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Abstract

We prove an analogue of Deligne’s period conjecture for the special
value of the L-function of an abelian variety over a global function field
twisted by an Artin representation. We illustrate this in action for an
example of an elliptic curve twisted by a Dirichlet character.

Deligne’s period conjecture is an abstract statement on the special value
of the L-function associated to a pure motive with a critical Hodge structure
[Del79, Definition 1.3]. Specifically, he conjectures that the L-value is equal to
the determinant of a certain period map between its Betti and de Rham realisa-
tions, up to non-zero multiples in a number field [Del79, Conjecture 2.8]. This
is known for Artin L-functions over Q [Del79, Proposition 6.7], and has rami-
fications for the Birch–Swinnerton-Dyer conjecture for abelian varieties over Q
[Del79, Section 4], with numerical evidence for L-functions associated to Jaco-
bians of smooth projective curves over Q [ECW24, Conjecture 1.1].

In the context of the L-function L(A, τ, s) of an abelian variety A over a num-
ber field K twisted by an Artin representation τ over K, which appear in equiv-
ariant refinements of the Birch–Swinnerton-Dyer conjecture [BC24, Conjecture
3.3], Deligne’s period conjecture translates to a statement on the algebraicity
and Galois equivariance of L(A, τ, 1) normalised by periods [Eva21, Proposition
4.3.8]. This remains largely open in general, but the case of an elliptic curve
over Q twisted by Artin representations that factor through a false Tate curve
extension, such as the trivial representation and primitive Dirichlet characters,
is a consequence of the modularity theorem [BD07, Theorem 4.2].

When A is an abelian variety over a global function field K, the works of
Grothendieck [Gro95, Theorem 5.1] and Deligne [Del73, Theorem 9.3] show
that L(A, τ, s) is already a rational function satisfying a globally compatible
functional equation, so that the aforementioned normalisations by periods are
unnecessary. This paper presents a short proof of the analogue of Deligne’s
period conjecture in this context, which is stated in Theorem 2. To this end,
some notational conventions for the formalism of ℓ-adic representations over
local fields and global function fields will first be established. Throughout, ℓ
will be a fixed prime of Q, and Vℓ will be a finite-dimensional vector space over
a finite extension of Qℓ, whose choice will not be essential.
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Notation 1. Let F be a non-archimedean local field with residue characteristic
p. Let IF denote the inertia subgroup of its Weil group WF , and let FrF denote
the inverse of any choice of Frobenius element in WF . For ℓ ̸= p, an ℓ-adic
representation over F is a continuous homomorphism ρ : WF → GL(Vℓ). Its
Euler factor is the inverse characteristic polynomial

LF (ρ, T ) := det(1− T · FrF | ρIF ) ,

where ρIF is the subrepresentation of ρ invariant under IF .
Now let K be the global function field of a smooth proper geometrically

irreducible curve C of genus gC over a finite field Fq with absolute Galois group
GK . For each place v of K, let Kv denote its completion, and let deg v denote its
residue class degree. For ℓ ∤ q, an ℓ-adic representation over K is a continuous
homomorphism ρ : GK → GL(Vℓ). Its formal L-series is the infinite product

L(ρ, T ) :=
∏
v

1

LKv (ρ, T
deg v)

,

which is a priori only a formal product. Its L-series L(ρ, s) is simply L(ρ, q−s),
and let L(n)(ρ, s) denote the n-th derivative of L(ρ, s) for all n ∈ N. Let fρ denote
the Artin conductor of ρ, and let deg fρ denote its degree as a Weil divisor on
C. Finally, let Gg

K denote the geometric Galois group, namely the kernel of the

natural restriction from GK to the absolute Galois group of Fq, and let ρG
g
K

denote the subrepresentation of ρ invariant under Gg
K .

The key example of an ℓ-adic representation over K will be the first ℓ-adic
cohomology group ρA := H1

ét(A,Qℓ) of an abelian variety A over K, which is
independent of ℓ [GR72, Theorem 4.3], so ℓ is suppressed from notation. Another
example is an Artin representation, namely a continuous homomorphism τ :
GK → GL(V ), where V is a finite-dimensional vector space over a number
field equipped with the discrete topology, viewed as an ℓ-adic representation
over K by some embedding Q ↪→ Qℓ. The relevant notions over F are defined
analogously. Finally, let L(n)(A, τ, s) denote L(n)(ρA ⊗ τ, s) for all n ∈ N.

For an Artin representation τ , let Q(τ) denote the number field generated by
the values of tr(τ), and let τσ denote the representation with character σ ◦ tr(τ)
for any σ ∈ GQ. If (vi)i is a basis of τ over Q, and (aij) is the matrix of g ∈ GK

with respect to this basis, then (vσi )i is a basis of τσ over Q, and the matrix of
g with respect to this basis is (aσij) [Eva21, Section 2.1.4].

The main result of this paper is as follows.

Theorem 2. Let A be an abelian variety over a global function field K,
and let τ be an Artin representation over K. Then L(n)(A, τ, 1) ∈ Q(τ) and
L(n)(A, τ, 1)

σ
= L(n)(A, τσ, 1) for any σ ∈ GQ, for all n ∈ N.

It turns out that the same argument applies to Artin L-series.

Theorem 3. Let τ be an Artin representation over K. Then L(n)(τ, 1) ∈ Q(τ)
and L(n)(τ, 1)

σ
= L(n)(τσ, 1) for any σ ∈ GQ, for all n ∈ N.
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In what follows, a stronger result on the algebraicity of formal L-series will be
proven, which clearly implies the same for all derivatives of L-series, by replacing
T with q−s. To this end, for any field F with automorphism group G, define an
action of G on the ring of formal power series F[[T ]] by( ∞∑

n=0

anT
n

)g

:=

∞∑
n=0

agnT
n, g ∈ G.

Evaluating such a power series at an element f ∈ F does not give
∑∞

n=0 a
g
nf

n

in general, due to potential convergence issues, but the following shows that it
does whenever the power series happens to be a rational function.

Lemma 4. Let F be a field, and let P (T ) ∈ F[[T ]] be a power series such that
P (T ) = R(T ) /Q(T ) for some power series Q(T ) ∈ F[[T ]] and some polynomial
R(T ) ∈ F[T ]. Then P (T )

σ
= R(T )

σ
/Q(T )

σ
.

Proof. Since R(T ) is a polynomial, it suffices to show that (P (T )Q(T ))
σ

=
P (T )

σ
Q(T )

σ
. Let Pn and Qn denote the coefficients of the power series P (T )

and Q(T ) respectively for all n ∈ N, so that the equality becomes

∞∑
n=0

( ∑
i+j=n

PiQj

)σ

Tn =

∞∑
n=0

Pσ
n T

n ·
∞∑

n=0

Qσ
nT

n.

This is clear since
∑

i+j=n PiQj is a finite sum.

This is a property inherited by the formal L-series of a general ℓ-adic rep-
resentation over a global function field. Furthermore, if it has no geometric
invariants, its formal L-series is in fact a polynomial.

Proposition 5. Let ρ be an ℓ-adic representation over a global function field
K = Fq(C) that is unramified almost everywhere. Then L(ρ, T ) ∈ Qℓ(T ).

Furthermore, if ρG
g
K = 0, then L(ρ, T ) ∈ Qℓ[T ] of degree

degL(ρ, T ) =(2gC − 2) dim ρ+ deg fρ.

Proof. This follows the sketch of an argument in Ulmer’s notes [Ulm11, Lecture
4, Theorem 1.4.1], but it is repeated here with references to Milne’s book. There
is an equivalence of categories between continuous ℓ-adic representations over
K that are unramified on an open set U of C and ℓ-adic sheaves that are lisse
on U [Mil80, Chapter V, Section 1]. Let ι : U ↪→ C be any open set at which ρ
is unramified, and let Fρ be its associated ℓ-adic sheaf that is lisse on U , whose
direct image along ι induces étale cohomology groups Hi := Hi

ét(C, ι∗Fρ) of the
base change C of C to Fq. Now the Grothendieck–Lefschetz trace formula for
ℓ-adic sheaves [Mil80, Chapter VI, Theorem 13.4] says that for all n ∈ N,

∑
v∈C(Fqn )

tr(FrnKv
| ρIKv ) =

2∑
i=0

(−1)
i · tr(Frnq | Hi) ,
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where Frq is the Frobenius in Fq. Dividing both sides by n and exponentiating
their generating functions, this equality rearranges to

∏
v

exp

∞∑
m=1

tr(FrmKv
| ρIKv )

Tm deg v

m
=

2∏
i=0

exp

( ∞∑
n=1

tr(Frnq | Hi)
Tn

n

)(−1)i

.

An identity in linear algebra [Mil80, Chapter V, Lemma 2.7] shows that

exp

∞∑
m=1

tr(FrmKv
| ρIKv )

Tm deg v

m
=

1

det(1− T deg v · FrKv | ρIKv )
,

for each place v of K, and that

exp

∞∑
n=1

tr(Frnq | Hi)
Tn

n
=

1

det(1− T · Frq | Hi)
.

for i = 0, 1, 2. Thus the left hand side becomes L(ρ, T ), while the right hand
side expresses it as an alternating product of polynomials det(1− T · Frq | Hi),
which proves the first statement. For the second statement, note that

H0 = H0
ét(U,Fρ) ∼= ρG

g
K ,

by definition, and Poincaré duality [Mil80, Chapter V, Proposition 2.2(c)] gives

H2 ∼= H0
ét(C, ι∗F∨

ρ (1))
∨
= H0

ét(U,F∨
ρ (1))

∨ ∼=(ρ∨(1)
Gg

K )
∨
= 0,

so that L(ρ, T ) ∈ Qℓ[T ]. Its degree is precisely given by the Grothendieck–Ogg–
Shafarevich formula [Mil80, Chapter V, Theorem 2.12].

In particular, L(ρ, T ) is well-defined at T = q−1 and respects the action of
automorphisms of Qℓ whenever its denominator does not vanish.

Remark 6. When ρ is the ℓ-adic representation associated to an elliptic curve,
Shioda gave an alternative description of L(ρ, T ) in terms of its associated el-
liptic surface E [Shi92, Theorem 4]. When E has at least one singular fibre, he
showed that L(ρ, T ) is in fact a polynomial, given by

L(ρ, T ) = det(1− T · Frq | W ) ,

where W is a subspace of the second ℓ-adic cohomology group H2
ét(E ,Qℓ(1)) of

E , given as the orthogonal complement of the trivial sublattice of the Neron–
Severi group NS(E) of E under the cycle class map NS(E) → H2

ét(E ,Qℓ(1)). His
description has the added benefit that the degree and functional equation of the
polynomial L(ρ, T ) can be understood directly from the geometry of E .

The analogue of algebraicity and Galois equivariance can first be proven at
the level of Euler factors of local ℓ-adic representations.
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Proposition 7. Let ρ be an ℓ-adic representation over a non-archimedean local
field F , such that LF (ρ, T ) has coefficients inQ, and let τ be an Artin representa-
tion over F . Then LF (ρ⊗ τ, T ) ∈ Q(τ)[T ] and LF (ρ⊗ τ, T )

σ
= LF (ρ⊗ τσ, T )

for any σ ∈ GQ.

Proof. This is similar to the argument by Bouganis–Dokchitser, but they only
proved it for Artin twists of elliptic curves over number fields [BD07, Lemma
4.4], so it is repeated here for reference. The first statement follows from the
second statement since τσ = τ for any σ ∈ GQ(τ), so it suffices to prove the
latter. Since LF (ρ⊗ τ, T ) has coefficients in Q(τ), it suffices to prove it for σ ∈
Gal(L/K), where L is the extension of Q(τ) that realises τ and K is its subfield
fixed by σ. There is an equivalence of categories between ℓ-adic representations
over F and complex Weil–Deligne representations of WF [Del73, Section 8], so
that ℓ can be replaced with some prime ℓ′ that splits in K and remains inert in
L, which exists by Chebotarev’s density theorem. This gives an isomorphism
ϕ : Gal(L/K)

∼−→ Gal(Qℓ′(α) /Qℓ′), where α is the image in Qℓ′ of the primitive

element of K that generates L. Now let (vi)i be a basis of (ρ⊗ τ)
IF over Qℓ, and

let (aij) be the matrix of FrF with respect to this basis. Then (v
ϕ(σ)
i )i is a basis

of (ρ⊗ τσ)
IF over Qℓ, and the matrix of FrF with respect to this basis is (a

ϕ(σ)
ij ),

so that its inverse characteristic polynomial is precisely that of (aij)
σ
.

The corresponding statement for formal L-series follows from the local state-
ments, by rewriting the infinite product of local Euler factors into a power series
with coefficients indexed by effective Weil divisors, and applying rationality.

Theorem 8. Let ρ be an ℓ-adic representation over a global function field
K = Fq(C) that is unramified almost everywhere, such that LKv

(ρ, T ) has
coefficients in Q for each place v of K, and let τ be an Artin representation
over K. Then L(ρ⊗ τ, T ) ∈ Q(τ)(T ) and L(ρ⊗ τ, T )

σ
= L(ρ⊗ τσ, T ) for any

σ ∈ GQ. Furthermore, if (ρ⊗ τ)
Gg

K = 0, then L(ρ⊗ τ, T ) ∈ Q(τ)[T ] of degree

degL(ρ⊗ τ, T ) =(2gC − 2) dim ρdim τ + deg fρ⊗τ .

Proof. For each place v of K, let av,n(τ) denote the coefficients of the power

series LKv
(ρ⊗ τ, T )

−1
for all n ∈ N. By Lemma 4 for P (T ) = LKv

(ρ⊗ τ, T )
−1

,
Proposition 7 translates into av,n(τ) ∈ Q(τ) and av,n(τ)

σ
= av,n(τ

σ) for any
σ ∈ GQ. Now for an effective Weil divisor D =

∑
v nv[v] on C, let aD(τ)

denote the finitely-supported product
∏

v av,nv (τ), so that aD(τ) ∈ Q(τ) and
aD(τ)

σ
= aD(τσ) for any σ ∈ GQ. A rearrangement gives

L(ρ⊗ τ, T ) =
∏
v

∞∑
n=0

av,n(τ)T
n deg v =

∞∑
m=0

∑
D

aD(τ)Tm,

where the sum ranges over effective Weil divisors D on C of degree precisely m.
This is a finite sum, so that

∑
D aD(τ) ∈ Q(τ) and(

∑
D aD(τ))

σ
=
∑

D aD(τσ),
which proves the second statement and that L(ρ⊗ τ, T ) ∈ Q(τ) [[T ]]. The first
and final statements follow from Proposition 5 that L(ρ⊗ τ, T ) ∈ Qℓ(T ), using
the theory of Hankel determinants [Bou03, Chapter IV.4, Exercise 1].
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In particular, these apply to ρ = ρA, which proves Theorem 2, but also to
the trivial representation ρ = 1, which proves Theorem 3.

Remark 9. Using Proposition 5, Burns–Kakde–Kim proves the algebraicity
and Galois equivariance of L(n)(A, τ, s) up to finitely many local Euler factors
away from an open set U of C [BKK18, Proposition 2.2], by directly arguing
that the action of Frq is preserved under an isomorphism

Hi
ét,c(U,FρA

⊗Fσ
τ )

∼= Hi
ét,c(U,FρA

⊗Fτ )
σ
,

for any σ ∈ GQ, where both sides are compactly-supported étale cohomology
groups of the base change U of U to Fq. The remaining finitely many local Euler
factors can be handled separately by Proposition 7, which gives an alternative
proof for Theorem 2 independent from Theorem 8.

Remark 10. There are explicit bounds for deg fρ⊗τ in terms of deg fρ and
deg fτ , such as in the arguments of Bisatt–Paterson [BP23, Section 2], so the
computation of degL(ρ⊗ τ, T ) generalises that by Comeau-Lapointe–David–
Lalin–Li for Dirichlet twists of elliptic curves [CLDLL22, Theorem 2.2].

The expression for degL(ρ⊗ τ, T ) in Theorem 8 is useful for computing
formal L-series of Dirichlet twists of elliptic curves, which was done explicitly
by Comeau-Lapointe–David–Lalin–Li using the functional equation [CLDLL22,
Section 5.1]. The reader is referred to Ulmer’s notes [Ulm11, Lecture 1] and
Rosen’s book [Ros02, Chapter 4 and Chapter 9] for the general theory over
global function fields of elliptic curves and Dirichlet characters respectively.

Example 11. Let K = F11(t), and let A be the elliptic curve over K given

by Y 2 = X3 +(t+ 1)
3
(t+ 2)

3
. Consider the Dirichlet character τ over K of

modulus t given by 2 7→ ζ5 and the automorphism σ ∈ Gal(Q(ζ5) /Q) given by
ζ5 7→ ζ25 . To verify Theorem 2 that L(A, τ, T )

σ
= L(A, τσ, T ), first compute

L(A, τ, T ) = 1 + 11(5 + 12ζ5 + 5ζ25 )T
2 + 14641ζ25T

4.

Since τσ = σ ◦ τ is given by 2 7→ ζ25 , separately compute

L(A, τσ, T ) = 1 + 11(5 + 12ζ25 + 5ζ45 )T
2 + 14641ζ45T

4.

These were computed in Magma, but the same algorithm works in any software
with support for irreducible polynomials over finite fields. Note that fρA

=

2[t+ 1]+2[t+ 2] and fτ =[t]+[1/t] have disjoint support, so that(ρA ⊗ τ)
IKt = 0.

In particular, (ρA ⊗ τ)
Gg

K = 0, so that L(A, τ, T ) ∈ Q(ζ5)[T ] of degree

degL(A, τ, T ) =(2gP1 − 2) dim ρA dim τ + deg fτ dim ρA + deg fρA
dim τ = 4.

Thus L(A, τ, T ) is completely determined by LKv
(A, τ, T ) for all places v of K

with deg v ≤ 4, where LKv (A, τ, T ) = 1 for v ∈{1/t, t, t+ 1, t+ 2} and

LKv (A, τ, T ) = 1− tr(FrKv | ρA) τ(v)T + 11deg vτ(v)
2
T 2,

for all other places v of K. For instance, if v = t4 + t+ 2, then tr(FrKv
| ρA) =

−242 and τ(v) = ζ5, so that LKv
(A, τ, T ) = 1 + 242ζ5T + 14641ζ25T

2.
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Remark 12. The existence of a globally compatible functional equation can
drastically cut down the number of computations of local Euler factors necessary
to completely determine the formal L-series. This in turn involves computing
Langlands–Deligne local constants, which will not be explored in this paper.
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