)

is x2 − y2, which is inseparable.

Definition (Galois extension). K/F is Galois iff K/F is normal and separable.

Example. C/R and Q
(√

2
)
/Q are Galois extensions.

Definition (Galois group). AutF (K) is the Galois group GalF (K) of K over F iff K/F is Galois.

Example. GalR (C) = {idR, φ} where φ is complex conjugation, while GalQ
(
Q
√

2
)

= {idQ, φ} where φ is

the Q-automorphism that swaps
√

2 and −
√

2.

Definition (Perfect field). F is perfect iff the algebraic closure of F is Galois.

Example. Examples of perfect fields include any field of characteristic zero including Q, R, and C, any
finite field Fpe , and any algebraically closed field including Q. Examples of imperfect fields include the field
of rational functions Fp (y) of any finite field Fp since xp − y ∈ Fp (y) is irreducible but inseparable.
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A.2 Algebraic varieties

Let F be a perfect field of char (F ) /∈ {2, 3} with algebraic closure K = F and Galois group GalF (K).

Definition (Affine space). An affine n-space over F is An = Kn.

Definition (Projective space). A projective n-space over F is Pn =
(
An+1 \ {(0, . . . , 0)}

)
/ ∼, the set of

equivalence classes of homogeneous coordinates [p0, . . . , pn], where (x0, . . . , xn) ∼ (y0, . . . , yn) iff each
xi = λyi for some λ ∈ F ∗.

Pn can be considered a superset of n + 1 copies of An by the natural inclusions φi : An → Pn for each
i ∈ {0, . . . , n} defined by

φi (x1, . . . , xn) = [x1, . . . , xi, 1, xi+1, . . . , xn] ,

so write An ⊆ Pn. Now let An be an affine n-space over F and Pn be a projective n-space over F .

Definition (Rational point). The set of F -rational points of An is An (F ) = Fn, and of Pn is

Pn (F ) = {[p0, . . . , pn] ∈ Pn | ∀pj 6= 0, ∀pi, pi/pj ∈ F} .

An can be equipped with GalF (K), such that An (F ) = {a ∈ An | ∀σ ∈ GalF (K) , σ (a) = a}. This
holds similarly in Pn.

Example. Cn is an affine n-space over R, with Cn (R) = R. Fn is a projective n-space over Fn, with Fn (Fn)
being the projective plane of order n.

Definition (Homogeneous). A polynomial f ∈ K [x0, . . . , xn] is homogeneous of degree d ∈ Z≥0 iff for
any λ ∈ K, it holds that f (λx0, . . . , λxn) = λdf (x0, . . . , xn). An ideal I ⊆ K [x0, . . . , xn] is homogeneous
iff I is generated by homogeneous polynomials in K [x0, . . . , xn].

A homogeneous polynomial f∗ ∈ K [x0, . . . , xn] can be dehomogenised into f ∈ K [x1, . . . , xn] by

f (x1, . . . , xn) = f∗ (1, x1, . . . , xn) ,

while a non-homogeneous polynomial g ∈ K [x1, . . . , xn] can be homogenised into g∗ ∈ K [x0, . . . , xn] by

g∗ (x0, . . . , xn) = xd0g (x1/x0, . . . , xn/x0) .

Example. z3 + wxy + 7w3 ∈ C [w, x, y, z] is homogeneous, which can be dehomogenised to z3 + xy +
7 ∈ C [x, y, z]. Conversely x3 + 3x2y + z7 ∈ C [x, y, z] is non-homogeneous, which can be homogenised
to w4x3 + 3w4x2y + z7 ∈ C [w, x, y, z]. Thus

〈
z3 + wxy + 7w3, w4x3 + 3w4x2y + z7

〉
⊆ C [w, x, y, z] is a

homogeneous ideal.

The following definitions are simplified by considering only prime ideals in Hilbert’s Nullstellensatz.

Definition (Algebraic variety). An affine algebraic variety of An over F is

A = {a ∈ An | ∀f ∈ I, f (a) = 0}

for some finitely generated prime ideal I ⊆ F [x1, . . . , xn], denoted by A (I) and I (A) respectively. The set
of F -rational points of A is A (F ) = A ∩An (F ). A projective algebraic variety P of Pn over F and the
set of F -rational points of P are defined similarly but with homogeneous prime ideals.

Since I (A) can be finitely generated by f1, . . . , fm ∈ F [x1, . . . , xn], it holds that A (f1, . . . , fm) (F ) is
the set of solutions in F to the system of equations f1 (x1, . . . , xn) = · · · = fm (x1, . . . , xn) = 0. This holds
similarly in Pn.

Example. Let
〈
x2 + y2 − 1

〉
⊆ R [x, y] be a finitely generated prime ideal. Thus A

(
x2 + y2 − 1

)
is an

affine algebraic variety of C2 over R and A
(
x2 + y2 − 1

)
(R) is the unit circle S1. Homogenisation gives a

finitely generated homogeneous ideal
〈
x2 + y2 − w2

〉
⊆ R [w, x, y]. Similarly P

(
x2 + y2 − w2

)
is a projective

algebraic variety of C2 over R and P
(
x2 + y2 − w2

)
(R) is the unit circle S1.
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Let A be an affine algebraic variety of An over F and P be a projective algebraic variety of Pn over F .

Definition (Dimension). The dimension dim (A) of A is the length of any longest chain of prime ideals in
F [x1, . . . , xn] /I (A). The dimension of P is dim (P ) = dim (A (I (P )))− 1 for any A (I (P )) ⊆ An.

Example. Let A (x− y) be an affine algebraic variety of C3 over R. Then a longest chain of prime ideals is
〈0〉 ⊂ 〈y〉 ⊂ 〈y, z〉 ⊂ R [x, y, z] / 〈x− y〉, which has length two. Thus it has dimension dim (A (x− y)) = 2. A
projective algebraic variety P (x− y) of C2 over R has dimension dim (P (x− y)) = dim (A (x− y))−1 = 1.

The dimension of projective algebraic varieties can also be defined from Krull’s Hauptidealsatz.

Proposition A.2.1. dim (P ) = n − 1 iff I (P ) is generated by a homogeneous irreducible polynomial in
F [X0, . . . , Xn].

Definition (Smooth). A point a ∈ A is singular iff the Jacobian m×n matrix J defined by Jij = ∂fi/∂xj
is such that rk (J |a) < n− dim (A). A is smooth if it has no singular points. This holds similarly for P .

Example. Let A (x− y) be an affine algebraic variety of C3 over R. Then dim (A (x− y)) = 2, so a point
a = (x, y, z) ∈ A (x− y) is singular iff rk (J |a) < 3− 2 = 1, or

0 = rk (J |a) = rk

(
∂ (x− y)

∂x

∣∣∣∣
a

∂ (x− y)

∂y

∣∣∣∣
a

∂ (x− y)

∂z

∣∣∣∣
a

)
= rk

(
1 −1 0

)
= 1.

Thus there are no singular points and A (x− y) is smooth.

Definition (Function field). The function field of P is

F (P ) = {f (x0, . . . , xn) /g (x0, . . . , xn) | f, g ∈ F [x0, . . . , xn] , deg (f) = deg (g) , g /∈ I (P )} / ∼,

the field of equivalence classes of rational functions of homogeneous polynomials, where f/g ∼ f ′/g′ iff
fg′ − f ′g ∈ I (P ).

Example. Let P (xy) be a projective algebraic variety of C over R. Then x ∈ R [x, y] and y ∈ R [x, y] are
homogeneous of degree one, and y /∈ I (P ). Thus x/y ∈ R (P ).

Let P ′ be a projective algebraic variety of Pm over F .

Definition (Morphism). A morphism from P to P ′ is an equivalence class of rational functions φ =
[φ0, . . . , φm] : P → P ′ for some φi ∈ F (P ), such that for any p ∈ P , there is a rational function g ∈ F (P )
such that gφi (p) ∈ P ′ for each φi and gφi (p) 6= 0 for some φi, where (φ0, . . . , φm) ∼ (ψ0, . . . , ψm) iff each
φi = g′ψi for some g′ ∈ F (P ).

Example. Let P
(
x2 + y2 − w2

)
be a projective algebraic variety of C2 over R and P ′ (0) be a projective

algebraic variety of C over R, and let φ = [w + x, y] : P → P ′ be such that w + x, y ∈ R (P ). Let
p = [w, x, y] ∈ P be a point such that w + x 6= 0 or y 6= 0. Then w + x, y 6= 0 are well-defined at p. Now let
p′ = [w, x, y] ∈ P be a point such that w+x = y = 0. Then ((w − x) /y) (w + x) =

(
w2 − x2

)
/y = y2/y = y

and ((w − x) /y) y = w − x 6= 0 are well-defined at p′. Thus φ is a morphism.

A standard result in algebraic geometry states that images of morphisms are projective algebraic varieties.

Proposition A.2.2. Let φ : P → P ′ be a morphism and dim (P ) = dim (P ′) = 1. Then φ is either constant
or surjective.

Definition (Isomorphism). An isomorphism is a morphism φ : P → P ′ such that there is another
morphism φ′ : P ′ → P where φ′ ◦ φ = idP and φ ◦ φ′ = idP ′ . P and P ′ are isomorphic, denoted by
P ∼= P ′, iff there is an isomorphism φ : P → P ′.

Example. Let P
(
x2 + y2 − w2

)
be a projective algebraic variety of C2 over R and P ′ (0) be a projective

algebraic variety of C over R with a morphism φ : [w + x, y] : P → P ′. Then φ′ =
[
x2 + y2, x2 − y2, 2xy

]
:

P ′ → P is also a morphism such that φ ◦ φ′ =
[
2x2, 2xy

]
= [x, y] = idP ′ and

φ′ ◦ φ =
[
(w + x)

2
+ y2, (w + x)

2 − y2, 2 (w + x) y
]

= [2w (w + x) , 2x (w + x) , 2y (w + x)] = [w, x, y] = idP .

Thus φ is an isomorphism and P ∼= P ′.
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A.3 Algebraic curves

Let F be a perfect field of char (F ) /∈ {2, 3} with algebraic closure K = F and V be a projective algebraic
variety of Pn over F .

Definition (Projective plane curve). V is a projective plane curve iff dim (V ) = 1 and n = 2.

Since a projective plane curve V is such that dim (V ) = 1 = 2 − 1, it holds that I (V ) is generated by
some homogeneous irreducible polynomial f ⊆ F [X,Y, Z]. For ease of notation V will be written in the
form V : f (X,Y, Z) = 0, or in its simpler dehomogeneous form V : f (x, y) = 0. Now let C : f (X,Y, Z) = 0
and C ′ : g (X,Y, Z) = 0 be two projective plane curves over F with a point P = [a, b, c] ∈ C ∩ C ′.

Definition (Multiplicity). The multiplicity mP (f) of C at P is the smallest m ∈ Z>0 such that

∀i, j, k ∈ Z≥0, i+ j + k = n,
∂nf

∂Xi∂Y j∂Zk

∣∣∣∣
P

= 0

for any n ∈ {0, . . . ,m− 1} but not n = m.

P is singular iff rk (J |P ) < 1, or ∂f/∂X|P = ∂f/∂Y |P = ∂f/∂Z|P = 0, which holds iff mP (f) > 1.

Example. Assume char (F ) = 0, and let f (X,Y, Z) = f (x, y) =
(
x2 + y2

)2
+3x2y−y3 with P = [0, 0, 1] =

(0, 0). Then
∂f

∂x

∣∣∣∣
P

=
∂f

∂y

∣∣∣∣
P

=
∂2f

∂x2

∣∣∣∣
P

=
∂2f

∂y2

∣∣∣∣
P

=
∂2f

∂x∂y

∣∣∣∣
P

= 0,
∂3f

∂y3

∣∣∣∣
P

= −6 6= 0.

Thus the multiplicity of C at P is mP (f) = 3 and P is singular.

Definition (Tangent). The tangents TP (f) of C at P = [a, b, c] with multiplicity m = mP (f) are the
irreducible factors of the polynomial

tP (f) (X,Y, Z) =
∑

i+j+k=m

(
m

i, j, k

)
∂mf

∂Xi∂Y j∂Zk

∣∣∣∣
P

(X − a)
i
(Y − b)j (Z − c)k .

Example. Let f (X,Y, Z) = f (x, y) =
(
x2 + y2

)2
+3x2y−y3 with P = [0, 0, 1] = (0, 0) and m = mP (f) = 3.

Then

tP (f) (X,Y, Z) = tP (f) (x, y) =

(
3
0

)
∂3f

∂x3

∣∣∣∣
P

x3 +

(
3
1

)
∂3f

∂x2∂y

∣∣∣∣
P

x2y +

(
3
2

)
∂3f

∂x∂y2

∣∣∣∣
P

xy2 +

(
3
3

)
∂3f

∂y3

∣∣∣∣
P

y3

= 18x2y − 6y3 = 6y
(√

3x− y
)(√

3x+ y
)
.

Thus the tangents of C at P are TP (f) =
{
y,
√

3x− y,
√

3x+ y
}

.

Definition (Ordinary singularity). A singular point P ∈ C is ordinary iff tP (f) has distinct factors.

Example. Let f (X,Y, Z) = f (x, y) =
(
x2 + y2

)2
+ 3x2y − y3 with P = [0, 0, 1] = (0, 0). Then tP (f) have

distinct factors y,
√

3x− y, and
√

3x+ y. Thus P is ordinary.

Definition (Intersection number). The intersection number of C and C ′ at P if deg (gcd (f, g)) = 0 is
IP (f, g), where IP : F [X,Y, Z]× F [X,Y, Z]→ Z>0 is defined for any f ′, g′ ∈ F [X,Y, Z] by:

• IP (f ′, g′) = IP (g′, f ′),

• IP (f ′, g′) = IP (f ′, g′ ◦ h) for any affine transformation h,

• IP (f ′, g′) = IP (f ′, g′ + hf ′) for any h ∈ F [X,Y, Z],

• IP (f ′, hh′) = IP (f ′, h) + IP (f ′, h′) for any h, h′ ∈ F [X,Y, Z], and

• IP (f ′, g′) ≥ mP (f ′)mP (g′), with equality iff TP (f ′) ∩ TP (g′) = ∅.

Since TP (X) = {X}, TP (Y ) = {Y }, and TP (Z) = {Z} are all distinct, it holds that IP (X,Y ) =
IP (X,Z) = IP (Y,Z) = 1.
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Example. Let f (X,Y, Z) = f (x, y) =
(
x2 + y2

)2
+3x2y−y3 and g (X,Y, Z) = g (x, y) =

(
x2 + y2

)3−4x2y2

with P = [0, 0, 1] = (0, 0). Then gcd (f, g) = 1, so deg (gcd (f, g)) = 0. Now let h (x, y) = 4x2y+ 4y3 + 5x2−
3y2, such that

g +
(
3y − x2 − y2

)
f = y2h and f +

(
y2 − 2x2y − y3 − 3x2

)
y = x4.

Then
IP (f, g) = IP

(
f, g +

(
3y − x2 − y2

)
f
)

= IP
(
f, y2h

)
= IP

(
f, y2

)
+ IP (f, h) .

The first term can be computed as

IP
(
f, y2

)
= 2IP (f, y) = 2IP

(
f +

(
y2 − 2x2y − y3 − 3x2

)
y, y
)

= 2IP
(
x4, y

)
= 8IP (x, y) = 8.

Now mP (f) = 3 and TP (f) =
{
y,
√

3x− y,
√

3x+ y
}

. Since C ′′ : h (x) = 0 is also a projective plane curve,
its multiplicity at P can be computed to be mP (h) = 2 and its tangents at P can also be computed to be
TP (h) =

{√
5x−

√
3y,
√

5x+
√

3y
}

. Hence IP (f, h) = mP (f)mP (h) = (3) (2) = 6. Thus the intersection
number of C and C ′ at P is IP (f, g) = 8 + 6 = 14.

Definition (Flex). P is a flex iff IP (f, g) > 2 is odd.

Example. Let f (X,Y, Z) = f (x, y) = y − x3 with P = [0, 0, 1] = (0, 0). Then ∂f/∂y|P = 1 6= 0, so
mP (f) = 1. Since

g (X,Y, Z) = g (x, y) = tP (f) (x, y) = ∂f/∂x|P x+ ∂f/∂y|P y = y,

it holds that gcd (f, g) = 1, so deg (gcd (f, g)) = 0. Hence

IP (f, g) = IP (f − y, y) = IP
(
−x3, y

)
= 3IP (−x, y) = 3 > 2.

Thus P is a flex.

The following follows from the fundamental theorem of algebra on the resultant of f and g.

Theorem A.3.1 (Bézout). C intersects C ′ at (deg (f)) (deg (g)) points up to multiplicity, so∑
P∈C∩C′

IP (f, g) = (deg (f)) (deg (g)) .

The following follows from a dimension counting argument.

Theorem A.3.2 (Cayley-Bacharach). Let deg (f) = deg (g) = 3 such that C intersects C ′ at nine points
up to multiplicity, and let C ′′ : h (X,Y, Z) = 0 be a cubic projective plane curve over F such that at least
eight of these points are in C ′′. Then the ninth point is also in C ′′.

The following definition is the genus-degree formula, which is a corollary of the adjunction formula and
the Riemann-Roch theorem for arbitrary curves and surfaces.

Definition (Degree). The degree of C is dC = deg (f).

Definition (Genus). The genus of C is

gC = 1
2 (dC − 1) (dC − 2)− 1

2

∑
P∈C

m (m− 1) ,

over all ordinary singularities P ∈ C with multiplicity mP (f) = m.

The genus of C is gC = 1
2 (dC − 1) (dC − 2) if C is smooth.

Example. The line L : y = x is a smooth projective plane curve of degree one and genus zero. The unit
circle S1 : x2 + y2 = 1 is a smooth projective plane curve of degree two and genus zero. An elliptic curve
E : y2 = x3 +Ax+B is a smooth projective plane curve of degree three and genus zero.
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A.4 Groups

Let G be an additive abelian group, with multiplication · : Z×G→ G defined by

nx =


x+ · · ·+ x n > 0

0 n = 0

(−x) + · · ·+ (−x) n < 0

.

Theorem A.4.1 (Isomorphism theorems). The following theorems hold:

1. Let H be a group and φ : G→ H be a group homomorphism. Then:

Ker (φ) E G,
G

Ker (φ)
∼= Im (φ) .

2. Let N E G and H ≤ G be subgroups. Then:

N ∩H E H,
H

N ∩H
∼=
N +H

N
.

3. Let N E G and H E G be subgroups such that N ≤ H. Then:

H

N
E
G

N
,

G/N

H/N
∼=
G

H
.

All subgroups of G are normal, but the above theorems still hold if G is non-abelian.

Definition (Torsion element). An n-torsion element is an element x ∈ G such that n = ord (x) is finite.

Example. Z+ p/q ∈ Q/Z is a torsion element since ord (x) | q is finite.

Definition (Torsion subgroup). The n-torsion subgroup G [n] is the group of m-torsion elements of G
such that m | n. The torsion subgroup Gtors of G is the group of m-torsion elements of G for any m ∈ Z≥0.

Example. G = R/Z has torsion subgroup Gtors = Q/Z since any n-torsion element Z+ x ∈ G is such that
nx ∈ Z and x ∈ Q.

Definition (Finitely generated). G is finitely generated iff there are finitely many elements x1, . . . , xn ∈ G
such that any element x ∈ G is a sum

x =

n∑
i=1

mixi, mi ∈ Z.

Example. Z and Zn are finitely generated abelian groups.

The direct sum ⊕ of finitely many abelian groups is equivalent to their direct product ×, thus Zn =
Z× · · · × Z = Z⊕ · · · ⊕ Z. Now let G be finitely generated.

Theorem A.4.2 (Fundamental theorem of finitely generated abelian groups). There are unique r,m ∈ Z≥0

and n1, . . . , nm ∈ Z>1 such that

G ∼= rZ⊕
m⊕
i=1

Zni
,

with each ni | ni+1.

Definition (Rank). The rank rk (G) of G is the unique r ∈ Z≥0 in Theorem A.4.2.

Example. A finite abelian group G has rank rk (G) = 0 since Gtors = G.
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B Algorithm proofs

B.1 Transformation of a cubic curve into Weierstrass form

Let

E : f (X,Y, Z) = a1X
3 +a2X

2Y +a3XY
2 +a4Y

3 +a5X
2Z+a6XY Z+a7Y

2Z+a8XZ
2 +a9Y Z

2 +a10Z
3 = 0

for some ai ∈ F be an elliptic curve over a perfect field F , and let P = [a, b, c] ∈ E be an F -rational point.
Then the unique tangent at P is

L :

(
1

1, 0, 0

)
∂f

∂X

∣∣∣∣
P

(X − a) +

(
1

0, 1, 0

)
∂f

∂Y

∣∣∣∣
P

(Y − b) +

(
1

0, 0, 1

)
∂f

∂Z

∣∣∣∣
P

(Z − c) = 0

:
(
3a1a

2 + 2a2ab+ a3b
2 + 2a5ac+ a6bc+ a8c

2
)

(X − a)

+
(
a2a

2 + 2a3ab+ 3a4b
2 + a6ac+ 2a7bc+ a9c

2
)

(Y − b)
+
(
a5a

2 + a6ab+ a7b
2 + 2a8ac+ 2a9bc+ 3a10c

2
)

(Z − c) = 0.

If P is not a flex, Bézout’s theorem gives that L intersects E at three points up to multiplicity, so E ∩ L =
{P, P ′} for some other F -rational point P ′ ∈ E, and repeat inductively with P ′. This chord-tangent method
eventually terminates until P ′ is a flex, so assume without loss of generality that P is a flex. Now let
Q ∈ L \ E be a point distinct to P and define a matrix

M =
(
Q P R

)
, R ∈

{
[1, 0, 0]

T
, [0, 1, 0]

T
, [0, 0, 1]

T
}
.

Since P and Q are linearly independent, at least one of these is invertible. Then transforming [X,Y, Z] 7→
M [X,Y, Z]

T
gives Q 7→ [1, 0, 0] and P 7→ [0, 1, 0] = O, and the elliptic curve

E′ : f ′ (X,Y, Z) = a′1X
3+a′2X

2Y +a′3XY
2+a′4Y

3+a′5X
2Z+a′6XY Z+a′7Y

2Z+a′8XZ
2+a′9Y Z

2+a′10Z
3 = 0.

for some a′i ∈ F . Since O ∈ E′, it holds that f ′ (0, 1, 0) = a′4 = 0. Now the tangent at O is

L′ :

(
1

1, 0, 0

)
∂f ′

∂X

∣∣∣∣
O
X +

(
1

0, 1, 0

)
∂f ′

∂Y

∣∣∣∣
O

(Y − 1) +

(
1

0, 0, 1

)
∂f ′

∂Z

∣∣∣∣
O
Z = 0 : a′3X + a′7Z = 0.

Since L′ : Z = 0, it holds that a′3 = 0 and a′7 6= 0. Then L′ intersects E′ at

a′1X
3 + a′2X

2Y + a′5X
2 (0) + a′6XY (0) + a′7Y

2 (0) + a′8X (0)
2

+ a′9Y (0)
2

+ a′10 (0)
3

= X2 (a′1X + a′2Y ) = 0.

Since O is a flex, it holds that X = 0 is repeated three times, so a′1 6= 0 and a′2 = 0. Hence

E′ : a′1X
3 + a′5X

2Z + a′6XY Z + a′7Y
2Z + a′8XZ

2 + a′9Y Z
2 + a′10Z

3 = 0

: X3 +
a′5
a′1
X2Z +

a′6
a′1
XY Z +

a′7
a′1
Y 2Z +

a′8
a′1
XZ2 +

a′9
a′1
Y Z2 +

a′10

a′1
Z3 = 0.

Then rescaling [X,Y, Z] 7→ [X,Y,− (a′1/a
′
7)Z] gives

E′ : X3 − a′5
a′7
X2Z − a′6

a′7
XY Z − Y 2Z +

a′8a
′
1

a′27
XZ2 +

a′9a
′
1

a′27
Y Z2 − a′10a

′2
1

a′37
Z3 = 0

: Y 2Z +
a′5
a′7
X2Z +

a′6
a′7
XY Z = X3 +

a′8a
′
1

a′27
XZ2 +

a′9a
′
1

a′27
Y Z2 − a′10a

′2
1

a′37
Z3.

Thus E′ is a Weierstrass equation.

62



The Arithmetic of Elliptic Curves David Kurniadi Angdinata

B.2 Group law explicit formulae

Let P,Q ∈ E be points such that R = P ∗ Q ∈ E. Since ∗ is symmetric, it is commutative, so only the
following six cases need to be considered.

(∗)1 Assume that P = (a, b) and Q = (a, b′) for b 6= b′. Then the line joining P and Q is

L : (b− b′)X + (ab′ − ab)Z = 0 : X = aZ,

which intersects E at

Y 2Z = (aZ)
3

+A (aZ)Z2 +BZ3 =⇒ Z
(
a3Z2 +AaZ2 +BZ2 − Y 2

)
= 0.

If Z 6= 0, then this can be dehomogenised into

y2 = a3 +Aa+B,

which has trivial solutions opposite in sign, so b′ = −b. Thus Z = 0 and R = O.

(∗)2 Assume that P = (a, b) and Q = (a′, b′) for a 6= a′, and let

λ =
b− b′

a− a′
, µ =

ab′ − a′b
a− a′

.

Then the line joining P and Q is

L : (b− b′)X + (a′ − a)Y + (ab′ − a′b)Z = 0 : Y = λX + µZ,

which intersects E at

(λX + µZ)
2
Z = X3 +AXZ2 +BZ3 =⇒ X3−λ2X2Z+ (A− 2λµ)XZ2−

(
µ2 −B

)
Z3 = 0.

Since Z = 0 gives Y = 0, it holds that Z 6= 0, and this can be dehomogenised into

x3 − λ2x2 + (A− 2λµ)x−
(
µ2 −B

)
= 0.

Let R = (a′′, b′′). Since

0 = (x− a) (x− a′) (x− a′′) = x3 − (a+ a′ + a′′)x2 + (aa′ + a′′ + a′a′′)x− aa′a′′,

comparing coefficients gives

λ2 = a+ a′ + a′′, A− 2λµ = aa′ + aa′′ + a′a′′, µ2 −B = aa′a′′.

Thus R =
(
λ2 − a− a′, λ

(
λ2 − a− a′

)
+ µ

)
.

(∗)3 Assume that P = Q = (a, b) for b 6= 0, and let

λ =
3a2 +A

2b
, µ =

2Aa+ 3B − b2

2b
.

Then the tangent at P is

L :
(
−3a2 −A

)
X + 2bY +

(
b2 − 2Aa− 3B

)
Z = 0 : Y = λX + µZ,

which intersects E by (∗)2 at

x3 − λ2x2 + (A− 2λµ)x−
(
µ2 −B

)
= 0.

Let R = (a′, b′). Since

0 = (x− a)
2

(x− a′) = x3 − (2a+ a′)x2 +
(
2aa′ + a2

)
x− a2a′,

comparing coefficients gives

λ2 = 2a+ a′, A− 2λµ = 2aa′ + a2, µ2 −B = a2a′.

Thus R =
(
λ2 − 2a, λ

(
λ2 − 2a

)
+ µ

)
.
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(∗)4 Assume that P = Q = (a, 0). Then since a
(
3a2 +A

)
= 3

(
a3
)
+Aa = 3 (−Aa−B)+Aa = −2Aa−3B,

the tangent at P is
L :
(
−3a2 −A

)
X + (−2Aa− 3B)Z = 0 : X = aZ,

which intersects E at (a, 0), (a,−0) = (a, 0), and O by (∗)1. Thus R = O.

(∗)5 Assume that P = (a, b) and Q = O. Then the line joining P and Q is

L : −X + aZ = 0 : X = aZ,

which intersects E at (a, b), (a,−b), and O by (∗)1. Thus R = (a,−b).

(∗)6 Assume that P = Q = O. Then the tangent at P is

L : Z = 0.

Thus R = O.

Similarly since + is symmetric, it is commutative, so only the following four cases need to be considered. If
P = (a, b) and Q = (a′, b′) for a 6= a′, then (∗)2 and (∗)5 give

P +Q =
(
λ2 − a− a′,−

(
λ
(
λ2 − a− a′

)
+ µ

))
, λ =

b− b′

a− a′
, µ =

ab′ − a′b
a− a′

=

 (A+ aa′) (a+ a′) + 2 (B − bb′)
(a− a′)2 ,

a′b− ab′ −

(
(A+ aa′) (a+ a′) + 2 (B − bb′)

(a− a′)2

)
(b− b′)

a− a′


=

(
(A+ aa′) (a+ a′) + 2 (B − bb′)

(a− a′)2 ,

(
Ab′ − a′2b

)
(3a+ a′) +

(
a2b′ −Ab

)
(a+ 3a′)− 4B (b− b′)

(a− a′)3

)
.

If P = Q = (a, b) for b 6= 0, then (∗)3 and (∗)5 give

P +Q =
(
λ2 − 2a,−

(
λ
(
λ2 − 2a

)
+ µ

))
, λ =

3a2 +A

2b
, µ =

2Aa+ 3B − b2

2b

=

a4 − 2Aa2 − 8Ba+A2

4b2
,

b2 − 2Aa− 3B −
(
a4 − 2Aa2 − 8Ba+A2

4b2

)(
3a2 +A

)
2b


=

(
a4 − 2Aa2 − 8Ba+A2

4b2
,
a6 + 5Aa4 + 20Ba3 − 5A2a2 − 4ABa−A3 − 8B2

8b3

)
.

If P = (a, b) and Q = O, then (∗)5 gives

P +Q = ((a, b) ∗ O) ∗ O = (a,−b) ∗ O = (a, b) = P.

Otherwise P +Q = O or P = Q = O, then (∗)1, (∗)4, and (∗)6 give

P +Q = (P ∗Q) ∗ O = O ∗ O = O.

Thus the explicit formulae hold.
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C Code listings

C.1 Fields.hs

This module includes basic types and instances for fields and prime subfields in Section 2.

{−# LANGUAGE General izedNewtypeDeriving #−}
{−# LANGUAGE ScopedTypeVariables #−}

module F i e l d s (C, F i e ld ( . . ) , Fp , Prime ( . . ) , Q, R, Val ( . . ) , modInv ) where

import Data . Complex ( Complex ( . . ) )
import Data . Ratio ( denominator , numerator )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− F i e l d s

−− Value in fo rmat ion
data Val = None | NumDen I n t e g e r I n t e g e r | ReIm Double Double

−− Fie ld type c l a s s
c l a s s (Eq f , F rac t i ona l f , Show f ) => Fie ld f where
{−# MINIMAL char , va l #−}
char : : f −> I n t e g e r
va l : : f −> Val

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− C h a r a c t e r i s t i c ze ro

−− Rat iona l numbers Q
newtype Q = Q Rat iona l d e r i v i n g (Eq , Fract iona l , Num, Ord)
in s t anc e Show Q where

show q = show n ++ i f d == 1 then ”” e l s e ”/” ++ show d
where

NumDen n d = val q
in s t anc e F i e ld Q where

char = const 0
va l (Q q ) = NumDen ( numerator q ) ( denominator q )

−− Real numbers R
newtype R = R Double d e r i v i n g (Eq , Fract iona l , Num, Ord)
in s t anc e Show R where

show (R r ) = i f r == f romInteg ra l r ’ then show r ’ e l s e show r
where

r ’ = f l o o r r
i n s t anc e F i e ld R where

char = const 0
va l = const None

−− Complex numbers C
newtype C = C ( Complex Double ) d e r i v i n g (Eq , Fract iona l , Num)
in s t anc e Show C where

show (C ( r :+ i ) )
| signum i == −1 = ”(” ++ show (R r ) ++ ”−” ++ show (R ( abs i ) ) ++ ” i )”
| signum i == 1 = ”(” ++ show (R r ) ++ ”+” ++ show (R i ) ++ ” i )”
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| otherwi se = show (R r )
i n s t anc e F i e ld C where

char = const 0
va l (C ( r :+ i ) ) = ReIm r i

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− C h a r a c t e r i s t i c prime

−− Prime numbers
c l a s s (Enum p , Show p) => Prime p where

prime : : p −> I n t e g e r
prime = read . t a i l . show $ (toEnum 0 : : p )

−− Prime s u b f i e l d s Fp
newtype Fp p = Fp I n t e g e r

−− Fp f i e l d i n s t anc e
in s t anc e Prime p => Fie ld (Fp p) where

char = const $ prime ( undef ined : : p )
va l = const None

−− Fp standard i n s t a n c e s
i n s t anc e Prime p => Bounded (Fp p) where

minBound = 0
maxBound = −1

in s t anc e Prime p => Enum (Fp p) where
toEnum = fromInteg ra l
fromEnum (Fp n) = fromInteger n

in s t anc e Eq (Fp p) where
Fp n == Fp n ’ = fromInteger n == fromInteger n ’

i n s t anc e Prime p => Frac t i ona l (Fp p) where
fromRational n = fromInteger ( numerator n) / f romInteger ( denominator n)
r e c i p (Fp n) = case modInv n $ prime ( undef ined : : p ) o f

Right m −> f r omInteg ra l m
Le f t m −> e r r o r $ show m

ins tance Prime p => I n t e g r a l (Fp p) where
quotRem (Fp n) (Fp n ’ ) = ( f romInteger q , f romInteger r )

where
(q , r ) = quotRem n n ’

t o I n t e g e r (Fp n) = fromInteger n
in s t anc e Prime p => Num (Fp p) where

Fp n + Fp n ’ = fromInteger $ n + n ’
Fp n ∗ Fp n ’ = fromInteger $ n ∗ n ’
abs n = n
signum n = i f n == 0 then 0 e l s e 1
f romInteger n = Fp . mod n $ prime ( undef ined : : p )
negate (Fp n) = fromInteger $ (−n)

in s t anc e Ord (Fp p) where
Fp n <= Fp n ’ = n <= n ’

in s t anc e Prime p => Real (Fp p) where
toRat iona l (Fp n) = fromInteger n

in s t anc e Show (Fp p) where
show (Fp n) = show n
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−− Extended Eucl idean a lgor i thm
extGCD : : I n t e g r a l a => a −> a −> ( ( a , a ) , a )
extGCD 0 y = ( ( 0 , 1 ) , y )
extGCD x y = ( ( t − s ∗ q , s ) , g )

where
(q , r ) = quotRem y x
( ( s , t ) , g ) = extGCD r x

−− Modular i n v e r s e
modInv : : I n t e g r a l a => a −> a −> Either a a
modInv x p = i f g == 1 then return (mod y p) e l s e Le f t g

where
( ( y , ) , g ) = extGCD x p
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C.2 WeierstrassEquations.hs

This module includes data for Weierstrass curves in Section 1.2, as well as related quantities and transform-
ations.

{−# LANGUAGE GADTs #−}
{−# LANGUAGE StandaloneDer iv ing #−}

module Weier s t rassEquat ions (EC ( . . ) , d i s c r iminant , isSmooth , j Inva r i an t ,
i s I somorphic , lW, l2m , mW, m2s , sW) where

import F i e l d s

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− E l l i p t i c curves

−− Weier s t ra s s curve data
data EC f where

EC : : F i e ld f => f −> f −> f −> f −> f −> EC f
d e r i v i n g in s t anc e Eq (EC f )
i n s t anc e Show (EC f ) where

show (EC a 1 a 2 a 3 a 4 a 6 ) = ”yˆ2” ++ show ’ a 1 ”xy” ++ show ’ a 3 ”y”
++ ” = ” ++ ”xˆ3” ++ show ’ a 2 ”xˆ2” ++ show ’ a 4 ”x” ++ show ’ a 6 ””
where

show ’ n s
| signum n == 1 = ” + ” ++ show n ++ s
| signum n == −1 = ” − ” ++ show ( abs n) ++ s
| otherwi s e = ””

−− Quant i t i e s
a 1 , a 2 , a 3 , a 4 , a 6 , b 2 , b 4 , b 6 , b 8 , c 4 , c 6 : : EC f −> f
a 1 (EC a 1 ) = a 1
a 2 (EC a 2 ) = a 2
a 3 (EC a 3 ) = a 3
a 4 (EC a 4 ) = a 4
a 6 (EC a 6 ) = a 6
b 2 e @ (EC ) = a 1 e ˆ 2 + 4 ∗ a 2 e
b 4 e @ (EC ) = a 1 e ∗ a 3 e + 2 ∗ a 4 e
b 6 e @ (EC ) = a 3 e ˆ 2 + 4 ∗ a 6 e
b 8 e @ (EC ) = a 1 e ˆ 2 ∗ a 6 e + 4 ∗ a 2 e ∗ a 6 e
− a 1 e ∗ a 3 e ∗ a 4 e + a 2 e ∗ a 3 e ˆ 2 − a 4 e ˆ 2

c 4 e @ (EC ) = b 2 e ˆ 2 − 24 ∗ b 4 e
c 6 e @ (EC ) = 36 ∗ b 2 e ∗ b 4 e − b 2 e ˆ 3 − 216 ∗ b 6 e

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Smoothness and isomorphism

−− Discr iminant
d i s c r im inant : : EC f −> f
d i s c r im inant e @ (EC ) = 9 ∗ b 2 e ∗ b 4 e ∗ b 6 e
− b 2 e ˆ 2 ∗ b 8 e − 8 ∗ b 4 e ˆ 3 − 27 ∗ b 6 e ˆ 2

−− Check i f e l l i p t i c curve i s smooth by d i s c r im inant
isSmooth : : EC f −> Bool
isSmooth e @ (EC ) = d i s c r im inant e /= 0
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−− Ver i fy that e l l i p t i c curve i s smooth by d i s c r im inant
assertSmooth : : EC f −> Either S t r ing (EC f )
assertSmooth e = i f isSmooth e then return e e l s e

Le f t $ ”Curve ” ++ show e ++ ” i s not smooth”

−− J−i n v a r i a n t
j I n v a r i a n t : : EC f −> f
j I n v a r i a n t e @ (EC ) = c 4 e ˆ 3 / d i s c r im inant e

−− Check i f e l l i p t i c curves are i somorphic by j−i n v a r i a n t
i s I somorph i c : : EC f −> EC f −> Bool
i s I somorph i c e @ (EC ) e ’ @ (EC ) =

j I n v a r i a n t e == j I n v a r i a n t e ’

−− Ver i fy that e l l i p t i c curves are i somorphic by j−i n v a r i a n t
a s s e r t I somorph i c : : EC f −> EC f −> Either S t r ing (EC f )
a s s e r t I somorph i c e e ’ = i f i s I s omorph i c e e ’ then return e ’ e l s e

Le f t $ ”Curves ” ++ show e ++ ” and ” ++ show e ’ ++ ” are not i somorphic ”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Af f i n e t rans f o rmat i ons

−− E l l i p t i c curve from long Weie r s t ra s s equat ion
lW : : F i e ld f => f −> f −> f −> f −> f −> Either S t r ing (EC f )
lW = ( ( ( ( assertSmooth . ) . ) . ) . ) . EC

−− Convert long to medium Weie r s t ra s s equat ion
l2m : : F i e ld f => EC f −> Either S t r ing (EC f )
l2m e = mW ( b 2 e / 4) ( b 4 e / 2) ( b 6 e / 4) >>= asse r t I somorph i c e

−− E l l i p t i c curve from medium Weie r s t ra s s equat ion
mW : : F i e ld f => f −> f −> f −> Either S t r ing (EC f )
mW = ( ( assertSmooth . ) . ) . f l i p (EC 0) 0

−− Convert medium to shor t Weie r s t ra s s equat ion
m2s : : F i e ld f => EC f −> Either S t r ing (EC f )
m2s e = sW (−c 4 e / 48) (−c 6 e / 864) >>= asse r t I s omorph i c e

−− E l l i p t i c curve from shor t Weie r s t ra s s equat ion
sW : : F i e ld f => f −> f −> Either S t r ing (EC f )
sW = ( assertSmooth . ) . EC 0 0 0
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C.3 GroupLaw.hs

This module includes data for the group law in Section 1.3, as well as those of points.

{−# LANGUAGE GADTs #−}
{−# LANGUAGE StandaloneDer iv ing #−}

module GroupLaw (GroupLaw ( . . ) , OrdP , P ( . . ) , computeOrder , i sDe f ined ,
enumPoints ) where

import F i e l d s
import Weier s t ras sEquat ions

import Data . Group ( Abelian , Group ( . . ) )
import Data . Maybe ( catMaybes )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Points

−− Point data
data P f where

A : : F i e ld f => EC f −> f −> f −> P f
O : : P f

d e r i v i n g in s t anc e Eq (P f )
i n s t anc e Show (P f ) where

show O = ”O”
show (A x y ) = ”(” ++ show x ++ ” ,” ++ show y ++ ”)”

−− Check i f po int i s de f i ned in e l l i p t i c curve
i sDe f i n e d : : P f −> Bool
i sDe f i n e d (A (EC a 1 a 2 a 3 a 4 a 6 ) x y ) = y ˆ 2 + a 1 ∗ x ∗ y + a 3 ∗ y

== x ˆ 3 + a 2 ∗ x ˆ 2 + a 4 ∗ x + a 6
i sDe f i n e d = True

−− Ver i fy that po int i s de f i ned in e l l i p t i c curve
a s s e r tD e f i n e d : : P f −> P f
a s s e r tD e f i n e d p = i f i sDe f i n ed p then p e l s e

e r r o r $ ” Point ” ++ show p ++ ” i s not in curve ”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Group i n s t a n c e s

−− E l l i p t i c curve i s a monoid
in s t anc e F i e ld f => Monoid (P f ) where

mempty = O
mappend p p ’ = case ( a s s e r t De f i n e d p , a s s e r tD e f i n ed p ’ ) o f

(O, A ) −> p ’
(A , O) −> p
(A e @ (EC a 1 a 2 a 3 a 4 a 6 ) x y , A e ’ x ’ y ’ )
| e /= e ’ −> e r r o r ”Curves are d i f f e r e n t ”
| x /= x ’ −> A e (x ’ ’ l a ) (y ’ ’ l a m a)
| y + y ’ + a 1 ∗ x ’ + a 3 /= 0 −> A e (x ’ ’ l d ) (y ’ ’ l d m d)
| otherwi s e −> O
where

l a = ( y − y ’ ) / n a
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m a = ( x ∗ y ’ − x ’ ∗ y ) / n a
n a = x − x ’
l d = (3 ∗ x ˆ 2 + 2 ∗ a 2 ∗ x + a 4 − a 1 ∗ y ) / n d
m d = (−x ˆ 3 + a 4 ∗ x + 2 ∗ a 6 − a 3 ∗ y ) / n d
n d = 2 ∗ y + a 1 ∗ x + a 3
x ’ ’ l = l ˆ 2 + a 1 ∗ l − a 2 − x − x ’
y ’ ’ l m = − l ∗ x ’ ’ l − a 1 ∗ x ’ ’ l − m − a 3

−> O

−− E l l i p t i c curve i s a group
in s t anc e F i e ld f => Group (P f ) where

i n v e r t p = case a s s e r tD e f i n ed p o f
A e @ (EC a 1 a 3 ) x y −> A e x $ −y − a 1 ∗ x − a 3
−> O

−− E l l i p t i c curve i s an abe l i an group
in s t anc e F i e ld f => Abel ian (P f )

−− E l l i p t i c curve has a group law
c l a s s Abel ian p => GroupLaw p where

o : : p
o = mempty
neg : : p −> p
neg = i n v e r t
add : : p −> p −> p
add = mappend
dup : : p −> p
dup = mconcat . r e p l i c a t e 2
mul : : I n t e g r a l n => n −> p −> p
mul 0 = o
mul n p
| n < 0 = neg $ mul (−n) p
| otherwi se = ( i f even n then id e l s e add p) . dup $ mul ( quot n 2) p

−− E l l i p t i c curve over f i e l d has a group law
in s t ance F i e ld f => GroupLaw (P f )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Orders

−− Group o f po in t s with order data
data OrdP f where

OrdP : : F i e ld f => P f −> Int −> OrdP f
d e r i v i n g in s t anc e Eq (OrdP f )
i n s t anc e Show (OrdP f ) where

show (OrdP p n) = ”ord (” ++ show p ++ ”) = ” ++ show n

−− Compute order o f po int
computeOrder : : F i e ld f => P f −> Maybe (OrdP f )
computeOrder p = orderPoint ’ p $ OrdP p 1

where
orderPoint ’ O pq = return pq
orderPoint ’ p ’ @ (A x y ) (OrdP p ’ ’ n ) = case ( va l x , va l y ) o f

(NumDen d ’ , NumDen d ’ ’ )
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| d ’ > 1 | | d ’ ’ > 1 −> Nothing
−> orderPoint ’ ( add p ’ p ’ ’ ) $ OrdP p ’ ’ ( succ n)

−− Enumerate po in t s with naive approach
enumPoints : : Prime p => EC (Fp p) −> [ OrdP (Fp p ) ]
enumPoints e = catMaybes o rde r s

where
va lue s = [ minBound . . maxBound ]
po in t s = f i l t e r i sD e f i n ed [A e x y | x <− values , y <− va lue s ]
o rde r s = map computeOrder $ o : po in t s
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C.4 Rationals.hs

This module includes the algorithms in Section 3.2 and Section 3.7.

module Rat iona l s ( computeRank , computeTors , getRankEqns ) where

import F i e l d s
import Weier s t ras sEquat ions
import GroupLaw

import Data . L i s t (nub , union )
import Data . Maybe ( catMaybes )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Aux i l i a ry f u n c t i o n s

−− Type synonym
type Z = I n t e g e r

−− Throw e r r o r s
throw : : E i ther S t r ing a −> a
throw = e i t h e r e r r o r id

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Torsion computation

−− E l l i p t i c curve E : yˆ2 = xˆ3 + Ax + B over Z
data ET = ET Z Z

−− Construct e l l i p t i c curve over Q with Z c o e f f i c i e n t s
eQ : : ET −> EC Q
eQ (ET a b) = throw $ sW ( fromInteger a ) ( f romInteger b)

−− Construct e l l i p t i c curve E : yˆ2 = xˆ3 + Ax + B over Z
eT : : EC Q −> ET
eT e = ET n ’ ’ n ’ ’ ’

where
EC a b = throw $ l2m e >>= m2s
(NumDen n d , NumDen n ’ d ’ ) = ( va l a , va l b)
( a ’ , b ’ ) = (n ∗ d ˆ 3 ∗ d ’ ˆ 4 , n ’ ∗ d ˆ 6 ∗ d ’ ˆ 5)
EC a ’ ’ b ’ ’ = throw $ sW ( fromInteger a ’ ) ( f romInteger b ’ ) : : EC Q
(NumDen n ’ ’ , NumDen n ’ ’ ’ ) = ( va l a ’ ’ , va l b ’ ’ )

−− Get a l l non−negat ive y coo rd ina t e s such that yˆ2 | Delta
getYs : : ET −> [ Z ]
getYs (ET a b) = 0 : f i l t e r d i v i s i b l e [ 1 . . squareRoot d e l t a ]

where
d e l t a = 4 ∗ a ˆ 3 + 27 ∗ b ˆ 2
squareRoot = c e i l i n g . s q r t . f romInteger
d i v i s i b l e = (== 0) . mod d e l t a . (ˆ 2)

−− Get a l l po in t s f o r each non−negat ive y coord inate
ge tPo int s : : ET −> Z −> [P Q]
getPo int s e @ (ET a b) y = f i l t e r i sDe f i n ed $ map p r o j e c t a l lXs

where
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bY2 = abs $ b − y ˆ 2
maxX = i f bY2 == 0 then abs a e l s e bY2
pos i t i v eXs = f i l t e r ((== 0) . mod bY2) [ 1 . . maxX]
a l lXs = 0 : union pos i t i v eXs (map negate po s i t i v eXs )
p r o j e c t = f l i p (A $ eQ e ) ( f romInteger y ) . f romInteger

−− Compute t o r s i o n subgroup
computeTors : : EC Q −> [ OrdP Q]
computeTors e = catMaybes $ map computeOrder a l l P o i n t s

where
e ’ = eT e
p o s i t i v e P o i n t s = concatMap ( getPo int s e ’ ) ( getYs e ’ )
a l l P o i n t s = o : union p o s i t i v e P o i n t s (map neg p o s i t i v e P o i n t s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Rank computation

−− E l l i p t i c curve E : yˆ2 = xˆ3 + Axˆ2 + Bx over Z
data ER = ER Z Z

−− Diophantine equat ion data
data D = D Z Z Z
in s t ance Show D where

show (D a b beta ) = ”Yˆ2 =” ++ show ’ beta ”Xˆ4”
++ show ’ a ”Xˆ2Zˆ2” ++ show ’ ( quot b beta ) ”Zˆ4”
where

show ’ n s
| n < 0 = ” − ” ++ show ( abs n) ++ s
| n > 0 = ” + ” ++ show n ++ s
| otherwi s e = ””

−− Construct e l l i p t i c curve E : yˆ2 = xˆ3 + Axˆ2 + Bx over Z
eR : : EC Q −> ER
eR e = case throw ( l2m e ) o f

EC a b 0 −> ER n ’ ’ n ’ ’ ’
where

(NumDen n d , NumDen n ’ d ’ ) = ( va l a , va l b)
( a ’ , b ’ ) = (n ∗ d ∗ d ’ ˆ 2 , n ’ ∗ d ˆ 4 ∗ d ’ ˆ 3)
EC a ’ ’ b ’ ’ 0 = throw $

mW ( fromInteger a ’ ) ( f romInteger b ’ ) 0 : : EC Q
(NumDen n ’ ’ , NumDen n ’ ’ ’ ) = ( va l a ’ ’ , va l b ’ ’ )

−> e r r o r $ ”Curve ” ++ show ( l2m e ) ++ ” does not conta in (0 , 0)”

−− Free squares in i n t e g e r
f r e eSqua r e s : : Z −> Z
f r e eSqua r e s = f reeSquares ’ 2

where
f r eeSquare s ’ n m
| n ’ > m = m
| mod m n ’ == 0 = freeSquare s ’ n $ quot m n ’
| otherwi s e = f reeSquares ’ ( succ n) m
where

n ’ = nˆ2
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−− Get diophant ine equat ions f o r image
getImageEqns : : ER −> [D]
getImageEqns (ER a b) = map (D ( f romInteger a ) ( f romInteger b ) ) a l l B s

where
p o s i t i v e B s = f i l t e r ((== 0) . mod ( abs b ) ) [ 1 . . abs b ]
square f r e eBs = nub $ map f r e eSqua r e s p o s i t i v e B s
a l l B s = square f r e eBs ++ map negate square f r e eBs

−− Get diophant ine equat ions f o r both images
getRankEqns : : EC Q −> ( [D] , [D] )
getRankEqns e = ( getImageEqns e ’ , getImageEqns e ’ ’ )

where
e ’ @ (ER a b) = eR e
e ’ ’ = eR . throw $

mW ( fromInteger (−2 ∗ a ) ) ( f romInteger ( a ˆ 2 − 4 ∗ b ) ) 0

−− Compute rank with number o f s o l u t i o n s to d iophant ine equat ions
computeRank : : Z −> Z −> Z
computeRank e e ’ = f l o o r . logBase 2 $ f romInteger ( e ∗ e ’ ) / 4
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C.5 Applications.hs

This module includes the algorithms in Section 4.1 and Section 4.2.

{−# LANGUAGE GADTs #−}
{−# LANGUAGE ScopedTypeVariables #−}

module App l i ca t i ons ( D iv i s o r ( . . ) , Key ( . . ) , Keys ( . . ) , d i v i s i o n , dh , ecdh ,
fermat , l en s t r a , modExp , pock l ington , po l l a rd , rsa , t r i a l ) where

import F i e l d s
import Weier s t ras sEquat ions
import GroupLaw

import Control . Exception ( SomeException , eva luate , t ry )
import System . IO . Unsafe ( unsafePerformIO )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Aux i l i a ry f u n c t i o n s

−− Probable primes
primes : : [ I n t e g e r ]
primes = 2 : 3 : concatMap ((<∗>) [ pred , succ ] . r e turn ) [ 6 , 12 . . ]

−− Modular exponent ia t i on
modExp : : ( I n t e g r a l a , I n t e g r a l b ) => a −> b −> a −> a
modExp 0 = 1
modExp 0 = 0
modExp x e p
| odd e = mod ( x ∗ m) p
| otherwi s e = m
where

m = modExp (mod ( x ∗ x ) p) ( quot e 2) p

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− I n t e g e r f a c t o r i s a t i o n

−− I n t e g e r f a c t o r i s a t i o n d i v i s o r data
newtype Div i so r = Div i so r ( Ei ther S t r ing I n t e g e r )
i n s t anc e Show Div i so r where

show ( Div i so r ( Le f t s ) ) = s
show ( Div i so r ( Right n ) ) = show n ++ ” i s a d i v i s o r ”

−− Naive i n t e g e r f a c t o r i s a t i o n
d i v i s i o n : : I n t e g e r −> [ I n t e g e r ]
d i v i s i o n = d i v i s i o n ’ primes

where
d i v i s i o n ’ ts ’ @ ( t : t s ) n
| n <= 1 = [ ]
| r == 0 = t : d i v i s i o n ’ ts ’ q
| otherwi s e = d i v i s i o n ’ t s n
where

(q , r ) = quotRem n t

−− Pol lard ’ s p − 1 method with given smoothness bound b
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p o l l a r d : : I n t e g e r −> I n t e g e r −> Div i so r
p o l l a r d n b = Div i so r $ po l l a rd ’ 2

where
l = f o l d r lcm 1 [ 2 . . b ]
po l l a rd ’ a = case gcd n . pred $ modExp a l n o f

1 −> Le f t ”Choose a l a r g e r smoothness bound”
g −> i f g < n then return g e l s e po l l a rd ’ ( succ a )

−− Lenstra ’ s e l l i p t i c curve f a c t o r i s a t i o n method
−− with given (x , y ) coo rd ina t e s and smoothness bound c
l e n s t r a : : Prime p => Fp p −> Fp p −> Fp p −> I n t e g e r −> Div i so r
l e n s t r a ( : : Fp p) x y c = Div i so r $ l e n s t r a ’ ( succ minBound : : Fp p)

where
n = char ( undef ined : : Fp p)
l = f o l d r lcm 1 [ 2 . . c ]
l en s t r a ’ a = case gcd n d o f

1 −> unsa fe ( mul l p ) ( l e n s t r a ’ a ’ )
where

e = e i t h e r e r r o r id $ sW a b
p = A e x y

g −> i f g < n then return g e l s e l e n s t r a ’ a ’
where

a ’ = succ a
b = y ˆ 2 − x ˆ 3 − a ∗ x
d = 4 ∗ f r omInteg ra l a ˆ 3 + 27 ∗ f r omInteg ra l b ˆ 2

−− Haske l l−s p e c i f i c IO hack , not s a f e f o r work
unsa fe : : Monad m => P (Fp p) −> m I n t e g e r −> m I n t e g e r
unsa fe x y = unsafePerformIO $ try ’ x >>= return ’ y

where
try ’ : : P (Fp p) −> IO ( Ei ther SomeException (P (Fp p ) ) )
try ’ = try . eva luate
read ’ = reads : : ReadS I n t e g e r
gcd ’ = return . re turn . f s t . head . read ’ . show
return ’ = e i t h e r gcd ’ . const . r e turn

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Pr imal i ty t e s t i n g

−− Pr imal i ty c e r t i f i c a t e data
data C e r t i f i c a t e = Threshold | Composite I n t e g e r | D e f i n i t e I n t e g e r

| C e r t i f i e d I n t e g e r ( Integer , [ I n t e g e r ] ) [ ( Integer , I n t e g e r ) ]
i n s t anc e Show C e r t i f i c a t e where

show Threshold = ”Choose a l a r g e r t r i a l d i v i s i o n thr e sho ld ”
show ( Composite n) = show n ++ ” i s composite ”
show ( D e f i n i t e n) = show n ++ ” i s d e f i n i t e l y prime”
show ( C e r t i f i e d n (d , f s ) cs ) = ”N = ” ++ show n

++ ” i s c e r t i f i e d prime\nr = ” ++ show d ++ ” d i v i d e s N − 1 and r = Pi ”
++ show f s ++ ”\n” ++ concatMap ( uncurry show ’ ) cs
where

show ’ p a = show a ++ ”ˆ(N − 1) = 1 mod N and gcd (” ++ show a
++ ”ˆ((N − 1)/” ++ show p ++ ”) − 1 , N) = 1 mod N \n”

−− Naive p r ima l i t y t e s t
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t r i a l : : I n t e g e r −> Bool
t r i a l n = n > 1 && a l l i n d i v i s i b l e primes ’

where
squareRoot = f l o o r . s q r t . f romInteger
primes ’ = takeWhile (<= squareRoot n) primes
i n d i v i s i b l e = (/= 0) . mod n

−− Fermat ’ s l i t t l e theorem
fermat : : I n t e g e r −> I n t e g e r −> Bool
fermat n t = i f n < 4 then t r i a l n e l s e

n > 1 && a l l one [ 2 . . mod ( t − 1) (n − 3) + 2 ]
where

one p = modExp p ( pred n) n == 1

−− Pockl ington−Lehmer p r ima l i t y t e s t with a t r i a l d i v i s i o n thr e sho ld t
pock l ington : : I n t e g e r −> I n t e g e r −> C e r t i f i c a t e
pock l ington n b
| n <= b | | n <= 2 = i f t r i a l n then D e f i n i t e n e l s e Composite n
| otherwi s e = pockl ington ’ 1 primes $ pred n
where

pock l ington ’ d ps ’ @ (p : ps ) n ’
| p > b = Threshold
| d >= f l o o r ( s q r t $ f romInteger n) = C e r t i f i e d n (d , [ ] ) [ ]
| r == 0 = case generate 2 o f

Just a −> case pock l ington ’ (p ∗ d) ps ’ q o f
C e r t i f i e d m (d ’ , f s ) cs @ ( ( p ’ , ) : )
| p == p ’ −> C e r t i f i e d m (d ’ , p : f s ) c s

C e r t i f i e d m (d ’ , f s ) cs −> C e r t i f i e d m (d ’ , p : f s ) $ (p , a ) : c s
c −> c
−> Composite n

| otherwi s e = pockl ington ’ d ps n ’
where

(q , r ) = quotRem n ’ p
generate a
| a >= n = Nothing
| modExp a ’ p n == 1 && gcd ( pred a ’ ) n == 1 = Just a
| otherwi se = generate $ succ a
where

a ’ = modExp a ( quot ( pred n) p) n

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Cryptography

−− Publ ic and p r i v a t e key data
data Keys = Keys Key Key | Locked
in s t anc e Show Keys where

show ( Keys e d) = ” Publ ic encrypt ion key i s ” ++ show e
++ ”\ nPrivate decrypt ion key i s ” ++ show d

show = ”One o f p or q i s not prime”

−− Encryption or decrypt ion key data
data Key = Key I n t e g e r I n t e g e r
i n s t anc e Show Key where

show (Key n k ) = ”(” ++ show n ++ ” , ” ++ show k ++ ”)”
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−− Rivest−Shamir−Adleman cryptosystem with primes p and q
rsa : : I n t e g e r −> I n t e g e r −> Keys
r sa p q = case modInv e l o f

Right d −> Keys (Key n e ) (Key n d)
−> Locked

where
n = p ∗ q
l = lcm ( pred p) ( pred q )
e = head $ f i l t e r ((== 1) . gcd l ) [ 2 . . ]

−− Key exchange data
data Exchange a where

Exchange : : Show a => a −> a −> a −> Exchange a
in s t anc e Show ( Exchange a ) where

show ( Exchange a b s ) = ” F i r s t key i s ” ++ show a ++ ”\nSecond key i s ”
++ show b ++ ”\ nPrivate symmetric key i s ” ++ show s

−− D i f f i e−Hellman key exchange
dh : : Key −> I n t e g e r −> I n t e g e r −> Exchange I n t e g e r
dh (Key p g ) a b = Exchange (modExp g a p) (modExp g b p) (modExp g ( a ∗ b) p)

−− E l l i p t i c curve D i f f i e−Hellman
ecdh : : Prime p => P (Fp p) −> I n t e g e r −> I n t e g e r −> Exchange (P (Fp p ) )
ecdh p a b = Exchange ( mul a p) ( mul b p) ( mul ( a ∗ b) p)
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C.6 Test.hs

This module includes input of computations from previous modules.

{−# LANGUAGE ScopedTypeVariables #−}

module Test where

import F i e l d s
import Weier s t ras sEquat ions
import GroupLaw
import Rat iona l s
import App l i ca t i ons

import Data . E i ther ( r i g h t s )

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Prime and composite i n t e g e r s

data P2 = P2 d e r i v i n g (Enum, Show)
in s t anc e Prime P2

data P3 = P3 d e r i v i n g (Enum, Show)
in s t anc e Prime P3

data P5 = P5 d e r i v i n g (Enum, Show)
in s t anc e Prime P5

data P199843247 = P199843247 d e r i v i n g (Enum, Show)
in s t anc e Prime P199843247

data P1715761513 = P1715761513 d e r i v i n g (Enum, Show)
in s t anc e Prime P1715761513

data P2147483647 = P2147483647 d e r i v i n g (Enum, Show)
in s t anc e Prime P2147483647

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Aux i l i a ry f u n c t i o n s

throw : : E i ther S t r ing a −> a
throw = e i t h e r e r r o r id

writeLMS : : F i e ld f => EC f −> St r ing
writeLMS e = ” Weie r s t ra s s equat ion t rans f o rmat i ons :\ nfrom long ” ++ show e

++ ” ,\ nto medium ” ++ show ( throw $ l2m e )
++ ” ,\nand to shor t ” ++ show ( throw $ l2m e >>= m2s) ++ ”\n”

wr i teAddi t ion : : F i e ld f => P f −> P f −> St r ing
wr i teAddi t ion p p ’ = ” Point P = ” ++ show p ++ ” and P’ = ” ++ show p ’

++ ” add i t i on :\nP + P’ = ” ++ show ( add p p ’ ) ++ ”\n”

w r i t e F i n i t e : : Prime p => EC (Fp p) −> St r ing
w r i t e F i n i t e ( e : : EC (Fp p ) ) = ”Group o f ” ++ show e ++ ” over F ”

++ show ( char ( undef ined : : Fp p ) ) ++ ”:\n”
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++ u n l i n e s (map show $ enumPoints e )

wr i t eTors ion : : EC Q −> St r ing
wr i t eTors ion e = ” Torsion subgroup o f ” ++ show e ++ ”:\n”

++ u n l i n e s (map show $ computeTors e )

writeRank : : EC Q −> St r ing
writeRank e = ”Rank equat ions f o r a o f ” ++ show e ++ ”:\n”

++ u n l i n e s (map show a ) ++ ”Rank equat ions f o r a ’ o f ” ++ show e ++ ”:\n”
++ u n l i n e s (map show a ’ )
where

( a , a ’ ) = getRankEqns e

w r i t e D i v i s i o n : : I n t e g e r −> St r ing
w r i t e D i v i s i o n n = ”Naive i n t e g e r f a c t o r i s a t i o n on ” ++ show n ++ ”:\n”

++ show n ++ ” = Pi ” ++ show ( d i v i s i o n n) ++ ”\n”

wr i t ePo l l a rd : : I n t e g e r −> I n t e g e r −> St r ing
wr i t ePo l l a rd n b = ” Pol lard ’ s p − 1 method on ” ++ show n ++ ” with B = ”

++ show b ++ ”:\n” ++ show ( p o l l a r d n b) ++ ”\n”

wr i t eLens t ra : : Prime p => Fp p −> Fp p −> Fp p −> I n t e g e r −> St r ing
wr i t eLens t ra ( f : : Fp p) x y c =

” Lenstra ’ s e l l i p t i c curve f a c t o r i s a t i o n method on ”
++ show ( char ( undef ined : : Fp p ) ) ++ ” with C = ” ++ show c ++ ”:\n”
++ show ( l e n s t r a f x y c ) ++ ”\n”

w r i t e T r i a l : : I n t e g e r −> St r ing
w r i t e T r i a l n = ”Naive p r ima l i t y t e s t on ” ++ show n ++ ”:\n” ++ show n

++ ( i f t r i a l n then ” i s prime” e l s e ” i s composite ”) ++ ”\n”

writeFermat : : I n t e g e r −> I n t e g e r −> St r ing
writeFermat n t = ”Fermat ’ s p r ima l i t y t e s t on ” ++ show n ++ ” with ”

++ show t ++ ” t e s t s :\n” ++ show n
++ ( i f fermat n t then ” i s probably prime” e l s e ” i s composite ”) ++ ”\n”

wr i t ePock l ington : : I n t e g e r −> I n t e g e r −> St r ing
wr i t ePock l ington n b = ” Pockl ington−Lehmer p r ima l i t y t e s t on ” ++ show n

++ ” with B = ” ++ show b ++ ”:\n” ++ show ( pock l ington n b)

writeRSA : : I n t e g e r −> I n t e g e r −> I n t e g e r −> St r ing
writeRSA p q m = ” Rivest−Shamir−Adleman cryptosystem on p = ” ++ show p

++ ” and q = ” ++ show q ++ ”:\n” ++ show ( r sa p q ) ++ ”\n”

writeDH : : Key −> I n t e g e r −> I n t e g e r −> St r ing
writeDH k @ (Key p g ) a b =

” D i f f i e−Hellman key exchange on p = ” ++ show p ++ ” and g = ” ++ show g
++ ”:\n” ++ show (dh k a b) ++ ”\n”

writeECDH : : Prime p => P (Fp p) −> I n t e g e r −> I n t e g e r −> St r ing
writeECDH (p @ (A e x y ) : : P (Fp p ) ) a b =

” E l l i p t i c curve D i f f i e−Hellman on P = ” ++ show p ++ ”:\nP in E : ”
++ show e ++ ” over F ” ++ show ( char ( undef ined : : Fp p ) ) ++ ”\n”
++ show ( ecdh p a b) ++ ”\n”
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writeECDH =
” E l l i p t i c curve D i f f i e−Hellman on O:\ nChoose a d i f f e r e n t po int \n”

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−− Main f u n c t i o n s

main : : IO ( )
main = w r i t e F i l e ”Output . txt ” . u n l i n e s $

[ writeLMS eLMS
, wr i teAddi t ion (A eAddit ion 0 (−1)) (A eAddit ion 1 2)
, wr i teAddi t ion (A eAddit ion 0 (−1)) (A eAddit ion 0 (−1))
, wr i teAddi t ion (A eAddit ion 1 2) (A eAddit ion 1 2)
] ++
map w r i t e F i n i t e e2s ++
map w r i t e F i n i t e e3s ++
map w r i t e F i n i t e [ e5 ] ++
[ wr i t eTors ion e0
, wr i t eTors ion e0 ’
, wr i t eTors ion e1
, wr i t eTors ion e2
, wr i t eTors ion e3
, wr i t eTors ion e4
, writeRank e1
, writeRank e2
, writeRank e3
, writeRank e4
, w r i t e D i v i s i o n 420
, w r i t e D i v i s i o n 421
, wr i t ePo l l a rd 246082373 7
, wr i t ePo l l a rd 246082373 9
, wr i t ePo l l a rd 7591548931 20
, wr i t ePo l l a rd 7591548931 25
, wr i t eLens t ra ( undef ined : : Fp P1715761513 ) 2 1 17
, wr i t eLens t ra ( undef ined : : Fp P199843247 ) 1 1 11
, w r i t e T r i a l 420
, w r i t e T r i a l 421
, w r i t e T r i a l 561
, writeFermat 420 1
, writeFermat 421 1
, writeFermat 561 1
, writeFermat 561 2
, wr i t ePock l ington 2147483647 200
, wr i t ePock l ington 9223372036854775783 400000
, writeRSA 2147483647 2147483659 123456789
, writeDH (Key 2147483647 65537) 16777259 16777289
, writeECDH (A eDH 0 1) 16777259 16777289
]
where

eLMS = throw $ lW 2 (−1) (1 / 3) (−1 / 3) (−1 / 27) : : EC Q
eAddit ion = throw $ sW 2 1 : : EC Q
e0 = throw $ sW 0 4 : : EC Q
e0 ’ = throw $ sW 0 (−4) : : EC Q
e1 = throw $ sW (−1) 0 : : EC Q
e2 = throw $ sW (−5) 0 : : EC Q
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e3 = throw $ sW (−17) 0 : : EC Q
e4 = throw $ sW (−226) 0 : : EC Q
e5 = throw $ sW 1 1 : : EC (Fp P5)
e2s = r i g h t s [ lW a 1 a 2 a 3 a 4 a 5 | a 1 <− values , a 2 <− values ,

a 3 <− values , a 4 <− values , a 5 <− va lue s ] : : [EC (Fp P2 ) ]
where

va lue s = [ minBound . . maxBound ]
e3s = r i g h t s [mW a b c | a <− values , b <− values , c <− va lue s ]

: : [EC (Fp P3 ) ]
where

va lue s = [ minBound . . maxBound ]
eDH = throw $ sW 65537 1 : : EC (Fp P2147483647 )
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C.7 Output.txt

This file includes output of computations from previous modules.

We i e r s t ra s s equat ion t rans f o rmat i ons :
from long yˆ2 + 2xy + 1/3y = xˆ3 − 1xˆ2 − 1/3x − 1/27 ,
to medium yˆ2 = xˆ3 − 1/108 ,
and to shor t yˆ2 = xˆ3 − 1/108

Point P = (0 ,−1) and P’ = (1 , 2 ) add i t i on :
P + P’ = (8 ,−23)

Point P = (0 ,−1) and P’ = (0 ,−1) add i t i on :
P + P’ = (1 , 2 )

Point P = (1 , 2 ) and P’ = (1 , 2 ) add i t i on :
P + P’ = (−7/16 ,−13/64)

Group o f yˆ2 + 1y = xˆ3 over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 3
ord ( ( 0 , 1 ) ) = 3

Group o f yˆ2 + 1y = xˆ3 + 1 over F 2 :
ord (O) = 1
ord ( ( 1 , 0 ) ) = 3
ord ( ( 1 , 1 ) ) = 3

Group o f yˆ2 + 1y = xˆ3 + 1x over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 5
ord ( ( 0 , 1 ) ) = 5
ord ( ( 1 , 0 ) ) = 5
ord ( ( 1 , 1 ) ) = 5

Group o f yˆ2 + 1y = xˆ3 + 1x + 1 over F 2 :
ord (O) = 1

Group o f yˆ2 + 1y = xˆ3 + 1xˆ2 over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 5
ord ( ( 0 , 1 ) ) = 5
ord ( ( 1 , 0 ) ) = 5
ord ( ( 1 , 1 ) ) = 5

Group o f yˆ2 + 1y = xˆ3 + 1xˆ2 + 1 over F 2 :
ord (O) = 1

Group o f yˆ2 + 1y = xˆ3 + 1xˆ2 + 1x over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 3
ord ( ( 0 , 1 ) ) = 3

Group o f yˆ2 + 1y = xˆ3 + 1xˆ2 + 1x + 1 over F 2 :
ord (O) = 1
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ord ( ( 1 , 0 ) ) = 3
ord ( ( 1 , 1 ) ) = 3

Group o f yˆ2 + 1xy = xˆ3 + 1 over F 2 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 2
ord ( ( 1 , 0 ) ) = 4
ord ( ( 1 , 1 ) ) = 4

Group o f yˆ2 + 1xy = xˆ3 + 1x over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2
ord ( ( 1 , 0 ) ) = 4
ord ( ( 1 , 1 ) ) = 4

Group o f yˆ2 + 1xy + 1y = xˆ3 + 1 over F 2 :
ord (O) = 1
ord ( ( 1 , 0 ) ) = 2

Group o f yˆ2 + 1xy + 1y = xˆ3 + 1x + 1 over F 2 :
ord (O) = 1
ord ( ( 1 , 1 ) ) = 2

Group o f yˆ2 + 1xy = xˆ3 + 1xˆ2 + 1 over F 2 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 2

Group o f yˆ2 + 1xy = xˆ3 + 1xˆ2 + 1x over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2

Group o f yˆ2 + 1xy + 1y = xˆ3 + 1xˆ2 over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 4
ord ( ( 0 , 1 ) ) = 4
ord ( ( 1 , 0 ) ) = 2

Group o f yˆ2 + 1xy + 1y = xˆ3 + 1xˆ2 + 1x over F 2 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 4
ord ( ( 0 , 1 ) ) = 4
ord ( ( 1 , 1 ) ) = 2

Group o f yˆ2 = xˆ3 + 1x over F 3 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2
ord ( ( 2 , 1 ) ) = 4
ord ( ( 2 , 2 ) ) = 4

Group o f yˆ2 = xˆ3 + 1x + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 4
ord ( ( 0 , 2 ) ) = 4
ord ( ( 1 , 0 ) ) = 2
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Group o f yˆ2 = xˆ3 + 1x + 2 over F 3 :
ord (O) = 1
ord ( ( 1 , 1 ) ) = 4
ord ( ( 1 , 2 ) ) = 4
ord ( ( 2 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 2x over F 3 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2
ord ( ( 1 , 0 ) ) = 2
ord ( ( 2 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 2x + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 7
ord ( ( 0 , 2 ) ) = 7
ord ( ( 1 , 1 ) ) = 7
ord ( ( 1 , 2 ) ) = 7
ord ( ( 2 , 1 ) ) = 7
ord ( ( 2 , 2 ) ) = 7

Group o f yˆ2 = xˆ3 + 2x + 2 over F 3 :
ord (O) = 1

Group o f yˆ2 = xˆ3 + 1xˆ2 + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 6
ord ( ( 0 , 2 ) ) = 6
ord ( ( 1 , 0 ) ) = 2
ord ( ( 2 , 1 ) ) = 3
ord ( ( 2 , 2 ) ) = 3

Group o f yˆ2 = xˆ3 + 1xˆ2 + 2 over F 3 :
ord (O) = 1
ord ( ( 1 , 1 ) ) = 3
ord ( ( 1 , 2 ) ) = 3

Group o f yˆ2 = xˆ3 + 1xˆ2 + 1x + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 3
ord ( ( 0 , 2 ) ) = 3
ord ( ( 1 , 1 ) ) = 6
ord ( ( 1 , 2 ) ) = 6
ord ( ( 2 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 1xˆ2 + 1x + 2 over F 3 :
ord (O) = 1
ord ( ( 2 , 1 ) ) = 3
ord ( ( 2 , 2 ) ) = 3

Group o f yˆ2 = xˆ3 + 1xˆ2 + 2x over F 3 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2
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ord ( ( 1 , 1 ) ) = 3
ord ( ( 1 , 2 ) ) = 3
ord ( ( 2 , 1 ) ) = 6
ord ( ( 2 , 2 ) ) = 6

Group o f yˆ2 = xˆ3 + 1xˆ2 + 2x + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 3
ord ( ( 0 , 2 ) ) = 3

Group o f yˆ2 = xˆ3 + 2xˆ2 + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 5
ord ( ( 0 , 2 ) ) = 5
ord ( ( 1 , 1 ) ) = 5
ord ( ( 1 , 2 ) ) = 5

Group o f yˆ2 = xˆ3 + 2xˆ2 + 2 over F 3 :
ord (O) = 1
ord ( ( 2 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 2xˆ2 + 1x + 1 over F 3 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 5
ord ( ( 0 , 2 ) ) = 5
ord ( ( 2 , 1 ) ) = 5
ord ( ( 2 , 2 ) ) = 5

Group o f yˆ2 = xˆ3 + 2xˆ2 + 1x + 2 over F 3 :
ord (O) = 1
ord ( ( 1 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 2xˆ2 + 2x over F 3 :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2

Group o f yˆ2 = xˆ3 + 2xˆ2 + 2x + 2 over F 3 :
ord (O) = 1
ord ( ( 1 , 1 ) ) = 5
ord ( ( 1 , 2 ) ) = 5
ord ( ( 2 , 1 ) ) = 5
ord ( ( 2 , 2 ) ) = 5

Group o f yˆ2 = xˆ3 + 1x + 1 over F 5 :
ord (O) = 1
ord ( ( 0 , 1 ) ) = 9
ord ( ( 0 , 4 ) ) = 9
ord ( ( 2 , 1 ) ) = 3
ord ( ( 2 , 4 ) ) = 3
ord ( ( 3 , 1 ) ) = 9
ord ( ( 3 , 4 ) ) = 9
ord ( ( 4 , 2 ) ) = 9
ord ( ( 4 , 3 ) ) = 9
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Tors ion subgroup o f yˆ2 = xˆ3 + 4 :
ord (O) = 1
ord ( ( 0 , 2 ) ) = 3
ord ((0 ,−2)) = 3

Torsion subgroup o f yˆ2 = xˆ3 − 4 :
ord (O) = 1

Torsion subgroup o f yˆ2 = xˆ3 − 1x :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2
ord ( ( 1 , 0 ) ) = 2
ord ((−1 ,0)) = 2

Torsion subgroup o f yˆ2 = xˆ3 − 5x :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2

Torsion subgroup o f yˆ2 = xˆ3 − 17x :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2

Torsion subgroup o f yˆ2 = xˆ3 − 226x :
ord (O) = 1
ord ( ( 0 , 0 ) ) = 2

Rank equat ions f o r a o f yˆ2 = xˆ3 − 1x :
Yˆ2 = + 1Xˆ4 − 1Zˆ4
Yˆ2 = − 1Xˆ4 + 1Zˆ4
Rank equat ions f o r a ’ o f yˆ2 = xˆ3 − 1x :
Yˆ2 = + 1Xˆ4 + 4Zˆ4
Yˆ2 = + 2Xˆ4 + 2Zˆ4
Yˆ2 = − 1Xˆ4 − 4Zˆ4
Yˆ2 = − 2Xˆ4 − 2Zˆ4

Rank equat ions f o r a o f yˆ2 = xˆ3 − 5x :
Yˆ2 = + 1Xˆ4 − 5Zˆ4
Yˆ2 = + 5Xˆ4 − 1Zˆ4
Yˆ2 = − 1Xˆ4 + 5Zˆ4
Yˆ2 = − 5Xˆ4 + 1Zˆ4
Rank equat ions f o r a ’ o f yˆ2 = xˆ3 − 5x :
Yˆ2 = + 1Xˆ4 + 20Zˆ4
Yˆ2 = + 2Xˆ4 + 10Zˆ4
Yˆ2 = + 5Xˆ4 + 4Zˆ4
Yˆ2 = + 10Xˆ4 + 2Zˆ4
Yˆ2 = − 1Xˆ4 − 20Zˆ4
Yˆ2 = − 2Xˆ4 − 10Zˆ4
Yˆ2 = − 5Xˆ4 − 4Zˆ4
Yˆ2 = − 10Xˆ4 − 2Zˆ4

Rank equat ions f o r a o f yˆ2 = xˆ3 − 17x :
Yˆ2 = + 1Xˆ4 − 17Zˆ4
Yˆ2 = + 17Xˆ4 − 1Zˆ4
Yˆ2 = − 1Xˆ4 + 17Zˆ4
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Yˆ2 = − 17Xˆ4 + 1Zˆ4
Rank equat ions f o r a ’ o f yˆ2 = xˆ3 − 17x :
Yˆ2 = + 1Xˆ4 + 68Zˆ4
Yˆ2 = + 2Xˆ4 + 34Zˆ4
Yˆ2 = + 17Xˆ4 + 4Zˆ4
Yˆ2 = + 34Xˆ4 + 2Zˆ4
Yˆ2 = − 1Xˆ4 − 68Zˆ4
Yˆ2 = − 2Xˆ4 − 34Zˆ4
Yˆ2 = − 17Xˆ4 − 4Zˆ4
Yˆ2 = − 34Xˆ4 − 2Zˆ4

Rank equat ions f o r a o f yˆ2 = xˆ3 − 226x :
Yˆ2 = + 1Xˆ4 − 226Zˆ4
Yˆ2 = + 2Xˆ4 − 113Zˆ4
Yˆ2 = + 113Xˆ4 − 2Zˆ4
Yˆ2 = + 226Xˆ4 − 1Zˆ4
Yˆ2 = − 1Xˆ4 + 226Zˆ4
Yˆ2 = − 2Xˆ4 + 113Zˆ4
Yˆ2 = − 113Xˆ4 + 2Zˆ4
Yˆ2 = − 226Xˆ4 + 1Zˆ4
Rank equat ions f o r a ’ o f yˆ2 = xˆ3 − 226x :
Yˆ2 = + 1Xˆ4 + 904Zˆ4
Yˆ2 = + 2Xˆ4 + 452Zˆ4
Yˆ2 = + 113Xˆ4 + 8Zˆ4
Yˆ2 = + 226Xˆ4 + 4Zˆ4
Yˆ2 = − 1Xˆ4 − 904Zˆ4
Yˆ2 = − 2Xˆ4 − 452Zˆ4
Yˆ2 = − 113Xˆ4 − 8Zˆ4
Yˆ2 = − 226Xˆ4 − 4Zˆ4

Naive i n t e g e r f a c t o r i s a t i o n on 420 :
420 = Pi [ 2 , 2 , 3 , 5 , 7 ]

Naive i n t e g e r f a c t o r i s a t i o n on 421 :
421 = Pi [ 4 2 1 ]

Pol lard ’ s p − 1 method on 246082373 with B = 7 :
Choose a l a r g e r smoothness bound

Pol lard ’ s p − 1 method on 246082373 with B = 9 :
2521 i s a d i v i s o r

Pol lard ’ s p − 1 method on 7591548931 with B = 20 :
Choose a l a r g e r smoothness bound

Pol lard ’ s p − 1 method on 7591548931 with B = 25 :
79801 i s a d i v i s o r

Lenstra ’ s e l l i p t i c curve f a c t o r i s a t i o n method on 1715761513 with C = 17 :
26927 i s a d i v i s o r

Lenstra ’ s e l l i p t i c curve f a c t o r i s a t i o n method on 199843247 with C = 11 :
10289 i s a d i v i s o r
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Naive p r ima l i t y t e s t on 420 :
420 i s composite

Naive p r ima l i t y t e s t on 421 :
421 i s prime

Naive p r ima l i t y t e s t on 561 :
561 i s composite

Fermat ’ s p r ima l i t y t e s t on 420 with 1 t e s t s :
420 i s composite

Fermat ’ s p r ima l i t y t e s t on 421 with 1 t e s t s :
421 i s probably prime

Fermat ’ s p r ima l i t y t e s t on 561 with 1 t e s t s :
561 i s probably prime

Fermat ’ s p r ima l i t y t e s t on 561 with 2 t e s t s :
561 i s composite

Pockl ington−Lehmer p r ima l i t y t e s t on 2147483647 with B = 200 :
N = 2147483647 i s c e r t i f i e d prime
r = 6487866 d i v i d e s N − 1 and r = Pi [ 2 , 3 , 3 , 7 , 1 1 , 3 1 , 1 5 1 ]
3ˆ(N − 1) = 1 mod N and gcd (3 ˆ ( (N − 1)/2) − 1 , N) = 1 mod N
5ˆ(N − 1) = 1 mod N and gcd (5 ˆ ( (N − 1)/3) − 1 , N) = 1 mod N
3ˆ(N − 1) = 1 mod N and gcd (3 ˆ ( (N − 1)/7) − 1 , N) = 1 mod N
3ˆ(N − 1) = 1 mod N and gcd (3 ˆ ( (N − 1)/11) − 1 , N) = 1 mod N
2ˆ(N − 1) = 1 mod N and gcd (2 ˆ ( (N − 1)/31) − 1 , N) = 1 mod N
3ˆ(N − 1) = 1 mod N and gcd (3 ˆ ( (N − 1)/151) − 1 , N) = 1 mod N

Pockl ington−Lehmer p r ima l i t y t e s t on 9223372036854775783 with B = 400000:
N = 9223372036854775783 i s c e r t i f i e d prime
r = 20223770418 d i v i d e s N − 1 and r = Pi [ 2 , 3 , 3 , 3 , 3 , 17 , 23 , 319279 ]
3ˆ(N − 1) = 1 mod N and gcd (3 ˆ ( (N − 1)/2) − 1 , N) = 1 mod N
2ˆ(N − 1) = 1 mod N and gcd (2 ˆ ( (N − 1)/3) − 1 , N) = 1 mod N
2ˆ(N − 1) = 1 mod N and gcd (2 ˆ ( (N − 1)/17) − 1 , N) = 1 mod N
2ˆ(N − 1) = 1 mod N and gcd (2 ˆ ( (N − 1)/23) − 1 , N) = 1 mod N
2ˆ(N − 1) = 1 mod N and gcd (2 ˆ ( (N − 1)/319279) − 1 , N) = 1 mod N

Rivest−Shamir−Adleman cryptosystem on p = 2147483647 and q = 2147483659:
Publ ic encrypt ion key i s (4611686039902224373 , 5)
Pr ivate decrypt ion key i s (4611686039902224373 , 461168603560725707)

D i f f i e−Hellman key exchange on p = 2147483647 and g = 65537 :
F i r s t key i s 751856369
Second key i s 1654172966
Pr ivate symmetric key i s 1288974049

E l l i p t i c curve D i f f i e−Hellman on P = ( 0 , 1 ) :
P in E : yˆ2 = xˆ3 + 65537x + 1 over F 2147483647
F i r s t key i s (675295473 ,1821381850)
Second key i s (294235749 ,438747352)
Pr ivate symmetric key i s (1210475635 ,471187571)
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