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—— Abstract

Elliptic curves are fundamental objects in number theory and algebraic geometry, whose points over
a field form an abelian group under a geometric addition law. Any elliptic curve over a field admits a
Weierstrass model, but prior formal proofs that the addition law is associative in this model involve
either advanced algebraic geometry or tedious computation, especially in characteristic two. We
formalise in the Lean theorem prover, the type of nonsingular points of a Weierstrass curve over a
field of any characteristic and a purely algebraic proof that it forms an abelian group.
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1 Introduction

1.1 Elliptic curves

In its earliest form, algebraic geometry is the branch of mathematics studying the solutions
to systems of polynomial equations over a base field F', namely sets of the form

{(z1,...,zn) € F": fi(z1,...,2,) =0, ..., fr(x1,...,2,) =0},

for some polynomials f; € F[X,...,X,]. These are called affine varieties, and they can
be endowed with topologies and a notion of morphisms which makes them simultaneously
geometric objects. General varieties are locally modelled on affine ones, with morphisms
between them locally given by polynomials, and are often classified by their geometric
properties such as smoothness, or invariants such as the dimension or the genus.

Having dimension one and genus one, elliptic curves are amongst the simplest varieties
with respect to these geometric notions, and their set of points can be endowed with the
structure of an abelian group. When the base field is the rationals Q, a common definition
uses the short Weierstrass model, given by the equation y? = 3 + axz + b for some fixed
a,b € Q, and its group law can be defined explicitly by quotients of polynomial functions.
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The Group Law on Weierstrass Elliptic Curves

Elliptic curves are blessed with an extremely rich theory, spanning the fields of algebraic
geometry, complex analysis, number theory, representation theory, dynamical systems, and
even information security. The Birch and Swinnerton-Dyer conjecture [29] in number theory,
one of the seven Millennium Prize Problems, is an equality between an analytic quantity of
an elliptic curve over Q and an algebraic quantity defined in terms of its group structure.
Their close relation with modular forms is precisely the content of the Taniyama—Shimura
conjecture proven by Andrew Wiles [30], which implies Fermat’s last theorem and laid the
foundations of the Langlands programme, a web of influential conjectures linking number
theory and geometry described to be “kind of a grand unified theory of mathematics” [19].
Outside of mathematics, elliptic curves over finite fields see applications in primality proving
[2] and integer factorisation [22], as well as in public key cryptography [13].

1.2 Formalisation attempts

The group law on an elliptic curve in the short Weierstrass model over a field F' has been
formalised in several theorem provers, ! but this model fails to be an elliptic curve when
char(F') = 2, and there has been no known successful attempts to formalise the group law
in a universal model that captures all elliptic curves in all char(F'). The issue was that a
computational proof of associativity in any universal model is, as Russinoff described, “an
elementary but computationally intensive arithmetic exercise” involving massive polynomials
[27], 2 while a typical conceptual proof is “a deep theorem of algebraic or projective geometry’
requiring prior formalisation of advanced geometric constructions, with “evidence that an
elementary hand proof of this result is a practical impossibility” [25]. On the other hand,
having the group law in char(F') = 2 is necessary for certain applications, such as the proof

i

of Fermat’s last theorem. It is less crucial from an information security viewpoint, as curves
over binary fields are prone to attacks and no longer recommended by NIST [9].

We give a conceptual yet computation-light proof of the group law in the full Weierstrass
model, which is universal in all char(F). The argument is purely algebraic and easily
surveyable, in the sense that all logical deductions and necessary computations can be
performed by hand in a matter of minutes. The proof is formalised in Lean 3 [12], an
interactive theorem prover based on the calculus of constructions with inductive types, and is
integrated as part of its monolithic mathematical library mathlib [11]. The implementation
extensively uses existing constructions in the linear algebra and ring theory libraries of
mathlib, particularly constructions and results surrounding algebra.norm and class_group
[10]. The relevant code is primarily split into two files weierstrass.lean and point.lean
under the folder algebraic_geometry/elliptic_curve in the associativity branch of
mathlib, both of which are currently undergoing reviews for their merge. With this paper,
we hope that our simple proof will be replicated and will open the way for the formalisation
of elliptic curve cryptography in many other theorem provers, which has been a major
motivation of recent formalisation attempts [25, 15, 18, 4].

The remainder of this paper will describe the relevant constructions (Section 2), detail the
mathematical argument of the proof (Section 3), and discuss implementation considerations
(Section 4). Throughout, definitions will be described in code snippets where relevant, but
proofs of lemmas will be outlined mathematically for the sake of clarity. The reader may
refer to the mathlib documentation [10] for definitions and lemmas involved.

1 see Section 4.1 for related work
2 see Section 4.2 for experimental results
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2  Weierstrass equations

Let F be a field. In the sense of modern algebraic geometry, an elliptic curve E over F' is a
smooth projective curve 3 of genus one equipped with a base point O € E with coordinates
in F. More concretely, any elliptic curve over F admits a model in the projective plane P%
defined by an explicit polynomial equation in homogeneous coordinates [X : Y : Z].

» Proposition 1. If E is an elliptic curve over F, then there are rational functions x,y :
E — F such that the map ¢ : E — P% given by ¢(P) = [z(P) : y(P) : 1] maps Of to
[0:1:0], and defines an isomorphism of varieties between E and the curve

Y2Z 4+ a XYZ 4 a3sYZ? = X3 + a9 X?Z + ay X Z? + ag 22,

for some coefficients a; € F. Conversely, any curve W in P% given by such an equation,
with coefficients a; € F, is an elliptic curve over F with base point [0 : 1 : 0] if the quantity

Aw = — (a2 + daz)*(atas + dasas — arazay + azal — a3) — 8(2a4 + araz)?®
— 27(a3 + 4ag)? + 9(a? + 4az)(2a4 + araz)(a3 + 4ag) € F
s monzero.
Proof. This is a consequence of the Riemann—Roch theorem [26, Proposition III.3.1]. |

This is the Weierstrass model of F, and such a curve is called a Weierstrass curve,
whose corresponding Weierstrass equation in the affine chart Z # 0 is

Y24+ a1 XY +a3Y = X2 + a0 X? + au X + ag.

In this model, the smoothness condition on F becomes equivalent to the discriminant
Apg € F being nonzero, so an elliptic curve over F' may instead be defined as a Weierstrass
curve with the discriminant condition, which is more amenable for computational purposes.

2.1 Weierstrass curves

Let F' be a commutative ring, and let W be a Weierstrass curve over F. Explicitly, this is
merely the data of five coefficients a, as, a3, a4, a6 € F, noting that the Weierstrass equation
is not visible at this stage. For the sake of generality, the structure weierstrass_curve
is defined more generally over an arbitrary type F', but all subsequent constructions will
assume that F is at least a commutative ring. The structure elliptic_curve then extends
weierstrass_curve by adding the data of an element A’ in the group of units F'* of F' and
a proof that A’ = Ay, so most definitions for weierstrass_curve carry over automatically.

structure weierstrass_curve (F : Type) := (a; az a3z a4 ag : F)

structure elliptic_curve (F : Type) [comm_ring F] extends weierstrass_curve F :=
(A’ : F*) (coe_A’ : TA’ = to_weierstrass_curve.A)

Here, to_weierstrass_curve is a function generated automatically by the extends keyword,
which projects an elliptic_curve down to its underlying weierstrass_curve by forgetting
A’ and the proof that A" = Ay . Note that elliptic_curve was originally defined in one
stretch by Buzzard, but is now refactored through the more general weierstrass_curve.

3 variety of dimension one
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» Remark 2. This definition of an elliptic curve is universal over a large class of commutative
rings, namely those with trivial Picard group [21, Section 2.2], which includes fields, and also
local rings and unique factorisation domains. In general, an elliptic curve E may be defined
relative to an arbitrary scheme S as a smooth proper morphism E — S in the category of
schemes whose geometric fibres are all integral curves of genus one, equipped with a section
S — F that plays the role of the base point O for all fibres simultaneously. When S is the
spectrum of such a commutative ring, the Riemann—Roch theorem can be generalised so that
FE remains isomorphic to a Weierstrass curve, but over a general commutative ring, E only
has Weierstrass equations locally that may not patch together to form a global equation.

The discriminant Ay, € F is expressed entirely in terms of the five coefficients, but it is
clearer to extract intermediate quantities [26, Section III.1] to simplify the large expression.

namespace weierstrass_curve

variables {F : Type} [comm_ring F] (W : weierstrass_curve F)

def by : F := W.a;72 + 4xW.a

def by : F := 2+W.ay + W.ai;*W.a3

def bg : F := W.az3™2 + 4%W.ag

def bg : F := W.a;72*xW.ag + 4*W.ax*xW.ag - W.a;*W.az*W.ay + W.as*W.az3™2 - W.as" 2
def A : F := -W.bo 2%W.bg - 8*W.bs"3 - 27*W.bg"2 + 9*W.bo*W.by*W.bg

Here, dot notation allows for the fields corresponding to the five coefficients a; € F' to
be accessed as W.a;, and living inside the namespace weierstrass_curve means that the
quantities b; € F and A € F may also be accessed as W.b; and W. A respectively.

These quantities are indexed as such as a result of their transformation upon applying
the linear change of variables (X,Y) — (u?X + r,u3Y + u?sX +t), for some u € F* and
some 1, s,t € F. In fact, these are all the possible isomorphisms of varieties between elliptic
curves in the Weierstrass model [26, Proposition III.3.1].

variables (u : F*) (r s t : F)

@[simps] def variable_change : weierstrass_curve F :=
{ a; := Tu_l*(w.al + 2%s),

as := Tu_1‘2*(w.a2 - sxW.a; + 3*r - s72),

ag := Tufl”B*(w.ag + rxW.a; + 2%t),

ag = Tu71‘4*(w.a4 - sxW.ag + 2%rxW.as - (t + r*s)*W.a; + 3*r"2 - 2%s*t),
ag := Tu_1‘6*(w.a6 + rxW.ay + r"2%W.as + r"3 - t*W.a3 - t72 - r*txW.a;) }

t).by = fu172%(. ..
t).bs = fu 174x(. ..
t).bg = fu 176%(. ..
t).bg = fu " 178x(...

@[simp] lemma variable_change_bs : (W.variable_change
@[simp] lemma variable_change _bs : (W.variable_change
@[simp] lemma variable_change _bg : (W.variable_change
@[simp] lemma variable_change _bg : (W.variable_change

e 8 B £
R R R K

~
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@[simp] lemma variable_change A : (W.variable_change ur s t).A = tu 11240, A

Here, variable_change defines a new weierstrass_curve under the change of variables by
explicitly stating how each of the five coefficients are transformed, and is tagged with simps
to automatically generate simp lemmas corresponding to each of the five projections. The
exact expressions for the transformed quantities are not too important, but note that their
indices precisely correspond to the exponent of u~! € F* in the transformation.
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2.2 Equations and nonsingularity

Now consider the polynomial in F[X,Y] associated to W denoted by
W(X,Y):=Y?+ (a1 X +a3)Y — (X® 4+ aa X? + as X + ag),

so that the Weierstrass equation literally reads W(X,Y) = 0, and its partial derivatives
Wx(X,Y) :=a1Y — (3X? + 242X + as), Wy (X,Y):=2Y + a1 X + as.

When they do not simultaneously vanish when evaluated at an affine point (x,y) € W, the

affine point is said to be nonsingular. This is implemented slightly confusingly as follows. 4

def polynomial : F[X][Y] :=
Y2 +C (CW.a1*X + C W.a3z)*Y - C (X™3 + C W.a2%X"2 + C W.as*X + C W.ap)
def equation (x y : F) : Prop := (W.polynomial.eval (C y)).eval x = O

def polynomial_X : F[X][Y] C (C W.ap)*Y - C (C 3%X"2 + C (2*W.a)*X + C W.ay)
def polynomial_ Y : F[X][Y] := C (C 2)*xY + C (C W.a;*X + C W.a3)
def nonsingular (x y : F) : Prop :=
W.equation x y A ((W.polynomial X.eval (C y)).eval x # 0O
V (W.polynomial_Y.eval (C y)).eval x # 0)

Here, F[X] [Y] denotes the polynomial ring over the polynomial ring over F, to simulate the
bivariate polynomial ring F[X,Y] over F'. The outer variable Y is denoted by the symbol
Y and the inner variable X is denoted by the constant function C applied to the symbol X,
while actual constants are enclosed in two layers of the constant function C.

» Remark 3. This definition of nonsingularity in terms of partial derivatives is valid and
convenient when the base ring is a field, but over a general commutative ring the same notion
should be characterised locally with a notion of smoothness relative to the base spectrum.

Many properties of Weierstrass curves remain invariant under the aforementioned changes
of variables, and it is often easier to prove results for Weierstrass equations with fewer
terms. For instance, if char(F) # 2, then (X,Y) — (X,Y — 2a;X — 1a3) completes the
square for W(X,Y') and eliminates the XY and Y terms, and if further char(F) # 3, then
(X,Y) — (X — £b2,Y) completes the cube for W (X,Y) and eliminates the X? term as well.

Perhaps a more prominent application is the proof that, for any affine point (z,y) € W,
the nonvanishing of Ay, implies that (z,y) is nonsingular. This statement is easy for
(z,y) = (0,0), since (0,0) € W implies that ag = 0, and (0,0) being singular implies that
az = a4 = 0, so that Ay, = 0 by a simple substitution. On the other hand, for any (z,y) € F?,
the change of variables (X,Y) — (X — z,Y — y) merely translates W so that (0,0) gets
mapped to (z,y), so the same statement clearly also holds for (z,y).

lemma nonsingular_zero : W.nonsingular 0 0 <> W.ag = 0 A (W.a3 # 0 V W.as # 0)

lemma nonsingular_zero_of A _ne_zero (h : W.equation 0 0) (hA : W.A # 0) :
W.nonsingular 0 O

lemma nonsingular_ iff variable_change (x y : F) :
W.nonsingular x y <+ (W.variable_change 1 x O y).nonsingular O O

lemma nonsingular_of_ A _ne_zero {x y : F} (h : W.equation x y) (hA : W.A # 0) :
W.nonsingular x y

In fact, it is also true that Ay # 0 if every point over the algebraic closure is nonsingular
[26, Proposition I11.1.4], but the proof is more difficult and has yet to be formalised.

4 this representation of bivariate polynomials will be explained in Section 4.3
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2.3 Point addition

The set of points on an elliptic curve can be endowed with an addition law defined by a
geometric secant-and-tangent process enabled by Vieta’s formulae. ® This can be easily
described in the Weierstrass model, where a point on W is either of the form (z,y) in the
affine chart Z # 0 and satisfies the Weierstrass equation, or is the unique point at infinity
Ow :=10:1:0] when Z =0. If S € W is a singular point, the same geometric process will
yield P+ S = S = S 4 P for any other point P € W, so it necessitates considering only
nonsingular points on W to obtain a group [26, Section II1.2]. Note that if W is an elliptic
curve, then all points are nonsingular by nonsingular_of_A_ne_zero.
inductive point

| zero

| some {x y : F} (h : W.nonsingular x y)

namespace point

Here, zero refers to Oy and some refers to an affine point on W. Note that a proof that
an affine point (z,y) € W is nonsingular already subsumes the data of the coordinates
(x,y) € F? in its type, so such a point is constructed by giving only the proof.

» Remark 4. The set of points defined here will later be shown to form an abelian group
under this addition law, but the presence of division means that the base ring needs to be a
field. Over a general commutative ring R these should be replaced with scheme-theoretic
points Spec(R) — E, and the elliptic curve acquires the structure of a group scheme.

In this model, the identity element in the group of points is defined to be Oy € W.

instance : has_zero W.point := (zero)

Here, the instance of has_zero allows the notation 0 instead of zero.

Given a nonsingular point P € W, its negation —P is defined to be the unique third
point of intersection between W and the line through Oy and P, which is vertical when
drawn on the affine plane. Explicitly, if P := (z,y), then —P := (x,0,(y)), where

O’X(Y) =-Y — (alX —|—CL3)

is the negation polynomial, which gives a very useful involution of the affine plane.

def neg_polynomial : F[X][Y] := -Y - C (C W.a1*X + C W.a3)
def neg Y (x y : F) : F := (W.neg_polynomial.eval (C y)).eval x

Here, neg_Y is defined in terms of neg_polynomial for clarity, but its actual definition
is written out as -y - C (C W.a;*x + C W.as). This is merely to avoid requiring the
noncomputable tag, since polynomial operations are currently noncomputable in mathlib.

To define negation, it remains to prove that the negation of a nonsingular point on W is
again a nonsingular point on W, but this is straightforward.

» Lemma 5. If (z,y) € W is nonsingular, then (x,0,(y)) € W is nonsingular.

Proof. Since (x,y) € W, verifying that W(x,y) = W(x,04(y)) gives (z,0,(y)) € W as well.
Now assume that Wy (x,0,(y)) = 0. It can be checked that y = 0, (y), so Wy (z,y) = 0 as
well. Since (x,y) is nonsingular, Wx (x,y) # 0, so Wx (z,0,(y)) # 0 as well. <

5 if a cubic polynomial has two roots in a field, then its third root is also in the field
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Lemma 5 is nonsingular_neg, which maps a proof that (z,y) € W is nonsingular to a
proof that —(z,y) € W is nonsingular. This leads to the definition of negation.

def neg : W.point — W.point
| 0 =0
| (some h) some (nonsingular_neg h)

instance : has_neg W.point := (neg)

Here, the instance of has_neg allows the notation -P instead of neg P.

Given two nonsingular points Py, P € W, their sum P; + P, is defined to be the negation
of the unique third point of intersection between W and the line through P; and Ps, which
again exists by Bézout’s theorem. Explicitly, let Py := (z1,y1) and P := (22, y2).

If 21 = 29 and y1 = 04, (y2), then this line is vertical and Py + P5 := Oy .

If 1 = 9 and y; # 04, (y2), then this line is the tangent of W at P; = P,, and has slope

0 —Wx (1,91)
o Wy (z1,m)
Otherwise 1 # 2, then this line is the secant of W through P; and Ps, and has slope
0= Y1 — Y2 '
Xr1 — T2

In the latter two cases, the line polynomial
)‘(X) = >‘5E17y1’5(X) =X — 371) + Y1

can be shown to satisfy A(x1) = y1 and A(x2) = yo, so that xz; and x5 are two roots of
the addition polynomial W (X, A\(X)), obtained by evaluating W (X,Y") at A(X), where
W(X,Y) is viewed as a polynomial over F[X]. In an attempt to reduce code duplication for
the different cases, these accept an additional parameter L for the slope £.

def line_polynomial (x y L : F) : F[X] :=CL * (X-Cx) +Cy
def add_polynomial (x y L : F) : F[X] := W.polynomial.eval (line_polynomial x y L)

The X-coordinate of P; + P is then the third root of W (X, A(X)), so that

WX, M(X)) = —(X = 22)(X — 2)(X — ). (1)
By inspecting the X2 terms of W (X, A\(X)), this third root can be shown to be

x5 =0+ al —ay — 1 — T2,
so the Y-coordinate of —(P; + P) is

Y3 = A(z3),
and that of P; + P5 is

Y3 1= 04, (Y3)-

These correspond to the coordinate functions add_X, add_Y’, and add_Y respectively.

def add_X (x3 xo L : F) : F := L2 + W.a1*L - W.as - X1 - Xo
def add_Y’ (x1 x2 y1 L : F) : F := (line_polynomial x; y; L).eval (W.add_X x; x2 L)
def add_Y (x1 x2 y1 L : F) : F := W.neg Y (W.add_X x; x2 L) (W.add_Y’ x1 x2 y1 L)

Here, add_Y” is defined in terms of line_polynomial and add_X, but in actuality it is again
written out in the evaluated form C L*(X - C x3) + C y; to avoid the noncomputable tag.
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The slope itself is defined as a conditional over the three cases, and since two of them
involve division, this is the first occasion where W needs to be defined over a field F'.

variables {F : Type} [field F] (W : weierstrass_curve F)

def slope (x1 X2 y1 y2 : F) : F :=
if hx : x; = x2 then
if hy : y1 = W.neg_Y x2 y2 then O
else (3*x172 + 2xW.az*x; + W.ay - W.a1*y1)/(y1 - W.neg_Y x1 y1)
else (y1 - y2)/(x1 - x2)

Note that slope returns the junk value of 0 € F' when the slope is vertical. This practice of
assigning a junk value is common in mathlib to avoid excessive layers of option, and any
useful result proven using such a definition would include a condition so that this junk value
will never be reached. In the case of slope, this is the implication 1 = 22 — y1 # 04, (y2),
which holds precisely either when x; # xo, or when z1 = x5 but (z1,y1) # — (22, y2).

variables {x1 x2 y1 y2 : F} (hxy : x1 = X2 — y1 # W.neg Y X2 y2)

example (hx : X1 # X2) : X1 = X2 — y1 # W.neg Y x2 y2 := A h, (hx h).elim
example (hy : y1 # W.neg Y X2 y2) : X1 = X2 — y1 # W.neg Y x3 y2 := A _, hy

Here, the examples return proofs of hxy assuming x; # x2 and y1 # 0., (y2) respectively.
They are illustrated here for clarity, but they do not exist in the actual Lean code since their
term mode proofs are short enough to be inserted directly whenever necessary.

To define addition, it remains to prove that the addition of two nonsingular points on W
is again a nonsingular point on W. This is slightly lengthy but purely conceptual.

» Lemma 6. If (x1,y1), (x2,y2) € W are nonsingular, then (x3,ys) € W is nonsingular.

Proof. By nonsingular_neg, it suffices to prove that (xs, A(z3)) = (z3,¥4) is nonsingular,
since (3, A(z3)) € W is clear. Taking derivatives of both sides in (1) yields

W (X, MX))+0- Wy (X, MNX)) = —((X —21) (X —22)+(X —21)(X —23) +(X —22) (X —23)),

which does not vanish at X = z3, so that W(X,\(X)) has at least one nonvanishing
partial derivative, unless possibly when x3 € {z1,22}. The latter implies that (x3, A(z3)) €
{£(x1,91), £(x2,y2)}, but these are nonsingular by assumption or by nonsingular_neg. <

Lemma 6 is nonsingular_add, which accepts a proof that (x1,y;) € W is nonsingular,
a proof that (x2,y2) € W is nonsingular, and a proof of hxy, and returns a proof that
(z1,y1) + (2,y2) € W is nonsingular. This finally leads to the definition of addition.

def add : W.point — W.point — W.point

| O P = P
| P 0 := P
| (@some _ _ _ x1 y1 h1) (@some _ _ _ x2 y2 ha) :=

if hx : x; = x9 then
if hy : y1 = W.neg_Y x2 y2 then O
else some (nonsingular_add h; hy (A _, hy))
else some (nonsingular_add h; hy (A h, (hx h).elim))

instance : has_add W.point := (add)

Here, the instance of has_add allows the notation P; + Ps instead of add P; P5. The
annotation @ for some simply gives access to all implicit variables in its definition, particularly
x1,T2,Y1,y2 € F that is necessary to even state the conditions hx and hy.
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3 Group law

Let W be a Weierstrass curve over a field F', and denote its set of nonsingular points by
W(F). The addition law defined in the previous section is in fact a group law.

» Proposition 7. W (F) forms an abelian group under this addition law.

The axioms of this group law are mostly straightforward, typically just by examining
the definition for each of the five cases. For instance, the lemma add_left_neg that says
—P + P = Oy is immediate, since —Ow + Oy = Ow by definition, and —(z,y) + (z,y) =
(z,04:(y)) + (z,y) = Ow for any (z,y) € W(F') by the first case of affine addition.

On the other hand, associativity is far from being straightforward. A notable algebro-
geometric proof involves canonically identifying W (F) with its Picard group, a natural
geometric construction associated to W with a known group structure, and proving that
this identification respects the addition law on W [26, Proposition I11.3.4]. This is generally
regarded as the most conceptual proof, as it explains the seemingly arbitrary secant-and-
tangent process, and more crucially because it works for any char(F’).

The proof in this paper is an analogue of this proof, but the arguments involved are
purely algebraic without the need for any geometric machinery, in contrast to the typical
algebro-geometric proof. The main idea, originally inspired by Buzzard’s post on Zulip [6]
and Chapman’s answer on MathOverflow [8], is to construct an explicit function to_class
from W (F') to the ideal class group CI(R) of an integral domain R associated to W, then
to prove that this function is injective and respects the addition law on W. This is a
construction in commutative algebra whose definition will now be briefly outlined, but for a
more comprehensive introduction to ideal class groups motivated by arithmetic examples,
and especially specific details of their formalisation in mathlib, the reader is strongly urged
to consult the original paper by Baanen, Dahmen, Narayanan, and Nuccio [3, Section 2].

3.1 Ideal class group of the coordinate ring

Given an integral domain R with a fraction field K, a fractional ideal of R is simply a
R-submodule I of K such that x - I C R for some nonzero x € R. This generalises the
notion of an ideal of R, since any ideal is clearly a fractional ideal with = = 1, so ideals are
sometimes referred to as integral ideals to distinguish them from fractional ideals.

In mathlib, this is expressed as a transitive coercion from ideal to fractional_ideal.

instance : has_coe_t (ideal R) (fractional_ideal R’ (fraction_ring R))

Here, R is the submonoid of non-zero-divisors of R, and fraction_ring returns the canonical
choice of a fraction field of R obtained by adjoining inverses of elements of R°. Since R is an
integral domain in this case, all nonzero elements of R become invertible in its fraction field.

Analogously to integral ideals, the set of fractional ideals of R forms a commutative
semiring under the usual operations of addition and multiplication for submodules. A
fractional ideal I of R is invertible if I - J = R for some fractional ideal J of R, and the
subset of invertible fractional ideals of R forms an abelian group under multiplication. An
important class of invertible fractional ideals are those generated by a nonzero element of K,
called principal fractional ideals. The ideal class group CI(R) of R is then defined to
be the quotient group of invertible fractional ideals by principal fractional ideals.

6 see Section 4.2 for alternative proofs
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In mathlib, a class_group element is constructed from an invertible fractional_ideal
via class_group.mk, and this association is a monoid_hom that respects multiplication.

def class_group.mk : (fractional_ideal R® K) X —=* class_group R := ...

Here, it is worth noting that Cl(R) is typically defined only when R is Dedekind, namely
when every nonzero fractional ideal is invertible, and in such domains, class_group.mk0
constructs a class_group element directly from a nonzero fractional_ideal.

The integral domain in consideration is the coordinate ring of W, that is

FIW]:= FIX,Y]/(W(X,Y)),

whose fraction field is the function field F(W) := Frac(F[W]) of W.

Q@[derive comm_ring] def coordinate_ring : Type := adjoin_root W.polynomial
abbreviation function_field : Type := fraction_ring W.coordinate_ring

namespace coordinate_ring

Here, W(X,Y) is viewed as a quadratic monic polynomial with coefficients in F[X], so
adjoin_root constructs the quotient ring F[W] by adjoining its root Y. The tag derive
comm_ring automatically generates a instance of comm_ring present in adjoin_root, *
while abbreviation is just a def that inherits every instance from fraction_ring.

A priori, F[W] is only a commutative ring, but for CI(F[W]) to make sense it needs to
be at least an integral domain, which is straightforward from the shape of W (X,Y).

» Lemma 8. F[W] is an integral domain.

Proof. It suffices to prove that W (X,Y) is prime, but F[X,Y] is a unique factorisation
domain since F is a field, so it suffices to prove that W(X,Y') is irreducible. Suppose for a
contradiction that it were reducible as a product of two factors. Since it is a monic polynomial
in Y, the leading coefficients of the two factors multiply to 1, so without loss of generality

W(X,Y) = (Y —p(X)(Y —q(X)),

for some polynomials p(X), ¢(X) € F[X]. Comparing coefficients yields
mX +az=—(p(X)+q(X)), (X’ +a X’ + asX +as) = p(X)q(X),

which cannot simultaneously hold by considering degx (p(X)) and degx (¢(X)). <
Lemma 8 is formalised as an instance of is_domain for W.coordinate_ring. In fact,

F[W] is also Dedekind when Ay # 0, but this will not be necessary in the proof.

» Remark 9. This argument with ideal class groups is essentially an algebraic translation
of the algebro-geometric argument with Picard groups. An invertible fractional ideal on an
integral domain R is equivalent to an invertible sheaf on its spectrum Spec(R), so the Picard
group Pic(Spec(F[W])) of invertible sheaves is precisely the ideal class group C1(F[W]) of
invertible fractional ideals [20, Example I1.6.3.2]. Note that an invertible R-submodule of
Frac(R) is automatically a fractional ideal of R [14, Theorem 11.6], so the ideal class group
may also be defined purely in the language of invertible submodules.

7 this has a type unification performance issue that will be detailed in Section 4.3
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3.2 Construction of to_class

The function to_class will map a nonsingular affine point (x,y) € W(F') to the class of the
invertible fractional ideal arising from the integral ideal (X — z,Y — y). Defining the integral

ideal explicitly is straightforward, and its associated fractional ideal is obtained by coercion.

def XY_ideal (x : F) (y : F[X]) : ideal W.coordinate_ring :=
ideal.span {adjoin_root.mk W.polynomial (C (X - C x)),
adjoin_root.mk W.polynomial (Y - C y)}

Here, ideal.span constructs an integral ideal generated by the elements of a specified set,
and adjoin_root.mk W.polynomial is the canonical quotient map F[X,Y] — F[W]. Note
also that XY_ideal is defined slightly more generally than described, by allowing the second
argument to be a polynomial in F[X] rather than just a constant.

On the other hand, checking that XY_ideal is indeed invertible is slightly fiddly.

» Lemma 10. For any (z,y) € W(F),
(X =2,V —0ou(y) - (X —2,Y —y) = (X — ).
Proof. Since W (x,y) = 0, there is an identity in F[W] given by
YV =Y —0a(y) = (X —2)(X? + (z + a2) X + (2% + azz + as) — arY),
so the required equality may be reduced to (X — z) - I = (X — z) in F[X,Y], where
I'=(X—-2,Y —y,Y —0,(y), X* + (x + a2) X + (2° + asz + as) — a1Y).
Since (z,y) is nonsingular, either Wy (z,y) # 0 or Wy (x,y) # 0, but
Wx(z,y) = —(X+2z+a2)(X —2) + a1 (Y —y) +(X*+ (z+a2) X + (2% +asz +as) —arY),
and Wy (z,y) = —(Y —y) + (Y — 04(y)), so I = F[X,Y] in both cases. <

» Remark 11. Geometrically, Lemma 10 says that the line X = x intersects W at Oy and at
precisely two affine points (x,y) and (z,0,(y)), counted with multiplicity if they are equal.

Lemma 10 is XY_ideal_neg_mul, and it follows that the fractional ideal (X —z,Y —y) has
inverse (X —x,Y —0,(y))- (X —2)~!. This is formalised as XY_ideal’_mul_inv, which maps
a proof that (z,y) € W is nonsingular to a proof that the fractional ideal (X —z,Y — y) has
the specified right inverse. Passing this proof to units.mk_of_mul_eq_one then constructs
the invertible fractional ideal of F[W] associated to (X — x,Y — y).

def XY_ideal’ (h : W.nomsingular x y) :
(fractional _ideal W.coordina’ce_ring0 W.function_field) ™ :=
units.mk_of_mul_eq_one _ _ (XY_ideal’_mul_inv h)

Now to_class will be a add_monoid_hom, namely a function bundled with proofs that
it maps zero to zero and respects addition. Its underlying unbundled function W(F) —
CI(F[W]), appropriately named to_class_fun, is defined separately to allow the equation

compiler to generate lemmas automatically used in the proof that to_class respects addition.

def to_class_fun : W.point — additive (class_group W.coordinate_ring)
| 0 := 0
| (some h) := additive.of_mul (class_group.mk (XY_ideal’ h))

Here, additive G creates a type synonym of a multiplicative group G, and the multiplicative
group instance on G is turned into an additive add_group instance on additive G. This
is necessary to bundle to_class as an add_monoid_hom, since mathlib does not have
homomorphisms between an additive group and a multiplicative group by design.

11
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Now to_class_fun maps zero to zero by construction, but proving that it respects
addition requires checking the five cases for add separately. The first two cases are trivial
and the third case follows from XY_ideal_neg_mul, while the last two cases are handled
simultaneously by assuming hxy and checking an identity of integral ideals of F[WW].

» Lemma 12. For any (x1,y1), (x2,y2) € W(F), if x1 = xo implies y1 # 04,(y2), then
<X_$1;Y_y1> . <X—$27Y_y2> ) <X—$3> = <X_3737Y_y3> : <Y_)\(X)>7

where (x3,y3) := (x1,y1) + (22, 2).
Proof. In both valid cases of hxy, the line Y = A\(X) contains (z1,y1) and (x2,y2), so
(X =2, Y —y1) = (X =21,V = MX)), (X =22, Y —yp) = (X — 22, Y — MX)).
Furthermore, by (1) and the identity W(X, A\(X)) = (Y — AM(X))(ox(Y) — A(X)) in F[W],
the required equality is reduced to checking that I := (X — x1, X — z2,Y — ox(Y)) satisfies
I- <X - .133> + <Ux(Y) - )\(X)> = <X - .Tg,Y - y3>7

where Y — A(X) has been replaced by Y — ox(Y) in I since ox(Y) — A(X) is present as a
summand in the left hand side. By construction, the line Y = A(X) contains (x3, A(z3)), so
the negated line ox(Y) = A(X) contains its negation (3,04, (A(x3))) = (3,¥3). Then

(X — 25, Y — ys) = (X — 25,0x(Y) = A(X)),

so it suffices to check that I = F[W]. Now 21 — 22 = —(X — 1) + (X — 22), so [ = F[W] if
x1 # x2. Otherwise y; # 04, (y1), then there are no common solutions to ¥ = o,,(Y) and
W(z1,Y) =0, so I = F[W] by the Nullstellensatz. Explicitly, this follows from the identity

(1 — 02, (11))% = —(4X7 + (421 + b2) X + (427 + bowy + 2b4))(X — 21) + (Y — 0x(Y))?
in F[W], since W (z1,y1) = 0. <

» Remark 13. Geometrically, the line Y = A(X) intersects W at precisely three affine points
(x1,91), (x2,92), and (x3,04,(y3)), which translates to the identity of integral ideals

(X =21, Y —y1) (X =22, Y —92) - (X — 23, Y — 045 (y3)) = (Y — A(X)). (2)

The identity in Lemma 12 is then deduced by multiplying (2) with the identity in Lemma 10
and cancelling (X — z3,Y — 0,,(y3)) from both sides. Note that Lemma 12 does not need
the affine points to be nonsingular, while directly proving (2) does.

Lemma 12 is XY_ideal_mul_XY_ideal, and under these hypotheses, it follows immedi-
ately that the invertible fractional ideals (X —z1,Y —y1) and (X —z4, Y —y2) multiply to (X —
x3,Y —ys) as classes in C1(F[W]), which along with XY_ideal_neg_mul say that to_class
respects addition. The actual Lean proof is slightly technical, using the new library lemmas
class_group.mk_eq_one_of_coe_ideal and class_group.mk_eq_mk_of_coe_ideal to re-
duce the equality between ideal classes arising from integral ideals to an equality between
their underlying integral ideals up to multiplication by principal integral ideals, so the tactic
mode proof below will only be sketched as a comment for the sake of brevity.

@[simps] def to_class : W.point —+ additive (class_group W.coordinate_ring) :=

{ to_fun := to_class_fun,
map_zero’ := rfl,
map_add’ := /- Split the cases for P; + Pp. If Py = 0 or Py = 0, simplify.

Otherwise P; = (x1, y1) and Py = (%2, y2).
If x; = x2 and y1 = W.neg_Y x2 y2, use XY_ideal_neg mul.
Otherwise use XY_ideal mul XY ideal. -/ }
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3.3 Injectivity of to_class

Injectivity is the statement that P, = P» if to_class of P; equals to_class of P, for any
Py, P, € W(F), but a simple variant of add_left_neg shows that —P; + P, = 0 precisely
when P; = P». Since to_class is a add_monoid_hom, injectivity is equivalent to showing that
to_class of P is trivial implies P = 0 for any P € W(F'). In other words, it suffices to show
that the integral ideal (X — x,Y — y) is never principal for any affine point (z,y) € W(F).
The approach taken circles around the fact that F[W] is a free F[X]-algebra of finite rank,
so it carries the notion of a norm Nm : F[W] — F[X]. If f € F[W], then Nm(f) € F[X]
may be given by the determinant of left multiplication by f as an F[X]-linear map, which is
most easily computed by exhibiting an explicit basis {1,Y} of F[W] over F[X].
lemma monic_polynomial : W.polynomial.monic
lemma nat_degree_polynomial : W.polynomial.nat_degree = 2

def basis : basis (fin 2) F[X] W.coordinate_ring :=
(adjoin_root.power_basis’ W.monic_polynomial) .basis.reindex
(fin_congr W.nat_degree_polynomial)

Here, adjoin_root.power_basis’ returns the canonical basis of powers {Y* : 0 < i <
degy (W(X,Y))}, given the proof monic_polynomial that W (X,Y') is monic. This is a type
indexed by the finite type with degy (W (X,Y)) elements, which can be reindexed by the ca-
nonical finite type with two elements, since degy- (W (X,Y)) = 2 by nat_degree_polynomial.

With this basis, any element f € F[IW] may be expressed uniquely as f = p(X) 4+ ¢(X)Y
with p(X), ¢(X) € F[X], and the degree ® of its norm can be computed directly.

» Lemma 14. For any p(X), ¢(X) € F[X],
deg x (Nm(p(X) + ¢(X)Y)) = max(2degyx (p(X)), 2degx (¢(X)) + 3).
Proof. Let f:=p(X)+ ¢(X)Y. In F[W] with the basis {1,Y} over F[X],
_ p(X) q(X) >
N = det
Y00 ) 6 4t X ) 00— ) o1 )
= p(X)? = p(X)g(X) (a1 X + a3) — q(X)*(X? + as X? + as X + ag).
Let p := degx (p(X)) and ¢ := degy (¢(X)). Then
degx (p(X)?) =2p,  degx(q(X)*(X® + azX? + asX + ag)) = 2q +3,
degy (p(X)g(X)(a1 X +a3)) <p+qg+ 1.
If p < g+ 1, then both p+ ¢+ 1 < 2¢+ 3 and 2p < 2¢ + 3, so degyx (Nm(f)) = 2¢ + 3.
Otherwise ¢ + 1 < p, then both p+ ¢+ 1 < 2p and 2¢ + 3 < 2p, so degy (Nm(f)) = 2p. <«

Lemma 14 is norm_smul_basis, and it follows by considering cases that degy Nm(f) # 1
for any f € F[W], which is formalised as nat_degree_norm_ne_one.
» Remark 15. Geometrically, Nm(f) is the order of the pole of the rational function f € F(W)
at Ow. Using the norm allows for a purely algebraic argument for injectivity, which was
inspired from an exercise in Hartshorne that assumes a short Weierstrass model where
char(F) # 2 [20, Exercise 1.6.2]. This was also the last missing step in the whole argument,
as JX only started computing degrees after he saw Borcherds’s solutions to the exercise [5].

On the other hand, this degree is also the dimension of an F-vector space.

8 polynomial.degree where degy (0) := —oo rather than polynomial.nat_degree where degy (0) := 0
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» Lemma 16. For any nonzero f € F[W],

degx (Nm(f)) = dimp (F[W]/(f))-

Proof. In F[W] with the basis {1,Y} over F[X], multiplication by f as an F[X]-linear map
can be represented by a square matrix [f] over F[X], which has a Smith normal form M[f]N,
a diagonal matrix with diagonal entries some nonzero p(X), ¢(X) € F[X], for some invertible
matrices M and N over F[X]. Now the quotient by f decomposes as a direct sum

FWI/(f) = FIX]/(p(X)) @ F[X]/(q(X)),

whose dimension as F-vector spaces are precisely degy (p(X)) and degy (¢(X)) respectively.
On the other hand, the determinant of M[f]N is det(M)Nm(f)det(N) = p(X)q(X), so

degx (Nm(f)) = degx (p(X)) + degx (¢(X)),

since the units det(M), det(N) € F[X] are nonzero constant polynomials. <

Lemma 16 is finrank_quotient_span_eq_nat_degree_norm, and crucially uses the
library lemma ideal.quotient_equiv_pi_span to decompose the quotient by (f) into a
direct sum of quotients by its Smith coefficients. It is worth noting that the same argument
clearly works more generally by replacing F[W] by any F[X]-algebra with a finite basis. The
proof of the injectivity of to_class then proceeds by contradiction.

» Lemma 17. The function W(F) — Cl(F[W]) is injective.
Proof. Let (z,y) € W(F). It suffices to show that (X —z,Y —y) is not principal, so suppose
for a contradiction that it were generated by some f € F[W]. By Lemma 16,

degx (Nm(f)) = dimp(F[W]/(f)) = dimp(FW]/(X —2,Y —y)).
On the other hand, evaluating at (X,Y’) = (z,y) is a surjective homomorphism F[X,Y] — F
with kernel (X — 2,Y — y), and this contains the element W (X,Y) since W(z,y) = 0.
Explicitly, this follows from the identity in F[X,Y] given by

WOXY) = (g — (X2 4 (24 @)X + (2 + ase +a0))(X —2) + (y — ox (V)Y —1).
Thus by the first and third isomorphism theorems, there are F-algebra isomorphisms
so degx (Nm(f)) = dimp(F') = 1, which contradicts nat_degree_norm_ne_one. <

» Remark 18. Lemma 17 can also be proven without the Smith normal form, by considering
the ideal generated by the norms of elements in (X — z,Y — y) for (x,y) € W(F), namely

I'={(X —2)*, (X =2)((Y =9) + (ox (V) =), (Y =) (ox(Y) = v)).

On one hand, as an integral ideal in F[W], it can be shown that I is generated by the linear
polynomial X — z. On the other hand, if (X — x,Y — y) were generated by some f € F[W],
then its ideal norm [ is generated by Nm(f), which cannot be linear by Lemma 14.

Lemma 17 is to_class_injective, and allows the proofs of commutativity and associ-
ativity in C1(F[W]) to be pulled back to W (F), thus proving Proposition 7.

lemma add_comm (P; Py : W.point) : Py + Py = Py + Py
lemma add_assoc (P; P2 P3 : W.point) : (Py + P2) + P3 = Py + (Py + P3)

instance : add_comm_group W.point :=
(zero, neg, add, zero_add, add_zero, add_left_neg, add_comm, add_assoc)
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4 Discussion

4.1 Related work

As aforementioned, formalising the group law of an elliptic curve E over a field F' is not novel,
and has been done in several theorem provers to varying extents. Friedl (1998) [16] gave a
computational proof in the short Weierstrass model, leaving some of the heavy computations
for associativity to CoCoA as a trusted oracle, and his argument was subsequently formalised
by Théry (2007) [28] in Coq. Fox, Gordon, and Hurd (2006) [15] formalised the addition law
in the full Weierstrass model in HOL, but did not prove associativity. Hales and Raya (2020)
[18] formalised a computational proof in Isabelle, but worked in the alternative Edwards
model, which also fails to be an elliptic curve when char(F) = 2.

The first known formalisation of an algebro-geometric proof was done by Bartzia and
Strub (2014) [4], who also worked in the short Weierstrass model. In 3,500 lines of Coq,
they formalised the geometric notion of a Weil divisor ? of a rational function f € F(FE) to
define the degree-zero Weil divisor class group PicO(E), which is isomorphic to the Picard
group Pic(Spec(F[E])) since E is nonsingular [20, Corollary 11.6.16]. In another 6,500 lines
of Coq, they constructed an analogous bijection between PicO(E) and the points of F over
the algebraic closure, but their argument is a simplification of the typical conceptual proof
via the Riemann—Roch theorem and does not generalise easily to char(F) = 2. In contrast,
the algebraic proof with the ideal class group CI(F[E]) only spans 1,500 lines of Lean 3,
avoiding the geometric theory and reusing much of the well-maintained algebraic libraries.

4.2 Experimental attempts

The entire development process went through several iterations of trial and error, and various
definitions of elliptic curves were proposed in Buzzard’s topic on Zulip. The abstract definition
as in Remark 2 would be ideal, but algebraic geometry in mathlib is at its primitive stages,
where describing properties of scheme morphisms like smoothness or properness, or defining
the genus of a curve, would be a challenge. Since the Weierstrass model is universal over
fields, the general consensus was that proving its equivalence with the abstract definition
should proceed independently from proving theorems under the Weierstrass model.

Unfortunately, proving associativity became a huge issue in this model. The obvious first
course of action is to check the equalities in all possible combinations of cases of addition,
using the field_simp and ring tactics to normalise rational expressions. In doing this, the
number of cases quickly explode, and in the nontrivial cases of affine addition, the polynomial
expressions involved become gargantuan. There are optimisations that could be made to
reduce the number of cases, as coded by Masdeu [23] adapting Friedl’s original argument into
Lean, but a good way to manipulate the expressions remains elusive. In the generic case where
three nonsingular affine points Py, Py, P3 € W(F) are in general position, '* experiments by
DKA with the aid of SageMath suggested that proving (P; + P2) + P3 = Py + (P> + Ps) by
bashing out the algebra would involve polynomials each with tens of thousands of monomials,
which is highly time-consuming in a formal system and definitely infeasible to work out by
hand, despite taking only half a second in SageMath. The ring tactic, which uses proof
generation by normalising to Horner form [17], seems to be an order of magnitude too slow
to work with such expressions, resulting in deterministic timeouts.

9 a formal Z-linear combination of points P € E weighted by the order of vanishing of f at P
10 the affine points P, P2, P3, P1 + P>, P1 + P3, and P> + P53 have pairwise distinct X-coordinates

15



16

The Group Law on Weierstrass Elliptic Curves

The main culprits for the huge polynomials are the XY and Y terms in the Weierstrass
equation, which do not allow even exponents of Y in the expressions to be substituted
with polynomials solely in X. When char(F') # 2, these terms disappear with a change of
variables, reducing the expressions to the computationally feasible range of hundreds of terms,
hence enabling the work by Théry (2007), or a transformation to the Edwards model whose
group law was already formalised by Hales and Raya (2020). In principle, since 2 = 0 when
char(F') = 2, enough multiples of 2 may be cancelled from the expressions until a brute-force
attack becomes feasible, but mathlib currently has no good tactic to do these cancellations
except to manually extract these multiples of 2, such as by rewriting the expressions into the
form p + 2q using ring, which is too slow in the first place, and deleting 2q.

The mathematical literature typically deals with associativity by providing alternative
proofs, in addition to the aforementioned algebro-geometric proof via the Picard group.
One notable method goes via the uniformisation theorem in complex analysis [26, Corollary
VI.5.1.1], but mathlib also lacks much of the complex-analytic machinery to prove it, and
this approach is only valid for char(F) = 0 via the Lefschetz principle. Another approach
uses the Cayley—Bacharach theorem in projective geometry [7, Lemma 7.1], which proves
associativity generically by a dimension counting argument. By continuing on Masdeu’s
branch, this approach seemed viable, but required redefining Weierstrass curves in projective
coordinates and a convenient way to switch back to affine coordinates via dehomogenisation.
Furthermore, the argument fails in a less generic case with a repeated point, which could
be fixed by introducing an ad-hoc notion of intersection multiplicity between a line and a
cubic, as suggested by Stoll. DKA started refactoring the definitions in an attempt at this
approach, but ultimately switched to the current approach when proposed by JX. Note that
an explicit exposition of a version of this argument can also be found in Nuida (2021) [24].

4.3 Implementation issues

Bivariate polynomials A bivariate polynomial in X and Y over a commutative ring R
is typically represented in mathlib by a finitely supported function ({0,1} — N) — R,
associating a function f: {0,1} — N to the coefficient of X 7Oy () This representation is
very cumbersome when performing concrete manipulations, such as those in Lemma 10 and
Lemma 12, since explicit functions {0,1} — N are needed to obtain coefficients.

In contrast, a polynomial in X over R is represented in mathlib by a finitely supported
function N — R, associating a natural number n € N to the coefficient of X™. A polynomial
in Y with coefficients polynomials in X performs the same function as a bivariate polyno-
mial in X and Y, but the coefficient of X™Y™ is obtained by sequentially supplying two
natural numbers m,n € N. This has the additional advantage of aligning with the API for
adjoin_root, which gives a power basis needed in the proof of injectivity.

This representation does have the slightly awkward problem that X is denoted by
C X while Y is denoted by X, but this is easily fixed by introducing notation Y := X
and notation R[X][Y] := polynomial (polynomial R). A more serious drawback is that
existing results about multivariate polynomials, such as the Nullstellensatz, do not carry over
to this representation, so explicit proofs with polynomial identities are sometimes necessary,
namely in the proofs of Lemma 10, Lemma 12, and Lemma 17. Another issue is that the
partial derivative with respect to X is obtained by applying the polynomial.derivative
linear map to each coefficient of the polynomial in Y, but the current polynomial.map only
accepts a ring homomorphism, which explains why the partial derivatives polynomial_X and
polynomial_Y were defined manually instead. In light of this, it has been suggested that
polynomial.map should be refactored to accept set-theoretic functions instead.
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Performance issues In the original definition of to_class, it was observed that the function
class_group.mk, when applied to an invertible fractional ideal of coordinate_ring, took a
while to compile. Baanen diagnosed this problem and proposed the following solution [1].

local attribute [irreducible] coordinate_ring.comm_ring

Although coordinate_ring is marked as irreducible, its derive comm_ring tag generates
a reducible instance of comm_ring. In certain circumstances this is extremely slow, because
the number of times an instance gets unified grows exponentially with its depth due to a
lack of caching, and Baanen’s solution was to force its comm_ring instance to be irreducible
locally whenever necessary. Note that this should have been fixed in Lean 4, and the port of
mathlib to Lean 4 is expected to finish in a few months’ time.

There are other performance issues that led to timeouts during development, but they
were fixed by generalising the statements so they involve less complicated types.

Proof automation The proofs of many basic lemmas often reduce to checking an equality
of two polynomial expressions, such as in Lemma 5 and Lemma 6, but equality often holds
only under some local hypotheses. Rather than rewriting these into the goal and applying
the ring tactic, it is convenient to use linear_combination, a newly-developed tactic that
subtracts a linear combination of known equalities from the goal, before applying ring.
When several rewrite lemmas are often used together, it is also convenient to write
a custom tactic to chain them. For instance, the evaluation map eval on a polynomial

expression is often propagated inwards, so grouping the lemmas allows for a single tactic call.

meta def eval_simp : tactic unit :=
‘[simp only [eval_C, eval_X, eval_neg, eval_add, eval_sub, eval_mul, eval_pow]]

4.4 Future projects

Formalising the group law opens the doors to an expansive array of possible further work.

An immediate project would be to enrich the API for nonsingular points by adding basic
functorial properties with respect to a base change to a field extension K/F. For instance,
this could be defining the induced map E(F') — E(K), or if K/F' is Galois, computing the
subgroup of E(K) invariant under the action of Gal(K/F) to be precisely E(F).

It is worth noting the two ongoing projects by each of the two authors. DKA is formalising
an inductive definition of division polynomials to understand the structure of the n-torsion
subgroup E[n] to compute the structure of the ¢-adic Tate module Jm E[¢"], while JX is
formalising a proof that the reduction map F(K) — E(R/m) is a group homomorphism for
a discrete valuation ring R with fraction field K and maximal ideal m.

In the longer run, one could explore the rich arithmetic theory over specific fields. Once
the theory of local fields is sufficiently developed in mathlib, one could define the formal
group of an elliptic curve, classify its reduction types, or state Tate’s algorithm. These will
be useful for the global theory, where one could define the Selmer and Tate—Shafarevich
groups, give a Galois cohomological proof of the Mordell-Weil theorem, or state the full
Birch and Swinnerton-Dyer conjecture. Over a finite field, one could verify the correctness
of primality and factorisation algorithms as well as cryptographic protocols, or prove the
Hasse—Weil bound or the Weil conjectures for elliptic curves.

Ultimately, a long term goal would be to redefine elliptic curves in mathlib as in Remark 2
and prove Proposition 1, but this will require a version of the Riemann—Roch theorem, whose
proof will require a robust theory of sheaves of modules and their cohomology.
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