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Abstract

The Mordell-Weil theorem states that any elliptic curve E defined over a number fieldK is a finitely generated
abelian group, so that E (K) is isomorphic to a direct product of a finite torsion subgroup and a free abelian
group of finite rank. Over the rationals, while the torsion subgroup is fully understood from a result by
Mazur, the Mordell-Weil rank is much less understood. For instance, it remains an open question if it is
bounded above, with a historical belief that it is not, due to much empirical evidence.

A recent probabilistic model proposed by Poonen et al provides theoretical evidence to refute this claim,
namely that all but finitely many rational elliptic curves have rank at most 21. Their proposed heuristic
is based on modelling Tate-Shafarevich groups using random alternating matrices, and has its grounds in a
theorem that a pe-Selmer group is almost always the intersection of two Lagrangian direct summands of a
metabolic quadratic Z/pe-module of infinite rank, a consequence of standard arithmetic duality theorems.

This project aims to serve as an introduction to the style of arguments in arithmetic statistics by providing
a full proof of this result, as well as verifying desired properties of a heuristic that models this result. As a
consequence, important predictions on Selmer groups, Tate-Shafarevich groups, and Mordell-Weil ranks can
be made, including the conjecture that n-Selmer groups have average size equal to the sum of divisors of n,
as well as the folklore conjecture that there are finitely many rational elliptic curves of rank greater than 21.
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Chapter 1

Introduction

1.1 Motivational background

In the field of number theory, there are many important open problems that withstood the minds of countless
number theorists over decades, a strong contender being the elusive Riemann hypothesis in analytic number
theory. While a complete answer to these questions may seem out of reach at present, they remain conjectures
widely believed by working mathematicians due to significant theoretical and numerical evidence.

A fascinating example of theoretical evidence is the probabilistic model offered by Cohen and Lenstra
in their seminal paper on heuristics on class groups of number fields [CL84]. They introduced a plausible
heuristic on the distribution of ideal class groups, claiming and justifying that their asymptotic behaviours
mimick those of generic finite abelian groups weighted inversely by the size of their automorphism groups,
which later turned out to match numerical results very well. Their paper was later followed on by Friedman
and Washington who reinterpreted it on random matrices [FW89], and their ideas have since become a
powerful source of predictions for number fields, which kickstarted the field of arithmetic statistics.

One route that arithmetic statistics took was in the direction of elliptic curves, a highly non-trivial the-
ory with an ocean of deep unsolved problems. This was first observed by Delaunay, where he modelled
Tate-Shafarevich groups of elliptic curves based on the Cohen-Lenstra heuristics [Del01]. This was in turn
motivated by the strong analogy between number fields and elliptic curves, where the group of units corres-
ponds to the rational points and the ideal class group corresponds to the Tate-Shafarevich group [Del07].

Two famous conjectures of elliptic curves proposed in the late twentieth century are often known as the
rank distribution conjecture and rank boundedness conjecture. The first of these claims that half
of all elliptic curves have Mordell-Weil rank zero and the remaining half have Mordell-Weil rank one, while
higher Mordell-Weil ranks constitute zero percent of all elliptic curves over number fields, implying that a
suitably-defined average rank would be 1

2 . Currently, the best results by Bhargava et al merely show that
the average rank of elliptic curves over Q is strictly less than one, and that both rank zero and rank one
cases comprise non-zero densities across all elliptic curves over Q [BS15a; BS15b].

The second of these asks whether there is an upper bound to the Mordell-Weil rank of elliptic curves
over number fields [Sil09, Conjecture 10.1]. Over the past few decades, the general consensus amongst the
experts has flip-flopped at least twice [PPVW19, Section 3]. Those in favour of unboundedness argue that
this phenomenon provably occurs in other global fields, and that the proven lower bound for this upper
bound increases every few years. For instance, Elkies discovered an elliptic curve over Q with Mordell-Weil
rank at least 28, and very recently one with Mordell-Weil rank exactly 20 [EK20].

On the other hand, a recent series of papers by Poonen et al suggested otherwise, by providing a justified
heuristic inspired by ideas from arithmetic statistics [Poo17]. They modelled the asymptotic behaviour
of Mordell-Weil ranks through analysing the distribution of Tate-Shafarevich groups modelled by random
alternating matrices [PPVW19], while providing sufficient theoretical evidence through proven theorems of
Selmer groups [BKLPR15; PR12]. All of these groups are linked in a fundamental short exact sequence,
and a large portion of the results in their papers are attempts to justify the plausibility of a model for the
sequence. One of their final predictions is the surprising result that there are only finitely many isomorphism
classes of elliptic curves over Q with Mordell-Weil rank greater than 21.
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Chapter 1. Introduction 1.2. Report structure

Undeniably, a thorough understanding of the structure of the Selmer group goes a long way towards
proving results for the Mordell-Weil rank. This is highlighted not only in the papers by Poonen et al, but
also in the papers by Bhargava et al, where they explicitly computed the average sizes of certain Selmer groups
to deduce asymptotic results of Mordell-Weil ranks [BS13a; BS13b], and made the following conjecture.

(1.1.1) Conjecture ([BS13a, Conjecture 4]). Let E ∈ E (K) be a elliptic curve chosen uniformly at random. Then

E [#Sn (K,E)] = σ1 (n) , n ∈ N+,

where σ1 : N+ → N is the sum of divisors function. 1

In their series of papers, Bhargava et al verified Conjecture 1.1.1 for n = 2, 3, 4, 5, and these were enough
to deduce powerful partial results for the rank distribution conjecture. While the general claim remains
a consensual open problem, the model for the Selmer group in the papers by Poonen et al does indeed
satisfy Conjecture 1.1.1, further supporting both the conjecture and the validity of the model. Curiously,
the analogous result seems to be true for elliptic curves over function fields of odd characteristic, albeit under
a slightly different notion of heights than those for number fields [Lan20, Theorem 1.2].

1.2 Report structure

The aim of this report is to provide detailed proofs to two main results of Selmer groups and its model,
labelled in the following chapters as Theorem 3.2.1 and Theorem 3.3.1, which combines to yield a hypothetical
affirmative to Conjecture 1.1.1. The overarching idea follows the arguments in the series of papers by Poonen
et al [Poo17; PPVW19; BKLPR15; PR12], but in many sections, more elementary proofs are provided
whenever possible, and these are often a combination of various notions taken from other referenced sources.

While the first chapter is purely introductory, the second chapter will begin by providing any additional
background required to bridge the gap between the papers and undergraduate mathematics, so as to make
the report accessible to a typical undergraduate. This includes a short introduction to group and Galois
cohomology, culminating in the statement of standard arithmetic duality theorems, which will be a recurring
flavour in the rest of the report. Standard facts on elliptic curves will also be laid out succinctly, and the
full definition of the Selmer and Tate-Shafarevich groups will be provided, along with an interpretation in
terms of twists and torsors. The facts in this chapter will be freely used in other chapters without reference.

The third core chapter first provides basic definitions of quadratic modules, to allow for the statement
of Theorem 3.2.1 and Theorem 3.3.1, while the remaining sections aim to provide a detailed proof of these
theorems. Many interesting remarks will be presented without proofs alongside the overall argument, but
they are unnecessary in the grand scheme of the proof and can be largely ignored. However, the final chapter
will conclude the report by providing several consequences of the model, and will freely use these remarks.

My primary contribution is a coherent organisation and rephrasal of the arguments spread across several
papers into a stand-alone report. I have replaced any proofs deemed relatively advanced, especially those
with scheme-theoretic arguments, with more elementary arguments, and have filled in a lot of the details
omitted by the original authors. I have also fixed a few minor sign issues and special cases that were
disregarded by the original authors, and adapted an external proof to a conjecture in the original paper.

I have also attempted to maintain a set of consistent conventions and notation based on the standard
Bourbaki notation. For instance, the variable F will always denote a field of characteristic zero, while E will
always denote an elliptic curve. All rings are commutative with unity, and all varieties are quasi-projective.
Whenever a group variety is defined without the field of definition, it will always be over the algebraic closure.
Finally, the Hom and tensor product functors are always over Z unless explicitly denoted.

As it is not possible to fill in every detail there is, the reader is assumed to be familiar with undergraduate
number theory, which includes basic commutative and homological algebra, classical algebraic geometry, and
basic algebraic number theory. An acquaintance with the language of category theory, infinite group theory,
and infinite Galois theory would be helpful, but they will not be used as freely. All other results will be
included in the next chapter, where the proofs are deferred to references provided for the reader’s convenience.

1The notation used here will be fully clarified in the following chapter.
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Chapter 2

Preliminary background

This chapter aims to establish basic facts and notational conventions, well-known in the fields of algebraic
number theory and arithmetic geometry, but typically not covered at the undergraduate level. All of the
definitions and results are directly taken from either Silverman’s book on elliptic curves [Sil09], Serre’s book
on local fields [Ser80], or Milne’s books on arithmetic duality [Mil06] and class field theory [Mil13], with
one result quoted from each of Silverman’s advanced book on elliptic curves [Sil94], Mumford’s book on
abelian varieties [Mum70], and Hartshorne’s book on algebraic geometry [Har77]. The relevant ideas and
constructions are briefly sketched here for the reader’s convenience, which will be quoted freely in the report
without any additional reference, but the reader is invited to consult any one of the wonderful books above.

2.1 Galois cohomology

Throughout this section, let G be a group acting on a group A, so A is called a G-group, or a G-module
when A is abelian. The action of G will be denoted multiplicatively, while the group operation of A will be
denoted additively even in non-abelian contexts to distinguish it from its group action.

2.1.1 Group cohomology

The most prevalent theory in the modern literature involves the case of A being abelian, which furnishes
the abelian category of G-modules consisting of abelian groups equipped with G-linear group actions and
G-equivariant group homomorphisms, and can be identified with the category of modules over the group
algebra Z [G] [Ser80, Section VII.1]. Taking G-invariants establishes a functor (−)

G
from this category to the

category of abelian groups that is canonically isomorphic to the left exact covariant functor HomZ[G] (Z,−),
which in turn provides a definition of the n-th cohomology group in terms of the derived functor

Hn (G,A) := ExtnZ[G] (Z, A) , n ∈ N.

While this provides a succinct definition, certain computations often require explicit formulations of
several low-dimensional cohomology groups. It is easy to see that H0 (G,A) := AG, while

H1 (G,A) := {ξ : G→ A | ∀σ, τ ∈ G, ξ (στ) = ξ (σ) + σ · ξ (τ)} / ∼,

given the equivalence relation

ξ ∼ ξ′ ⇐⇒ ∃a ∈ A, ∀σ ∈ G, a+ ξ (σ) = ξ′ (σ) + σ · a.

Given such a description, it is easy to see that H1 (G,A) = Hom (G,A) whenever the group action is trivial,
and to verify that H1 (G,A) is n-torsion if G has finite order n ∈ N+ [Sil09, Exercise B.1]. In the latter
scenario, if A is also finite of order m ∈ N+ coprime to n, then H1 (G,A) is mutually annihilated by m and
by n, so the overall cohomology group must be trivial. Similarly, a description for H2 (G,A) is

H2 (G,A) := {ξ : G×G→ A | ∀σ, τ, υ ∈ G, σ · ξ (τ, υ) + ξ (σ, τυ) = ξ (στ, υ) + ξ (σ, τ)} / ∼,

3



Chapter 2. Preliminary background 2.1. Galois cohomology

given the equivalence relation

ξ ∼ ξ′ ⇐⇒ ∃χ : G→ A, ∀σ, τ ∈ G, χ (στ) + ξ (σ, τ) = ξ′ (σ, τ) + χ (σ) + σ · χ (τ) ,

while any higher-dimensional cohomology group Hn (G,A) generally consists of n-cocycles ξ : Gn → A
satisfying certain crossed conditions modulo certain equivalence relations [Ser80, Section VII.3].

It turns out that group cohomology is a universal cohomological δ-functor [Ser80, Section VII.2]. In
particular, this says that applying the group cohomology functor to a short row-exact diagram of G-modules

0 A B C 0

0 A′ B′ C ′ 0

α β

functorially induces a long row-exact diagram of cohomology groups

0 H0 (G,A) H0 (G,B) H0 (G,C) H1 (G,A) H1 (G,B) H1 (G,C) . . .

0 H0 (G,A′) H0 (G,B′) H0 (G,C ′) H1 (G,A′) H1 (G,B′) H1 (G,C ′) . . .

δ0 δ1

,

which is not uncharacteristic of many cohomology theories. The connecting homomorphisms δ0 and δ1
in the top row can be explicitly described as follows. Let c ∈ H0 (G,C) = CG be a G-invariant element, and
let σ ∈ G be a group element. By surjectivity of β, there is an element b ∈ B such that c = β (b). It is easy
to see that σ · b− b ∈ kerβ = imα, so there is an element aσ ∈ A such that σ · b− b = α (aσ). Then define

δ0 (c) := (σ 7→ aσ) .

Likewise, let ξ ∈ H1 (G,C) be a 1-cocycle, and let σ, τ ∈ G be group elements. By surjectivity of β, there
are elements bσ, bτ , bστ ∈ B such that ξ (σ) = β (bσ), ξ (τ) = β (bτ ), and ξ (στ) = β (bστ ). It is again easy to
see that there is an element aσ,τ ∈ A such that bσ + σ · bτ − bστ = α (aσ,τ ). Then define

δ1 (ξ) := ((σ, τ) 7→ aσ,τ ) .

These can be verified, by the definition of cocycles, to be well-defined and independent of the choices of lifts.
The boundary of the well-known Hochschild-Lyndon-Serre spectral sequence establishes a rela-

tionship between the cohomology groups defined by G and a subgroup H, through a left exact inflation-
restriction exact sequence of cohomology groups [Ser80, Proposition VII.5] given by

0→ Hn
(
G/H,AH

) inf−−→ Hn (G,A)
res−−→ Hn (H,A) , n ∈ N,

provided that Hi (H,A) is trivial for all i = 1, . . . , n − 1. Here, the restriction map is a composition

res : Hn (G,A)→ Hn (H,A)
G/H → Hn (H,A) induced by the inclusion H ↪→ G, while the inflation map is

a composition inf : Hn
(
G/H,AH

)
→ Hn

(
G,AH

)
→ Hn (G,A) induced by the quotient G� G/H and the

inclusion AH ↪→ A. When G is finite, by further defining an analogous corestriction map, it can be shown
that the induced restriction map res : Hn (G,A)p → Hn (Gp, A) on a p-Sylow subgroup Gp is injective, where

Hn (G,A)p is the p-primary component of Hn (G,A) for some prime p ∈ N+ [Ser80, Theorem IX.4].
Another notable property of group cohomology relates the cohomology groups defined by A and another

G-module B, through the existence of an alternating Z-bilinear cup product [Ser80, Proposition VIII.5]

∪ : Hn (G,A)×Hm (G,B) −→ Hn+m (G,A⊗B)
(ξ, ξ′) 7−→ ξ ∪ ξ′ , n,m ∈ N,

which is universal with respect to certain tensorial properties, and is defined by

ξ ∪ ξ′ := ((σ1, . . . , σn, τ1, . . . , τm) 7→ ξ (σ1, . . . , σn)⊗ σ1 · · · · · σn · ξ′ (τ1, . . . , τm)) .

This is an analogue of the topological cup product in singular cohomology.

4



Chapter 2. Preliminary background 2.1. Galois cohomology

2.1.2 Non-abelian cohomology

In the scenario where A is non-abelian, the positive-dimensional cohomologies are not necessarily groups,
but merely pointed sets with a distinguished identity, so the notions of kernels and images in short exact
sequences still make sense. The explicit descriptions of these pointed sets in terms of cocycles remain
unchanged, except to account for non-commutativity of the respective group operations. Applying the
non-abelian group cohomology functor to a short exact sequence of G-groups

0→ A→ B → C → 0

still induces a truncated long exact sequence of cohomology pointed sets

0→ H0 (G,A)→ H0 (G,B)→ H0 (G,C)
δ0−→ H1 (G,A)→ H1 (G,B)→ H1 (G,C)

δ1−→ H2 (G,A) ,

but is exact at H1 (G,C) if and only if A injects into the centre of B [Ser80, Appendix VII]. The connecting
maps δ0 and δ1 are again defined with non-commutativity in mind, but with this additional assumption,
conjugation by B will preserve images of elements of A, such as the previously defined α (aσ) and α (aσ,τ ).
As with the abelian case, δ-functoriality holds and cup products are defined exactly the same way.

2.1.3 Galois cohomology

When G is a profinite topological group of potentially infinite order and A is a topological G-module,
the definitions in the basic theory have to be slightly adjusted so as to behave well with direct and inverse
limits. In particular, this says that G is an inverse limit of discrete finite groups, equipped with a compatible
profinite topology with a basis of open sets around the identity consisting of finite index normal subgroups
such that G is compact and Hausdorff, while A is equipped with a continuous G-action with respect to this
topology. The n-th profinite cohomology group is then defined to be the direct limit

Hn (G,A) := lim−→
H

Hn
(
G/H,AH

)
, n ∈ N,

taken with respect to open finite index normal subgroups H of G and their natural inflation maps. With
the restriction that cocycles are necessarily continuous with respect to this topology, all of the properties
listed previously continue to hold for profinite cohomology groups by passage to the limit, and coincide in
the finite discrete case [Ser80, Section X.3], so this shall be an underlying assumption moving forward.

A prominent example in number theory is the case where G is the Galois group of a possibly infinite
Galois extension F ′ over a field F , constructed as a profinite topological group equipped with the Krull
topology, which acts naturally on the F -rational points of a group variety A defined over F to realise it as
a topological G-module. The respective n-th profinite Galois cohomology groups are then denoted as

Hn (F ′/F,A) := Hn (Gal (F ′/F ) , A (F ′)) , n ∈ N,

the latter of which, by the infinite version of the Galois correspondence, is the direct limit taken with respect
to finite Galois extensions of F that are subfields of F ′. In the case of the algebraic closure F of a general
field F of characteristic zero, it is customary to omit the field extension and simply write

Hn (F,A) := Hn
(
Gal

(
F/F

)
, A
(
F
))
, n ∈ N.

Note that with this notation, Hn (F,GL1) refers to the n-th cohomology group of F
×

rather than of F×.
Applying non-abelian Galois cohomology to the general linear group varieties GLn and PGLn generalises

Noether’s formulation of Hilbert’s theorem 90 [Ser80, Proposition X.3] to establish the triviality

H1 (F,GLn) = 0, n ∈ N.

Applying this to the Galois cohomology groups induced by the obvious short exact sequence of groups

0→ F
× → GLn → PGLn → 0, n ∈ N,

gives an injection of pointed sets [Ser80, Proposition X.8]

H1 (F,PGLn) ↪→ H2 (F,GL1) , n ∈ N,

the latter of which is isomorphic to the Brauer group BrF [Ser80, Proposition X.9], defined as the abelian
group of F -central simple algebras modulo F -isomorphisms of their underlying F -division algebras.
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2.1.4 Class field theory

A well-known application of the machinery of Galois cohomology is in the modern treatment of the proofs
of local and global class field theory, namely Artin’s reciprocity law [Mil13, Theorems V.3.5 and V.5.3],
Takagi’s existence theorem [Mil13, Theorems V.3.6 and V.5.5], and their local counterparts [Mil13, The-
orems I.1.1 and I.1.4]. These statements are algebraic in nature, yet their original proofs were through the
analysis of L-series where the local versions were deduced from the global statements, which were historic-
ally considered unsatifactory and were later revamped by Chevalley and Tate via the introduction of class
formations. While the main statements will be elided here, several relevant consequences will be mentioned.

Let K be a number field, and let VK be the set of all places of K. These are equivalence classes of all
non-trivial absolute values on K, which by Ostrowski’s theorem consists of the non-archimedean places
V0
K induced by p-adic norms and the archimedean places V∞K induced by real and complex embeddings.

Completing K with respect to a place v ∈ VK yields a locally compact local field Kv, which has a finite
residue field in the non-archimedean case, while K is itself a global field satisfying the product formula
[Ser80, Section II.1]. Each non-archimedean place exhibits a canonical isomorphism [Mil13, Theorem III.2.1]

invKv : BrKv
∼−→ Q/Z, v ∈ V0

K ,

while in the archimedean scenario, there are obvious identifications BrR = {±1} and BrC = 0 by any
description of the Brauer group, so analogous monomorphisms can be constructed as

invR : BrR ∼=
1

2
Z/Z ↪→ Q/Z, invC : BrC ∼= Z/Z ↪→ Q/Z.

These monomorphisms are called Hasse invariants, and are relevant in the construction of class formations.
Combining global class field theory and the Albert-Brauer-Hasse-Noether theorem for division algebras
yields a short exact fundamental sequence of global class field theory [Mil13, Theorem VIII.4.2]

0→ BrK
↪→−→

⊕
v∈VK

BrKv

∑
invKv−−−−−→ Q/Z→ 0,

where the latter map arises from summing finitely many local Hasse invariants.
Let L be a Galois extension of K. The choice of a place w ∈ VL extending a place v ∈ VK uniquely

determines an embedding Kv ↪→ Lw, and vice versa [Ser80, Corollary II.2]. Its Galois group Gal (Lw/Kv) is
then canonically isomorphic to the decomposition group, the stabiliser of w in Gal (L/K) acting transit-
ively on the places extending v [Ser80, Proposition I.19]. The archimedean scenario is relatively simple, since
the decomposition group is either trivial or Gal (C/R), the latter of which occurs precisely with ramification
where Kv

∼= R and Lw ∼= C. In the non-archimedean case, however, within the decomposition group lies the
inertia group, the normal subgroup acting trivially on the residue field of Kv. This is in turn canonically
isomorphic to the Galois group Gal (Lw/K

u
v ), where Ku

v denotes the maximal unramified extension of Kv

contained in Lw [Ser80, Proposition I.21], hence furnishing a short exact sequence of Galois groups

0→ Gal (Lw/K
u
v )→ Gal (Lw/Kv)→ Gal (Ku

v /Kv)→ 0,

where the first two Galois groups are identified with the inertia and decomposition groups respectively. When
L is unramified over K, the inertia subgroup is trivial, so the decomposition group can be identified with the
Galois group of the respective residue fields. This is in turn cyclic with a generator called the Frobenius
substitution σw ∈ Gal (L/K) [Ser80, Section I.8], which is part of the map defining Artin’s reciprocity law.
Now an important consequence of global class field theory is Chebotarev’s density theorem, which states
that for any finite Galois extension L over K and any conjugacy class C of Gal (L/K), the set of places{

v ∈ V0
K unramified

∣∣ C = {σw ∈ Gal (L/K) | w extends v}
}

has density exactly #C/ [L : K] amongst all non-archimedean places, for some well-defined limiting notion of
density [Mil13, Theorem V.3.23]. In particular, this is a positive proportion of places in VK , so that when the
extension is abelian and conjugacy classes are merely singletons, any element of Gal (L/K) generates a cyclic
subgroup isomorphic to infinitely many decomposition groups generated by the Frobenius substitutions.
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2.1.5 Arithmetic duality theorems

This final subsection states several standard yet powerful arithmetic duality theorems on local and global
cohomology. For a place v ∈ VK , denote the Pontryagin dual and the Cartier dual respectively by

(−)
? := Hom (−,BrKv) , (−)

† := Hom
(
−,Kv

×)
,

so that, in the non-archimedean case, the Pontryagin dual is the usual definition of (−)
?

= Hom (−,Q/Z).
Let A be a finite Gal

(
Kv/Kv

)
-module for some place v ∈ VK . If v is non-archimedean, Tate’s local

duality establishes a canonical non-degenerate perfect pairing via the cup product [Mil06, Corollary I.2.3]

∪ : Hn
(
Kv, A

†)×H2−n (Kv, A)→ BrKv, n = 0, 1, 2,

which, in the case n = 1, induces natural Pontryagin dualities between finite groups

H1
(
Kv, A

†) ∼= H1 (Kv, A)
?
, H1 (Kv, A) ∼= H1

(
Kv, A

†)? .
An essentially identical statement holds when v is archimedean [Mil06, Theorem I.2.13(a)], except that it
uses the modified n-th Tate cohomology groups for G = Gal

(
Kv/Kv

)
, defined by

Hn (G,A) :=

{
Hn (G,A) n > 1

AG/NGA n = 0
, NGA :=

{∑
σ∈G

σ · a

∣∣∣∣∣ a ∈ A
}
,

whose extension to negative coefficients is relevant in the proof of Artin’s reciprocity law. As a convention,
since the statement of Tate’s local duality, amongst other important dualities, differ in the archimedean case
only for H0 (Kv, A), the zeroth cohomology group in the archimedean case will be abusively denoted

H0 (Kv, A) := H0 (Gal (C/Kv) , A) , v ∈ V∞K ,

which shall be the prevailing notation from now on.
For the global duality theorem, let A be a finite Gal

(
K/K

)
-module. For each place v ∈ VK , the

inclusion of Galois groups Gal
(
Kv/Kv

)
↪→ Gal

(
K/K

)
induced by the completion K ↪→ Kv supplies the

local restriction maps Hn (K,A)→ Hn (Kv, A). Define the n-th unramified cohomology group by

Hn
u (Kv, A) := Hn

(
Ku
v /Kv, A

Gal(Kv/Ku
v)
)
, n ∈ N,

where the inflation-restriction exact sequence applied to Gal
(
Kv/Kv

)
/Gal

(
Kv/K

u
v

) ∼= Gal (Ku
v /Kv) yields

0→ Hn
u (Kv, A)

inf−−→ Hn (Kv, A)
res−−→ Hn (Ku

v , A) , n ∈ N,

provided of course that Hi (Ku
v , A) is trivial for all i = 1, . . . , n−1. Then define the n-th adelic cohomology

group Hn (AK , A) as the restricted product of (Hn (Kv, A))v∈VK with respect to (Hn
u (Kv, A))v∈VK , namely

Hn (AK , A) :=

{
(ξv)v∈VK ∈

∏
v∈VK

Hn (Kv, A)

∣∣∣∣∣ ξv ∈ Hn
u (Kv, A) for all but finitely many v ∈ VK

}
, n ∈ N.

Now the images of the restriction maps Hn (K,A)→ Hn (Kv, A) land in Hn
u (Kv, A) for all but finitely many

places v ∈ VK [Mil06, Lemma I.4.8], furnishing well-defined embeddings

τn : Hn (K,A)→ Hn (AK , A) , n ∈ N,

and analogously τn† : Hn
(
K,A†

)
→ Hn

(
AK , A†

)
for the Cartier duals. In the relevant case of n = 0, 1, 2,

Tate’s local duality replaces this last group with H2−n (AK , A)
?
, so that taking Pontryagin duals of the maps

τ2−n
† : H2−n (K,A†)→ H2−n (AK , A†) establishes well-defined maps

σn : Hn (AK , A)→ H2−n (K,A†)? , n = 0, 1, 2.

7
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Finally, define the n-th Tate-Shafarevich group by

Xn (K,A) := ker (τn : Hn (K,A)→ Hn (AK , A)) , n ∈ N,

a generalisation of the usual Tate-Shafarevich group for elliptic curves, to be defined later. Then Tate’s
global duality establishes a canonical non-degenerate perfect pairing

X1 (K,A)×X2
(
K,A†

)
→ Q/Z,

which, together with its Cartier dual analogue, induce natural Pontryagin dualities between finite groups

X2 (K,A)
? ∼−→X1

(
K,A†

)
, X1 (K,A)

? ∼−→X2
(
K,A†

)
.

Furthermore, composing these isomorphisms with the obvious inclusions Xn
(
K,A†

)
↪→ Hn

(
K,A†

)
and

their Pontryagin dual maps altogether yield two connecting maps

ρ : H2
(
K,A†

)? → H1 (K,A) , ρ′ : H1
(
K,A†

)? → H2 (K,A) ,

which fit in the nine-term Poitou-Tate exact sequence [Mil06, Theorem I.4.10]

0 H0 (K,A) H0 (AK , A) H2
(
K,A†

)?
H1 (K,A) H1 (AK , A) H1

(
K,A†

)?
H2 (K,A) H2 (AK , A) H0

(
K,A†

)?
0

τ0 σ0

ρ

τ1 σ1

ρ′

τ2 σ2

.

The full statement of Tate’s global duality encompasses a generalisation of the adelic cohomology groups
defined for arbitrary subsets of places, and encodes the topology of these groups as well as the behaviour of
higher-dimensional cohomology groups, but the statement as phrased suffices for the purpose of this report.
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2.2 Elliptic curves

A primary object of interest in arithmetic geometry is an elliptic curve defined over a perfect field F ,
which is defined to be a smooth projective plane algebraic curve E of genus one over F , equipped with a
distinguished F -rational basepoint O and a Gal

(
F/F

)
-action whose invariant subgroup are exactly the

F -rational points E (F ). Throughout this section, let E be an elliptic curve defined over a general field F of
characteristic zero, typically a number field K or any completion Kv for a place v ∈ VK .

2.2.1 Elliptic curves

A characterising feature of elliptic curves amongst other quasi-projective varieties is its peculiar addition
law, which realises an elliptic curve as an abelian group with O as the identity element [Sil09, Algorithm
III.2.3], making it an abelian variety, and its F -rational points as a subgroup [Sil09, Proposition III.2.2(f)].
When F = K, the Mordell-Weil theorem and the structure theorem of finitely generated abelian groups
characterises the Mordell-Weil group E (K) as a direct sum [Sil09, Theorem VIII.6.7]

E (K) ∼= tors (E/K)× Zrk(E/K),

where tors (E/K) is its finite subgroup of torsion points and rk (E/K) is its rank as a free abelian group.
While the torsion subgroup is finitely computable and well-understood by the Lutz-Nagell theorem [Sil09,
Corollary VIII.7.2], the reduction theorem [Sil09, Application VII.3.2], and Mazur’s theorem [Sil09,
Theorem VIII.7.5], the rank is subtly more mysterious, lending itself to a multitude of important problems
in number theory, most notably the Birch-Swinnerton-Dyer conjecture [Sil09, Conjecture C.16.5]. As a
start, it is unknown if the rank has an upper bound, with a historical belief that it does not [Sil09, Conjecture
VIII.10.1] due to several, albeit rare, findings of elliptic curves with large rank.

Due to the extra structure elliptic curves present as objects in the category of abelian varieties, there
are two relevant notions of maps between elliptic curves, namely the usual morphisms of quasi-projective
varieties, which behave irrespective of their basepoints, and isogenies of elliptic curves, which preserve
basepoints and are automatically group homomorphisms [Sil09, Theorem III.4.8]. Hence morphisms of
elliptic curves always refer to isogenies, while emphasis will be made in occasional mentions of F -morphisms
of varieties, and any mention of morphisms of varieties without specifying the field of consideration always
refers to morphisms over the algebraic closure. There are three main families of endomorphisms that will be
relevant, the first of which is the natural translation map

τP : E −→ E
Q 7−→ P +Q

, P ∈ E,

and its restriction to E (F ), which are merely isomorphisms of varieties as they shift the basepoint. Associated
to such a map is the category-theoretic pull-back τ∗P : F (E) → F (E), which simply precomposes any
rational function with a translation by −P . Next is the natural multiplication by n map

[n] : E −→ E
Q 7−→ nQ

, n ∈ N,

which is an isomorphism of elliptic curves whenever n 6= 0, whose kernel is by definition the n-torsion
subgroup E [n] that is isomorphic to (Z/n)

2
after fixing a choice of basis points [Sil09, Corollary III.6.4(b)].

It is worth noting that restricting multiplication by n to E (F ) only produces an endomorphism of elliptic
curves, which is surjective when F is algebraically closed [Sil09, Theorem II.2.3]. When F = R, the group
of real points is either connected and isomorphic to R/Z as Lie groups, for which multiplication by n is
surjective, or has two connected components and is isomorphic to R/Z×Z/2, for which multiplication by n
is also surjective when n is odd and has cokernel Z/2 otherwise [Sil94, Corollary V.2.3.1]. Finally, allowing
multiplication by −1 in the definition above gives the natural inversion map

ι : E −→ E
Q 7−→ −Q ,

and its restriction to E (F ), which are obviously isomorphisms of elliptic curves.
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As a consequence of the Riemann-Roch theorem [Sil09, Theorem II.5.4], any elliptic curve as defined
above is isomorphic as a variety to the projective plane algebraic curve given by a Weierstrass equation

Ea,b :=
{

[x : y : z] ∈ P2
∣∣ y2z = x3 + axz2 + bz3

}
, O := [0 : 1 : 0] , a, b ∈ F,

and conversely, any such Weierstrass curve, given the smoothness condition on the discriminant

∆ (Ea,b) := 4a3 + 27b2 6= 0,

defines an elliptic curve [Sil09, Proposition III.3.1]. Two elliptic curves are F -isomorphic precisely when their
Weierstrass equations are related by the change of variables (x, y) ↔

(
u2x, u3y

)
for some u ∈ F×, which

relates the coefficients by (a, b)↔
(
u4a, u6b

)
, so that when F = F , this equates to their j-invariants

j (Ea,b) :=
(4a)

3

∆ (Ea,b)

being equal [Sil09, Proposition III.1.4(b)]. When F = K, the uniqueness of a Weierstrass representation can
be guaranteed up to units by additionally requiring 0 ≤ ordv a < 4 and 0 ≤ ordv b < 6 for all non-archimedean
places v ∈ V0

K . Thus the set of isomorphism classes of elliptic curves defined over K is representable by a set

E (K) :=

{
Ea,b

∣∣∣∣ a, b ∈ K, ∆ (Ea,b) 6= 0,
∀v ∈ V0

K , 0 ≤ ordv a < 4, 0 ≤ ordv b < 6

}
.

When F = Kv for some non-archimedean place v ∈ V0
K , an analogous unique Weierstrass representation can

be constructed with the requirement only for v, and these are called minimal Weierstrass equations.
Now any point in projective space can be equipped with an absolute height

hPn : Pn −→ N+

[x0 : · · · : xn] 7−→
∏
v∈VK

max (|x0|v , . . . ,|xn|v)
[Kv:Qv] , n ∈ N,

where |−|v are normalised absolute values for each place v ∈ VK . By the product formula, this is independent
of the choice of homogeneous coordinates [Sil09, Proposition VIII.5.4], with only finitely many points with
absolute height at most a fixed h ∈ N+ [Sil09, Theorem VIII.5.11], inducing a well-defined natural density

δPn (P) := lim
h→∞

# {P ∈ Pn | P (P ) , hPn (P ) ≤ h}
# {P ∈ Pn | hPn (P ) ≤ h}

,

where P is any predicate defined on Pn. As such, define an absolute height on E (K) by

h : E (K) −→ N+

Ea,b 7−→ hPn ([a : b])
,

where a, b ∈ K are defined under the conditions 0 ≤ ordv a < 4 and 0 ≤ ordv b < 6 for all non-archimedean
places v ∈ V0

K , and if P is a predicate defined on E (K), define a natural density on E (K) by

δ (P) := δPn (P, ∆ (Ea,b) 6= 0) .

This convenient notation paves way for results and conjectures on the asymptotic behaviour of invariants
associated to elliptic curves, such as tors (E/K) and rk (E/K), and it makes sense to say that some predicate
P holds for almost all elliptic curves E ∈ E (K) whenever δ (P) = 1 is meant.

Given a fixed n ∈ N+, the Gal
(
F/F

)
-action on E [n] induces a homomorphism

ρE[n] : Gal
(
F/F

)
→ AutE [n] ∼= GL2 (Z/n) ,

where the latter isomorphism arises from fixing a choice of basis points. This is called a two-dimensional
modulo n Galois representation, and its kernel is precisely Gal

(
F/F (E [n])

)
, where the n-torsion field

F (E [n]) is the adjunction of F with the coordinates of all non-trivial points in E [n]. The finite version of
the Galois correspondence shows that the n-torsion field is also Galois over F , so that ρE[n] descends to an
embedding Gal (F (E [n]) /F ) ↪→ GL2 (Z/n). On the other hand, given an explicit Weierstrass equation for
E = Ea,b, a series of n-division polynomials Ψn ∈ F [a, b,X, Y ] can be defined inductively for all n ∈ N+,
which vanish exactly on the X-coordinates of all non-trivial points in E [n] [Sil09, Exercise 3.7]. In other
words, adjoining theseX-coordinates to F yields the splitting field FΨn of Ψn, which is in turn a subfield of the
n-torsion field obtained by adjoining both coordinates, realising an embedding Gal (FΨn/F ) ↪→ GLn (Z/n).

10



Chapter 2. Preliminary background 2.2. Elliptic curves

2.2.2 Divisors and linear systems

This subsection records several basic facts about Weil divisors, a construction encoding points of an elliptic
curve, taken from algebraic geometry. The divisor group Div

(
E/F

)
is the free abelian group generated

by all of the formal symbols [Q] for all points Q ∈ E, so a divisor is a finite formal sum

D :=
∑
Q∈E

nQ [Q] , nQ ∈ Z.

Given such a divisor, its degree is degD :=
∑
Q∈E nQ ∈ Z, and its sum is

∑
D :=

∑
Q∈E [nQ]Q. If

f ∈ F (E)
×

is a non-zero rational function, it has an associated divisor

[f ] :=
∑
Q∈E

(ordQ f) [Q] ,

where each ordQ f is by definition the normalised valuation of f on the discrete valuation ring F [E]Q, which

is obtained by localising F [E] at the maximal ideal generated by rational functions vanishing on Q. A divisor
D ∈ Div

(
E/F

)
is then said to be principal if it is an associated divisor of some non-zero rational function,

while two divisors D,D′ ∈ Div
(
E/F

)
are said to be linearly equivalent, or D ∼ D′, if their difference

is principal. This condition is equivalent to the simultaneous equalities degD = degD′ and
∑
D =

∑
D′

[Sil09, Corollary III.3.5], and using the easy computation [Sil09, Proposition II.3.6(b)] that

[τ∗P f ] =
∑
Q∈E

(ordQ f) [P +Q] , P ∈ E,

it follows immediately that P ∈ E [n] if and only if n [O] ∼ n [P ] for any n ∈ N+. Now, E can be canonically
identified with the Picard group Pic0

(
E/F

)
of degree zero principal divisors, via the Abel-Jacobi map

that sends a point P ∈ E to the divisor class of [P ] − [O] [Sil09, Proposition III.3.4], which also provides

the Cartier self-duality E [n] ∼= Pic0

(
E/F

)
[n] ∼= E [n]

†
for any n ∈ N+ [Mum70, Theorem III.15.1]. This

identification supplies an alternative group law on E, equivalent to the geometric group law by considering
the non-zero rational line function LP,Q ∈ F (E)

×
joining the points P,Q ∈ E with associated divisor

[LP,Q] = [P +Q]− [P ]− [Q] + [O] .

Moreover, the identification also gives an exact sequence of abelian groups [Sil09, Remark III.3.5.1]

0→ F
× ↪→−→ F (E)

× [−]−−→ Div0

(
E/F

) ∑
−→ E ∼= Pic0

(
E/F

)
→ 0,

where Div0

(
E/F

)
is the subgroup of degree zero divisors of Div

(
E/F

)
.

The notion of Weil divisors allows for the definition of certain morphisms arising from linear systems,
which would first require the relevant divisors D ∈ Div

(
E/F

)
to be effective, or D ≥ 0, which says that

all of its coefficients are non-negative. Then define the complete linear system of D by

L (D) :=
{
D′ ∈ Div

(
E/F

) ∣∣ D′ ≥ 0, D′ ∼ D
}

∼=
{
f ∈ F (E)

×
∣∣∣ D + [f ] ≥ 0

}
∪ {0} ,

which is a finite-dimensional F -vector space of global sections [Sil09, Proposition II.5.2(b)]. The Riemann-
Roch theorem computes its dimension to be dimF L (D) = degD [Sil09, Proposition II.5.5(c)], and hence,
after choosing a basis of global sections fi ∈ L (D), there is a well-defined morphism abusively denoted

L (D) : E −→ F
degD

Q 7−→ (f1 (Q) , . . . , fdegD (Q))
.

Since the valuation ordQ f is normalised, the divisors of the basis functions remain unchanged upon scaling

by elements of F
×

, so further normalisation gives a projectivisation of the morphism, denoted

L̂ (D) : E −→ PdegD−1

Q 7−→ [f1 (Q) : · · · : fdegD (Q)]
.
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If two divisors D,D′ ∈ Div
(
E/F

)
are linearly equivalent, their complete linear systems L (D) and L (D′)

are isomorphic as F -vector spaces [Sil09, Proposition II.5.2(c)], so their induced morphisms L̂ (D) and L̂ (D′)
are equal up to some projective transformation. This will be particularly relevant for the divisor D = n [O],
for some fixed n ∈ N+, where the morphisms induced by the linear systems will simply be written as

Ln := L (n [O]) : E → F
n
, L̂n := L̂ (n [O]) : E → Pn−1.

In fact, translating a general theorem of invertible sheaves [Har77, Theorem II.7.1] gives a unique projective

transformation T̂P ∈ PGLn that only depends on the choice of P ∈ E [n], where now D ∼ n [P ], such that

L̂n (P +Q) = T̂P L̂n (Q) , Q ∈ E,

and conversely, if such an equality holds, then D ∼ n [P ]. Furthermore, lifting this matrix to GLn through
scaling also gives a linear transformation TP ∈ GLn, which is unique only after fixing a basis of global
sections chosen by fixing a non-zero rational function fP ∈ F (E)

×
with associated divisor [fP ] = n [P ]−D.

The language of Weil divisors also allows for the construction of a non-degenerate alternating Z-bilinear
pairing, whose image is an n-th root of unity, known as the n-Weil pairing [Sil09, Proposition III.8.1]

en : E [n]× E [n]→ F
×
.

There are several definitions in the literature that are equivalent up to sign, one of which is outlined as
follows [Sil09, Exercise 3.16]. To define en (P, P ′) for two points P, P ′ ∈ E [n], first choose any two divisors

D :=
∑
Q∈E

nQ [Q] ∈ Div
(
E/F

)
, D′ :=

∑
Q∈E

n′Q [Q] ∈ Div
(
E/F

)
,

satisfying degD = degD′ = 0, and
∑
D = P and

∑
D′ = P ′, with an extra disjoint support condition

{Q ∈ E | nQ 6= 0} ∩
{
Q ∈ E

∣∣ n′Q 6= 0
}

= ∅.

Then pick two non-zero rational functions f, f ′ ∈ F (E)
×

such that [f ] = nD and [f ′] = nD′, and define

en (P, P ′) :=
f ′ (D)

f (D′)
:=

∏
Q∈E f

′ (Q)
nQ∏

Q∈E f (Q)
n′Q

,

which is indeed a well-defined finite product, independent of the choices of divisors and rational functions, and
outputs an n-th root of unity. Perhaps more naturally, using the canonical identification E ∼= Pic0

(
E/F

)
,

this transforms into a pairing of Picard groups with disjoint support

ẽn : Pic0

(
E/F

)
[n]× Pic0

(
E/F

)
[n] −→ F

×

(D,D′) 7−→ f ′ (D)

f (D′)

,

where f, f ′ ∈ F (E)
×

are the respective non-zero rational functions with associated divisors [f ] = nD and
[f ′] = nD′. With this formulation, the n-Weil pairing will be invariant after replacing D′ with any linearly
equivalent divisor D′′ := D′ + [g] ∈ Pic0

(
E/F

)
, for some non-zero rational function g ∈ F (E)

×
. In

particular, if f ′′ ∈ F (E)
×

is a non-zero rational function with associated divisor [f ′′] = nD′′, then clearly
f ′′ = f ′gn, and since Weil’s reciprocity law [Sil09, Exercise 2.11] gives an equality f ([g]) = g ([f ]) = gn (D),

ẽn (D,D′′) =
f ′′ (D)

f (D′′)
=
f ′ (D) gn (D)

f (D′) f ([g])
=
f ′ (D)

f (D′)
= ẽn (D,D′) .

Thus the disjoint support condition can be relaxed, and it suffices to considerD = [P ]−[O] andD′ = [P ′]−[O]
by utilising the line function LP,Q ∈ F (E)

×
, which coincides with the original definition of the pairing.
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2.2.3 Selmer and Tate-Shafarevich groups

As hinted in the previous section, the primary application of Galois cohomology in this report will be to
define and study fundamental invariants of elliptic curves and generally abelian varieties, namely the Selmer
group and the Tate-Shafarevich group, which are the topics of this subsection. Fixing n ∈ N+, this begins
by considering the short exact sequence of abelian groups induced by multiplication by n

0→ E [n]
↪→−→ E

[n]−−→ E → 0.

Applying Galois cohomology induces a long exact sequence of cohomology groups, which can be truncated
at H1 (F,E [n]) to establish a short exact Kummer sequence [Sil09, Sequence X.4(∗)]

0→ E (F ) /n→ H1 (F,E [n])→ H1 (F,E) [n]→ 0.

Setting F = K gives the global Kummer sequence, while setting F = Kv for each place v ∈ VK gives local
Kummer sequences, and their individual groups are related by localisation maps induced by the natural
inclusions E

(
K
)
↪→ E

(
Kv

)
and Gal

(
Kv/Kv

)
↪→ Gal

(
K/K

)
. In particular, as discussed in the previous

section, direct products of localisation maps of H1 (K,E [n]) and H1 (K,E) have images landing in their
respective first adelic cohomology groups. Likewise, the image of E (Kv) in H1 (Kv, E [n]) is unramified for
any place v ∈ VK except possibly those in the finite set

V∞K ∪
{
v ∈ V0

K

∣∣∣ Ẽ (Fv) is singular
}
∪
{
v ∈ V0

K

∣∣ ordv n 6= 0
}
,

where Ẽ (Fv) denotes the reduction modulo v of the minimal Weierstrass equation for E (Kv) [Sil09, Pro-
position VIII.2.1]. As such, the image of the zeroth adelic cohomology group, analogously denoted

E (AK) :=
∏
v∈VK

E (Kv) ,

also lands in the first adelic cohomology group H1 (AK , E [n]). Thus, combining the global and local Kummer
sequences furnishes the crucial row-exact Kummer diagram [Sil09, Diagram X.4(∗∗)]

0 E (K) /n H1 (K,E [n]) H1 (K,E) [n] 0

0 E (AK) /n H1 (AK , E [n]) H1 (AK , E) [n] 0

α

ν

β

λ
σ

τ

κ µ

,

where σ is the composition in either direction.
In the spirit of the weak Mordell-Weil theorem, it would be ideal if H1 (K,E [n]) were finite, so that

proving the finiteness of E (K) /n would reduce to its finiteness, yet this is usually not the case. Rather, the
usual proof considers a subgroup of H1 (K,E [n]) containing E (K) /n that is provably finite [Sil09, Theorem
X.4.2(b)] and effectively computable [Sil09, Remark X.4.5]. This is the role played by the n-Selmer group

Sn (K,E) := ker
(
σ : H1 (K,E [n])→ H1 (AK , E) [n]

)
,

as determining the local images of imκ can be done via Hensel’s lemma in contrast to the difficulty of the
global image imα. On one hand, this contains the familiar first Tate-Shafarevich subgroup X1 (K,E [n]) =
kerλ, and by the first isomorphism theorem, their quotient can be characterised as an intersection

Sn (K,E) /X1 (K,E [n]) = ker (µ ◦ λ) / kerλ
∼−→ λ (ker (µ ◦ λ)) = kerµ ∩ imλ = imκ ∩ imλ.

On the other hand, the classical Tate-Shafarevich group of an elliptic curve is defined to be

X (K,E) := ker
(
H1 (K,E)→ H1 (AK , E)

)
,

so that X (K,E) [n] = ker τ , and an application of the snake lemma to the Kummer diagram yields a famous
short exact sequence of abelian groups [Sil09, Theorem X.4.2(a)]

0→ E (K)⊗ Z/n α−→ Sn (K,E)
β−→X (K,E) [n]→ 0,

noting that E (K) /n ∼= E (K)⊗Z/n. This result is fundamental, and implies the finiteness of both E (K) /n
and X (K,E) [n], although patching up over all n ∈ N to produce X (K,E) guarantees nothing and is exactly
the content of the Tate-Shafarevich conjecture [Sil09, Conjecture X.4.13].
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Chapter 2. Preliminary background 2.2. Elliptic curves

2.2.4 Twists and torsors

The abstract algebraic definitions of the Selmer group and the Tate-Shafarevich group can be interpreted
geometrically as certain sets of twists of E. For a general definition, if V is a quasi-projective variety defined
over F , then an F -twist of V is a quasi-projective variety C defined over F that is isomorphic to V , and
two F -twists are considered equivalent if they are F -isomorphic. The set of all such twists is denoted

Twist (V/F ) := {F -twists of V } .

Note that these are F -isomorphism classes of F -isomorphisms, but the fact that they are equivalence classes
will be implicit, and isomorphisms over F are just referred to as isomorphisms, as previously remarked. A
general twisting principle in Galois descent says that the F -twists of V exactly parameterise the 1-cocycles
of H1 (F,AutV ) [Ser80, Proposition X.4], so there is a bijective correspondence of pointed sets

Twist (V/F ) ! H1 (F,AutV ) ,

where AutV is the group of automorphisms of V . By this interpretation, the presence of non-trivial 1-
cocycles measures the failure of these isomorphisms to be definable over F .

As a preliminary example, consider the group of automorphisms PGLn of Pn−1 for a fixed n ∈ N+.
Applying the twisting principle to the pointed set Twist

(
Pn−1/F

)
, conventionally called F -Brauer-Severi

varieties of dimension n, gives a bijective correspondence of pointed sets [Ser80, Section X.6]

Twist
(
Pn−1/F

)
! H1 (F,PGLn)

C 7−→
(
σ 7→ σ · φC ◦ φ−1

C

) ,
where φC : C

∼−→ Pn−1 is the automorphism encoded in the data of C that relates C and Pn−1. Note
that the dimension here, in contrast to the convention in literature, is defined to be one higher than the
dimension of the overarching projective space, for convenience purposes later. Then an F -Brauer-Severi
variety C ∈ Twist

(
Pn−1/F

)
corresponds to the trivial class in H1 (F,PGLn) if and only if C (F ) 6= ∅.

The twisting principle for E is also a bijective correspondence of pointed sets [Sil09, Theorem X.2.2]

Twist (E/F ) ! H1 (F,AutE)
C 7−→

(
σ 7→ σ · φC ◦ φ−1

C

) ,
where φC : C

∼−→ E denotes the automorphism relating C and E. Note that AutE refers to the group of
automorphisms of E as a quasi-projective variety, ignoring its group structure.

When the group structure of E is brought into the picture, a certain twist emerges by respecting actions
of E on its twists. In particular, an F -torsor for E is an F -twist C of E equipped with a regular E-action,
which are identified up to E-equivariant F -isomorphisms, forming the Weil-Châtelet pointed set

WC (E/F ) := {F -torsors for E} ,

where the trivial F -torsor exactly consists of E and its self-translations. Note that in common literature,
the twisting is implicit and arises only after fixing an initial point pC ∈ C and mapping it to O ∈ E, which
produces an isomorphism C

∼−→ E by relaying the group operations of E onto C [Sil09, Proposition X.3.2].
By the twisting principle, there is again a bijective correspondence of pointed sets [Sil09, Theorem X.3.6]

WC (E/F ) ! H1 (F,E)
C 7−→ (σ 7→ σ · pC − pC)

,

which also furnishes a group structure on WC (E/F ). Then an F -torsor C ∈WC (E/F ) corresponds to the
trivial class in H1 (F,E) if and only if C (F ) 6= ∅ [Sil09, Proposition X.3.3]. By this interpretation, there is
again a diagonal restriction map WC (E/K)→

∏
v∈VK WC (E/Kv) with kernel exactly the Tate-Shafarevich

group X (K,E). Thus X (K,E) measures the failure of the Hasse principle in WC (E/K), namely the
presence of K-torsor curves with Kv-rational points at every place v ∈ VK but with no K-rational points.
One may similarly interpret the n-Selmer group Sn (K,E) by parameterising 1-cocycles of H1 (K,E [n]) in
terms of K-torsors for E [n] in some Weil-Châtelet group, but this is omitted for an alternative later.
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Chapter 2. Preliminary background 2.2. Elliptic curves

2.2.5 Arithmetic duality theorems

As the overall theme of this report revolves around arithmetic duality, this final subsection reiterates the
relevant consequences of Tate’s local and global dualities for general abelian varieties, translated to the case
of elliptic curves defined over general fields of characteristic zero. As a start, due the self-duality of the
Gal

(
F/F

)
-module E [n] ∼= E [n]

†
for any n ∈ N+, when F = Kv for a place v ∈ VK , Tate’s local duality

simplifies to a natural Pontryagin duality between finite groups

H1 (Kv, E [n]) ∼= H1 (Kv, E [n])
?
.

Similarly, when F = K, Tate’s global duality simplifies to natural Pontryagin dualities between finite groups

X1 (K,E [n]) ∼= X2 (K,E [n])
?
, X2 (K,E [n]) ∼= X1 (K,E [n])

?
,

and the middle terms of the Poitou-Tate exact sequence become

· · · → H1 (K,E [n])
τ1

−→ H1 (AK , E [n]) ∼= H1 (AK , E [n])
? σ1

−→ H1 (K,E [n])
? → . . . .

On the other hand, the Gal
(
F/F

)
-module E ∼= Pic0

(
E/F

)
, while self-dual as an abelian variety, is not

finite, so the statements of arithmetic duality are formulated slightly differently. When F = Kv for a place
v ∈ VK , Tate’s local duality establishes a canonical non-degenerate perfect pairing [Mil06, Corollary I.3.4]

Hn (Kv, E)×H1−n (Kv, E)→ BrKv, n = 0, 1,

which again induces natural Pontryagin dualities

H0 (Kv, E) ∼= H1 (Kv, E)
?
, H1 (Kv, E) ∼= H0 (Kv, E)

?
,

between compact groups and discrete groups respectively. While the non-archimedean case has the expected
identifications BrKv

∼= Q/Z and H0 (Kv, E) = E (Kv), the archimedean case uses the aforementioned
convention of the zeroth Tate cohomology group [Mil06, Remark I.3.7], and the resulting dualities become

π0 (E (Kv)) ∼= H1 (Kv, E)
?
, H1 (Kv, E) ∼= π0 (E (Kv))

?
,

where π0 is the group functor describing the number of connected components. In particular, π0 (E (C))
is clearly always trivial, while π0 (E (R)) is trivial when E (R) is connected and Z/2 otherwise. When
F = K, there is also a formulation of Tate’s global duality [Mil06, Theorem I.6.13] in terms of a canonical
non-degenerate alternating Z-bilinear pairing, known as the Cassels-Tate pairing

X (K,E)×X (K,E)→ Q/Z.

Assuming the Tate-Shafarevich conjecture, it follows that X (K,E) and any of its p-primary components
have orders perfect squares [Sil09, Theorem X.4.14]. There is also a ten-term version of the Poitou-Tate
exact sequence [Mil06, Remark I.6.14], but both of these will not be used and will be elided for brevity.
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Chapter 3

Modelling Selmer groups

This chapter will be dedicated to understanding and modelling the behaviour of Selmer groups across all
elliptic curves defined over number fields. The first short section will provide basic definitions of quadratic
modules and what it means to be a Lagrangian submodule of a metabolic quadratic module. The second
section will prove, using arithmetic duality, that a Selmer group is naturally an intersection of two Lagrangian
direct summands in a metabolic quadratic module of infinite rank. The third section will suggest a finite
combinatorial construction mimicking this exact property, which induces a probabilistic distribution of orders
of pe-Selmer groups with average equal to the sum of divisors of a prime power pe ∈ N+.

3.1 Quadratic modules

The elementary theory of quadratic forms is pervasive in algebra, geometry, and number theory alike. Yet,
the common literature primarily considers the theory over finite fields, while much can also be said about
the theory over other non-integral domains like Z/n for any n ∈ N+, as well as those quadratic forms taking
values in an abelian group like Q/Z, which will be relevant to later discussions. Some of these definitions
are non-standard, and will follow the convention of the paper on random maximal isotropic subspaces by
Poonen and Rains [PR12]. Throughout this section, let R be a ring, and let M be an R-module.

3.1.1 Definitions

The following are several relevant definitions in the modified theory of quadratic forms over R-modules,
noting the explicit distinction between maps of R-modules and maps of abelian groups.

Definition. A map ωM : M → Q/Z is quadratic if it has an induced symmetric Z-bilinear pairing

〈−,−〉M : M ×M −→ Q/Z
(x, y) 7−→ ωM (x+ y)− ωM (x)− ωM (y)

,

and even if ωM = ωM ◦ (−1). A quadratic form is simply an even quadratic map, and a quadratic
R-module is an R-module equipped with a quadratic form.

Remark. The standard convention requires quadratic forms ωM : M → Q/Z to satisfy ωM ◦ n = n2 ◦ ωM
for all n ∈ N+, but this is an immediate consequence of being even and quadratic [PR12, Remark 2.1].

Definition. A submodule N of a quadratic R-module M is totally isotropic if ωM (N) = 0, and maximal
if it is equal to its orthogonal complement

N⊥ := {x ∈M | ∀y ∈ N, 〈x, y〉M = 0}
= {x ∈M | ∀y ∈ N, ωM (x+ y) = ωM (x) + ωM (y)} .

A Lagrangian submodule is simply a maximal totally isotropic submodule.

Remark. Total isotropy gives an obvious containment N ⊆ N⊥, so that maximality makes semantic sense,
otherwise these conditions are non-vacuous and independent of each other in general [PR12, Remark 2.3].
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Chapter 3. Modelling Selmer groups 3.1. Quadratic modules

Definition. A quadratic R-module M is non-degenerate if 〈−,−〉M is a perfect pairing of abelian groups,
or equivalently that the natural map from M to its Pontryagin dual M? given by

M −→ M?

x 7−→ (y 7→ 〈x, y〉M )

is an isomorphism of abelian groups. A quadratic R-module is weakly metabolic if it is non-degenerate
and contains a Lagrangian submodule, and just metabolic if this submodule is also a direct summand.

Remark. The alternative convention requires that M is finite or at least locally compact, so that a nice
topology can be equipped on it [PR12, Definition 2.13], but this requirement will be elided for simplicity.

3.1.2 Examples

There will be two primary examples relevant for each of the following two sections. The first example
showcases a common quadratic R-module of finite rank, which will be used heavily in the final section.

Example. IfR embeds into Q/Z, then the freeR-moduleR2n for some n ∈ N+, equipped with the standard
hyperbolic quadratic form

ωR2n : R2n −→ R ↪→ Q/Z

(x1, . . . , xn, y1, . . . , yn) 7−→
n∑
i=1

xiyi
,

is a quadratic R-module of finite rank, called the standard hyperbolic R-module of rank 2n, which is
metabolic with a Lagrangian direct summand Rn ⊕ 0n.

This example will be considered in the last section on the finite local rings R = Fp and R = Z/pe
for some prime power pe ∈ N+, where R embeds into Q/Z via the identifications Fp ∼= (1/p)Z/Z and
Z/pe ∼= (1/pe)Z/Z respectively. Here, direct summands of free R-modules of finite rank, or equivalently
projective R-modules of finite free rank, are finitely generated. Having the additional condition of locality,
by Nakayama’s lemma, ensures that direct summands of free R-modules of finite rank are also free.

Remark. The requirement of projectivity here allows for free direct summands to behave somewhat like
vector subspaces over fields, whereas mere submodules are not necessarily free unless the ring is at least a
principal ideal domain. By a general classification result [PR12, Remark 2.20], quadratic R-modules over a
local ring R can be completely classified up to isometries, isomorphisms of R-modules that preserve their
respective quadratic forms. For instance, any metabolic quadratic R-module has even rank, and is isometric
to the standard hyperbolic R-module of the same rank with the exception of rings where 2 6∈ R×. This is
almost true for rings where 2 6∈ R×, up to a non-invertible matrix defining the quadratic form.

The second example illustrates one where the above freeness argument does not immediately apply.

Example. If (Mi)i∈I are weakly metabolic quadratic R-modules with respective Lagrangian submodules
(Ni)i∈I for some indexing set I, then the restricted product of (Mi)i∈I with respect to (Ni)i∈I ,

M :=

{
(xi)i∈I ∈

∏
i∈I

Mi

∣∣∣∣∣ xi ∈ Ni for all but finitely many i ∈ I

}
,

equipped with the quadratic form

ωM : M −→ Q/Z
(xi)i∈I 7−→

∑
i∈I

ωMi
(xi) ,

a finite sum by total isotropy of each Ni, is a quadratic R-module of infinite rank, which is also weakly
metabolic with a Lagrangian submodule

∏
i∈I Ni.

An explicit example of this will be given in the following section on the finite ring R = Z/n for some
n ∈ N+, which can again be decomposed into finite local rings R = Z/pe by the Chinese remainder theorem.

Remark. By Kaplansky’s theorem, projective modules over local rings are free even without finite
generation [Kap58, Theorem 2], so the above freeness argument still applies, but this fact will not be used.
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Chapter 3. Modelling Selmer groups 3.2. Arithmetic of Selmer groups

3.2 Arithmetic of Selmer groups

The behaviour of the Mordell-Weil group of an elliptic curve E over a number field K, and hence its
Mordell-Weil rank, is largely governed by the behaviour of the n-Selmer group Sn (K,E) for all n ∈ N+, and
a thorough understanding of its arithmetic will be the topic of this core section. As previously outlined, the
n-Selmer group is constructed as the kernel of the localisation map λ in the Kummer diagram

0 E (K) /n H1 (K,E [n]) H1 (K,E) [n] 0

0 E (AK) /n H1 (AK , E [n]) H1 (AK , E) [n] 0

α

ν

β

λ
σ

τ

κ µ

,

while the first isomorphism theorem characterises the quotient Sn (K,E) /X1 (K,E [n]) as the intersection of
the images of κ and λ inside H1 (AK , E [n]). It turns out that H1 (AK , E [n]) is a weakly metabolic quadratic
Z/n-module of infinite rank, with Lagrangian submodules imκ and imλ lying within it. More importantly,
it can be further shown that these submodules are often direct summands of the ambient module, in a
rigorous sense, and that X1 (K,E [pe]) vanishes often when pe ∈ N+ is a prime power, so that the desired
characterisation of Spe (K,E) is achieved. Thus the aim of this section is to prove the following result.

(3.2.1) Theorem. For almost all elliptic curves E ∈ E (K), there is an isomorphism of abelian groups

Spe (K,E)
∼−→ L1 ∩ L2,

where L1 and L2 are Lagrangian direct summands of a metabolic quadratic Z/pe-module of infinite rank.

Remark. The same result is already known albeit in a more limited context, namely the case for pe = 2
and where the ambient module is a finite-dimensional F2-vector space [CSS98, Proposition 1.2.1].

The statement as phrased encompasses several parts whose proofs are all rather involved, so these will
be split accordingly in the following five subsections, and are summarised as follows for reference.

Proof of Theorem 3.2.1. In light of the above elucidation, set L1 := imκ and L2 := imλ in the ambient
module H1 (AK , E [n]), which has infinitely many generators, even considering its relations, to account
for all places. By first defining theta groups, its local components is equipped with a map of pointed
sets H1 (Kv, E [n]) → Q/Z, which is a quadratic form by Corollary 3.2.5 and Proposition 3.2.6, and its
non-degeneracy is verified using Tate’s local duality in Corollary 3.2.7. By proving basic properties of
Brauer-Severi diagrams, Proposition 3.2.11 and Proposition 3.2.12 show that the local components of L1

are Lagrangian, and as a consequence, the ambient non-degenerate quadratic Z/n-module H1 (AK , E [n]) is
well-defined by Corollary 3.2.13. The fact that L1 and L2 are Lagrangian follows soon after in Corollary
3.2.14 and Proposition 3.2.15, hence establishing weak metabolicity. In the specific case of n = pe, a long-
winded algebraic computation yields the triviality of X1 (K,E [pe]) by introducing the criterion SL2 (Z/pe) ≤
im ρE[pe], as summarised in Corollary 3.2.25. Strong metabolicity is established by proving that L1 is a direct
summand in Corollary 3.2.28, while the same holds for L2 under the criterion, as in Proposition 3.2.32.
Finally, the density of elliptic curves satisfying this criterion is justified in Proposition 3.2.35.

Throughout this section, fix the notation of the relevant groups and homomorphisms as in the above
Kummer diagram, and when the field of definition is irrelevant to an argument, consider the same elliptic
curve E but defined over a general field F of characteristic zero.

3.2.1 Non-degeneracy of the local quadratic module

This subsection begins the proof by equipping the first local cohomology group H1 (Kv, E [n]) with a well-
defined quadratic form, making it a quadratic Z/n-module, and verifying its non-degeneracy as an application
of arithmetic duality. The proof primarily follows the arguments in the paper on random maximal isotropic
subspaces by Poonen and Rains [PR12], noting the sign differences commonly disregarded in arithmetic
duality, but with a short exposition of theta groups that was elided in their paper for a reference to Mumford’s
book on abelian varieties [Mum70]. To begin, consider the following purely algebraic result of homological
algebra taken from Zarhin’s paper on non-commutative cohomologies and Mumford groups [Zar74].
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Let A and C be abelian groups, and let B be a central extension of C by A, such that

0→ A
α−→ B

β−→ C → 0

is an exact sequence of groups. Let c1, c2 ∈ C be elements. Since β is surjective, c1 = β (b1) and c2 = β (b2)
for some elements b1, b2 ∈ B. Since C is abelian by assumption, the commutator [b1, b2] ∈ B maps to the
trivial element in C through β, so [b1, b2] ∈ kerβ = imα, and hence [b1, b2] = α (a) for some element a ∈ A.
Now let G be a group acting on A, B, and C, and define a lifted commutator pairing by

[−,−] : C × C −→ A
(c1, c2) 7−→ a

.

Applying non-abelian group cohomology and the universal property of tensor products, this induces an
alternating Z-bilinear commutator pairing [−,−] : H2 (G,C ⊗ C)→ H2 (G,A).

(3.2.2) Lemma. There is a commutative triangle of pointed sets

H2 (G,C ⊗ C) H2 (G,A)

H1 (G,C)×H1 (G,C)

[−,−]

∪
(ξ1,ξ2)7→δ1(ξ1+ξ2)−δ1(ξ1)−δ1(ξ2)

,

where δ1 is the second connecting map between pointed sets.

Proof. This is an explicit computation with 1-cocycles. Let ξ1, ξ2 ∈ H1 (G,C) be 1-cocycles, and let σ, τ ∈ G
be group elements. The construction of δ1 gives elements b1σ, b

1
τ , b

1
στ , b

2
σ, b

2
τ , b

2
στ ∈ B such that

β
(
big
)

= ξi (g) , g ∈ {σ, τ, στ} , i ∈ {1, 2} .

Letting bg := b2g + b1g ∈ B for g ∈ {σ, τ, στ} yields

β (bg) = β
(
b2g + b1g

)
= β

(
b2g
)

+ β
(
b1g
)

= β
(
b1g
)

+ β
(
b2g
)

= ξ1 (g) + ξ2 (g) = (ξ1 + ξ2) (g) , g ∈ {σ, τ, στ} .

By the definition of the cup product,

(ξ1 ∪ ξ2) (σ, τ) = ξ1 (σ)⊗ σ · ξ2 (τ) = β
(
b1σ
)
⊗ σ · β

(
b2τ
)

= β
(
b1σ
)
⊗ β

(
σ · b2τ

)
,

so that [ξ1, ξ2] (σ, τ) = a for some element a ∈ A such that

α (a) =
[
b1σ, σ · b2τ

]
= b1σ + σ · b2τ − b1σ − σ · b2τ .

The construction of δ1 again gives elements a1
σ,τ , a

2
σ,τ ∈ A such that

α
(
a1
σ,τ

)
= b1σ + σ · b1τ − b1στ , α

(
a2
σ,τ

)
= b2σ + σ · b2τ − b2στ = −b2στ + b2σ + σ · b2τ ,

so that δ1 (ξ1) (σ, τ) = a1
σ,τ and δ1 (ξ2) (σ, τ) = a2

σ,τ , as well as an element aσ,τ ∈ A such that

α (aσ,τ ) = bσ + σ · bτ − bστ = b2σ + b1σ + σ · b2τ + σ · b1τ − b1στ − b2στ = −b2στ + b2σ + b1σ + σ · b2τ + σ · b1τ − b1στ ,

so that δ1 (ξ1 + ξ2) (σ, τ) = aσ,τ . A short computation yields

α
(
aσ,τ − a1

σ,τ − a2
σ,τ

)
= α (aσ,τ )− α

(
a1
σ,τ

)
− α

(
a2
σ,τ

)
= −b2στ + b2σ + b1σ + σ · b2τ + σ · b1τ − b1στ + b1στ − σ · b1τ − b1σ − σ · b2τ − b2σ + b2στ

= b1σ + σ · b2τ − b1σ − σ · b2τ
= α (a) .

The result follows by the verification

[ξ1, ξ2] (σ, τ) = a = aσ,τ − a1
σ,τ − a2

σ,τ = δ1 (ξ1 + ξ2) (σ, τ)− δ1 (ξ1) (σ, τ)− δ1 (ξ2) (σ, τ) ,

since α is injective.
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Considering G = Gal
(
F/F

)
and setting A = F

×
and C = E [n], the quadratic behaviour of H1 (F,E [n])

is perhaps evident from the diagram in Lemma 3.2.2, but the construction entails defining the central
extension B, which will require defining the notion of a theta group.

Definition. An F -theta group of level n for E is a central extension of E (F ) [n] by F× such that its
induced commutator pairing E (F ) [n]× E (F ) [n]→ F× coincides with the n-Weil pairing.

While the general theory of theta groups in terms of invertible sheaves is extensively covered in the
literature, for the purposes of defining the quadratic form in the remainder of this subsection, it suffices to
provide an explicit construction of a specific theta group. Consider the set

Θ :=
{

(P, fP ) ∈ E [n]× F (E)
×
∣∣∣ [fP ] = n [P ]− n [O]

}
,

equipped with operations (P, fP ) · (P ′, fP ′) := (P + P ′, fP+P ′) and (P, fP )
−1 := (−P, f−P ), where

fP+P ′ := fP · τ∗P fP ′ , f−P :=
1

τ∗−P fP
,

and a distinguished identity (O, x) ∈ Θ for any x ∈ F×. Additionally, write Θ (F ) to denote the same set,
but each instance of F is replaced by F , which is exactly the set of Gal

(
F/F

)
-invariant elements.

Remark. In terms of line bundles, Θ is a group scheme over F [Mum70, Section IV.23], so the notation
expressing its F -rational points Θ (F ), as well as that of the cohomology group H1 (F,Θ), make sense.

A priori, Θ is only a pointed set, but its group axioms can be verified by manifesting it as a fibre product.

(3.2.3) Proposition. There is a row-exact diagram of groups

0 F
×

Θ E [n] 0

0 F
×

GLn PGLn 0

α

=

β

ζ ε

γ δ

.

Proof. Let P, P ′ ∈ E [n] be points in general position, and let fP , fP ′ ∈ F (E)
×

be their associated non-zero
rational functions in Θ. The fact that Θ is a group can be checked with the easy computation [τ∗P fP ′ ] =
n [P + P ′]− n [P ], where the group operations are well-defined from verifying that

[fP+P ′ ] = n [P + P ′]− n [O] , [f−P ] = n [−P ]− n [O] ,

while the group axioms follow from expanding divisor terms and using the commutativity of E [n]. Now
define the inclusion map α and the projection map β in the obvious way, and define the maps γ and δ using

the identification PGLn ∼= GLn /F
×

. Then the translation map τP : E → E extends to a unique projective

transformation T̂P ∈ PGLn via the linear system L̂n : E → Pn−1 such that the square

E Pn−1

E Pn−1

L̂n

∼τP T̂P∼

L̂n

,

Q L̂n (Q)

P +Q L̂n (P +Q) T̂P L̂n (Q)=

commutes, so this equates to the existence of a well-defined homomorphism ε. Likewise, lifting T̂P ∈ PGLn
to a linear transformation TP ∈ GLn via the linear system Ln : E → F

n
is unique up to a choice of a non-

zero rational function fP ∈ F (E)
×

. This is conveniently supplied by the second component of Θ, so this
establishes a well-defined map ζ, which is also a homomorphism by construction. Finally, the commutativity
of the left square follows from the fact that TO ∈ GLn is the identity matrix scaled by a non-zero constant,
while the commutativity of the right square follows by the construction of ε and ζ.
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It remains to prove that the induced commutator pairing coincides with the Weil pairing, after which the
centrality of the group extension follows immediately, so that Θ is an F -theta group of level n for E.

(3.2.4) Proposition. The commutator [−,−] : Θ×Θ→ Θ induces a pairing that coincides exactly with the n-Weil

pairing en : E [n]× E [n]→ F
×

. That is,

[x, y] = α (en (β (x) , β (y))) , x, y ∈ Θ.

Proof. Let P, P ′ ∈ E [n] be points in general position, and let fP , fP ′ ∈ F (E)
×

be their associated non-zero
rational functions in Θ. The commutativity of E [n] immediately trivialises [P, P ′], so it suffices to check
that [fP , fP ′ ] is constant and equal to en (P, P ′). By the definition of the group operation,

[fP , fP ′ ] = fP+P ′−P−P ′ =
fP · τ∗P fP ′
τ∗P ′fP · fP ′

,

so a simple divisorial computation yields

[[fP , fP ′ ]] = (n [P ]− n [O]) + (n [P + P ′]− n [P ])− (n [P ′ + P ]− n [P ′])− (n [P ′]− n [O]) = 0,

which is equivalent to saying that [fP , fP ′ ] ∈ F
×

. Now fix a point Q ∈ E in general position such that
{O,±P,±Q,±P ±Q} are pairwise distinct. Applying the Abel-Jacobi map to the points P and P ′ gives
linearly equivalent divisors [P ] − [O] ∼ [Q+ P ] − [Q] and [P ′] − [O] ∼ [Q+ P ′] − [Q] related via the line
functions LQ,P ,LQ,P ′ ∈ F (E)

×
, so another divisorial computation yields

en (P, P ′) = ẽn ([Q+ P ]− [Q] , [Q+ P ′]− [Q]) =
fP (Q) fP ′ (Q+ P )

fP (Q+ P ′) fP ′ (Q)
= [fP , fP ′ ] (Q) ,

which is well-defined and constant despite the choice of Q ∈ E.

Remark. In explicit descent theory of elliptic curves, theta groups are also used to parameterise 1-cocycles
of H1 (F,E [n]). It can be shown that every F -theta group of level n for E is a twist of Θ [Sto10, Proposition

1.6], and that E [n] is isomorphic to the group of automorphisms of central extensions of E [n] by F
×

. Thus
the F -theta groups of level n for E, viewed as twists of Θ, exactly parameterise the 1-cocycles of H1 (F,E [n])
up to F -isomorphism, by the twisting principle. Proving these facts is not difficult, but will be skipped for
a more useful description in terms of Brauer-Severi diagrams to be described in the next subsection.

Applying non-abelian Galois cohomology to the diagram in Proposition 3.2.3, taking into account the
Gal

(
F/F

)
-group structure of Θ, induces a long row-exact diagram of cohomology pointed sets, so truncating

this at the second connecting homomorphism furnishes a commutative square

H1 (F,E [n]) BrF

H1 (F,PGLn) BrF

ObF

H1(F,ε) =

δ1

,

where the composition ObF will be called the period-index obstruction. By the description of the
homomorphism ε, this is the induced map on cohomology that takes an automorphism σ ∈ Gal

(
F/F

)
and

sends a point Pσ ∈ E [n] to a projective transformation T̂Pσ ∈ PGLn, embedded into BrF .

Remark. There are several interpretations of this map, one of which says that it measures the failure of
elements in H1 (F,E [n]) to be mappable into Pn−1, and will be clear after discussing Brauer-Severi diagrams.
Another interpretation that bestows the name of this map says that it measures the failure of the period of
an F -torsor, its order in the torsion group H1 (F,E), to be equal to its index, the smallest degree of a line
bundle on it that is definable over F . In particular, the period of a torsor always divides the index, and in
many cases these quantities are equal, but there are examples where they differ [ONe01, Section 1].

Returning to the relevant case of F = Kv for a fixed place v ∈ VK , it follows that H1 (Kv, E [n]) can be
equipped with a quadratic map, the local period-index obstruction ObKv : H1 (Kv, E [n])→ BrKv ↪→ Q/Z.
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(3.2.5) Corollary. The local period-index obstruction is quadratic. That is,

H1 (Kv, E [n])×H1 (Kv, E [n]) −→ BrKv ↪→ Q/Z
(ξ1, ξ2) 7−→ ObKv (ξ1 + ξ2)−ObKv (ξ1)−ObKv (ξ2)

is a symmetric Z-bilinear pairing.

Proof. Since the cup product and the commutator are both Z-bilinear, and that the alternativity introduced
by both pairings cancel out to establish symmetry, this follows immediately from Lemma 3.2.2.

It is worth noting that if a submodule of H1 (Kv, E [n]) is totally isotropic, so that this bilinear pairing is
the zero map, then the local period-index obstruction is a homomorphism when restricted to this submodule.
By making use of the specific Kv-theta group Θ, this map can also be shown to be a quadratic form.

(3.2.6) Proposition. The local period-index obstruction is even. That is,

ObKv (ξ) = ObKv (−ξ) , ξ ∈ H1 (Kv, E [n]) .

Proof. Consider the inversion of Θ defined by

−Θ :=
{

(P, fP )
−1 ∈ E [n]×Kv (E)

×
∣∣∣ [fP ] = n [P ]− n [O]

}
=
{

(−P, f−P ) ∈ E [n]×Kv (E)
×
∣∣∣ [f−P ] = n [−P ]− n [O]

}
,

which is clearly isomorphic to Θ by the inversion map ι : E → E. Defining the inverted map −α : Kv
× → −Θ

in the obvious way furnishes a row-exact diagram of groups

0 Kv
×

Θ E [n] 0

0 Kv
× −Θ E [n] 0

α

=

β

ι ι

−α β

,

both rows of which induce the period-index obstruction on cohomology, by Proposition 3.2.3. Thus the
δ-functoriality of non-abelian Galois cohomology establishes a commutative square of pointed sets

H1 (Kv, E [n]) BrKv

H1 (Kv, E [n]) BrKv

ObKv

H1(Kv,ι) =

ObKv

,

so that ObKv = ObKv ◦H1 (Kv, ι).

Remark. As the proofs of Corollary 3.2.5 and Proposition 3.2.6 did not use any facts about local fields,
the same arguments and statements generalise to a general field F , provided the notion of a quadratic form
taking values on an arbitrary abelian group is appropriately defined.

Thus H1 (Kv, E [n]), equipped with the local period-index obstruction, is indeed a quadratic Z/n-module.
It then follows from local duality that it is also non-degenerate.

(3.2.7) Corollary. The quadratic Z/n-module H1 (Kv, E [n]) is non-degenerate. That is,

H1 (Kv, E [n]) −→ H1 (Kv, E [n])
?

ξ1 7−→ (ξ2 7→ ObKv (ξ1 + ξ2)−ObKv (ξ1)−ObKv (ξ2))

is an isomorphism of abelian groups.

Proof. The induced commutator pairing coincides with the non-degenerate n-Weil pairing by Proposition
3.2.4, while the non-degeneracy of the cup product follows by Tate’s local duality for E [n], and these exactly
constitute the period-index obstruction by Lemma 3.2.2.

Summing over all local period-index obstructions yields a global quadratic form, so that the full first
adelic cohomology group H1 (AK , E [n]) is the desired ambient quadratic Z/n-module, but the map obtained
is a priori not a well-defined sum, and proving this will be an immediate consequence in the next subsection.
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3.2.2 Lagrangian submodules and weak metabolicity

This subsection continues the proof by establishing the Lagrangian conditions for imκ and imλ, and deducing
that H1 (AK , E [n]) is a well-defined non-degenerate quadratic Z/n-module. The proof follows the arguments
in the paper on random maximal isotropic subspaces by Poonen and Rains [PR12], but a more elementary
proof is provided as an alternative to a key result in their paper. The alternative proof is based on the notion
of Brauer-Severi diagrams, as detailed in the paper on explicit descent on elliptic curves by Cremona, Fisher,
O’Neil, Simon, and Stoll [CFOSS06], with some arguments sketched from O’Neil’s paper on the period-
index obstruction [ONe01]. This is an abstract construct, extending the notion of Brauer-Severi varieties,
with group of automorphisms isomorphic to E [n], hence parameterising H1 (F,E [n]) through the twisting
principle. In what follows, let dashed arrows denote F -isomorphisms.

Definition. An F -Brauer-Severi diagram [φ] of dimension n for E is an F -morphism φ : C → V from
an F -torsor C ∈WC (E/F ) [n] to an F -Brauer-Severi variety V ∈ Twist

(
Pn−1/F

)
such that the square

C V

E Pn−1

φ

∼φC φV∼

L̂n

commutes. Two F -Brauer-Severi diagrams [φ : C → V ] and [φ′ : C ′ → V ′] of dimension n for E are con-
sidered equivalent if there is a pair (ψCC′ , ψV V ′), consisting of an F -isomorphism of F -torsors ψCC′ : C

∼−→
C ′ and an F -isomorphism of varieties ψV V ′ : V

∼−→ V ′, such that the diagram

C V

E Pn−1

E Pn−1

C ′ V ′

φ

φC
∼

∼ψCC′

∼
φV

ψV V ′∼

L̂n

∼τP T̂∼

L̂n∼
φC′

φ′

φV ′

∼

commutes, for some point P ∈ E and some projective transformation T̂ ∈ PGLn. Finally, define the set

BSn (E/F ) := {F -Brauer-Severi diagrams of dimension n for E modulo equivalence} ,

pointed at a distinguished identity, abusively denoted L :=
[
L̂n
]
, given by the linear system L̂n : E → Pn−1.

Conceptually, given any morphism φ : C → V of F -twists C ∈WC (E/F ) [n] and V ∈ Twist
(
Pn−1/F

)
,

the F -Brauer-Severi diagram [φ] can be viewed as an F -twist of L, so applying the twisting principle to
BSn (E/F ) would result in the group H1 (F,E [n]). A formal proof of this entails a bit more work.

(3.2.8) Proposition. There is an isomorphism of abelian groups

E [n]
∼−→ AutL,

where AutL denotes the group of automorphisms of L.

Proof. An element P ∈ E [n] supplies an automorphism of F -torsors τP : E → E that uniquely extends to

an automorphism of varieties T̂P : Pn−1 → Pn−1, making the diagram commute as argued previously, and

hence giving a well-defined automorphism
(
τP , T̂P

)
∈ AutL. Conversely, an automorphism

(
τP , T̂

)
∈ AutL

consists of a translation map τP : E → E for some point P ∈ E that automatically fixes the unique projective
transformation T̂ = T̂P ∈ PGLn, which in turn gives a linear equivalence n [O] ∼ n [P ]. Thus there is a

well-defined bijection of pointed sets sending P to
(
τP , T̂P

)
, which is a homomorphism by construction.
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The twisting principle now heuristically relates BSn (E/F ) and H1 (F,E [n]), although a constructive
sketch of the proof will be useful to define the correspondence explicitly.

(3.2.9) Proposition. There is a bijective correspondence of pointed sets

BSn (E/F ) ! H1 (F,E [n])
[φ : C → V ] 7−→ (σ 7→ Pσ)

,

for a unique point Pσ ∈ E [n], which supplies BSn (E/F ) with the structure of an abelian group.

Proof. Given an F -Brauer-Severi diagram [φ : C → V ] ∈ BSn (E/F ), consider a sufficiently large finite Galois
extension F ′ over F such that C (F ′) 6= ∅, so that, by taking direct limits over all such F ′, the result reduces
to constructing a unique corresponding 1-cocycle in H1 (F ′/F,E (F ′) [n]). Now sending a fixed F ′-rational
point in C to O ∈ E yields an F ′-isomorphism φC(F ′) : C (F ′)

∼−→ E (F ′), which, viewed as a self-translation

map, uniquely extends to an F ′-isomorphism φV (F ′) : V (F ′)
∼−→ Pn−1 (F ′) such that the square

C (F ′) V (F ′)

E (F ′) Pn−1 (F ′)

φC(F ′) φV (F ′)

commutes. Thus the 1-cocycle in H1 (F ′/F,E (F ′) [n]) sending an automorphism σ ∈ Gal (F ′/F ) to the auto-

morphism of F -Brauer-Severi diagrams
(
τPσ , T̂Pσ

)
:=
(
σ · φC(F ′) ◦ φ−1

C(F ′), σ · φV (F ′) ◦ φ−1
V (F ′)

)
∈ AutL (F ′)

is unique, and corresponds to a point Pσ ∈ E (F ′) [n] by the finite version of Proposition 3.2.8.

With the correspondence in Proposition 3.2.9, two forgetful maps can be constructed on BSn (E/F ). One
map simply forgets the right half of the diagram containing the F -Brauer-Severi variety, by sending

BSn (E/F ) −→ WC (E/F ) [n]
[φ : C → V ] 7−→ C

,

which is a homomorphism that corresponds to the right map H1 (F,E [n]) → H1 (F,E) [n] in the Kummer
sequence. The other map simply forgets the left half of the diagram containing the F -torsor, by sending

BSn (E/F ) −→ Twist
(
Pn−1/F

)
[φ : C → V ] 7−→ V

,

which is only a map of pointed sets. To summarise, all of the aforementioned bijective correspondences,
alongside the period-index obstruction, fit in a diagram of pointed sets

BSn (E/F ) H1 (F,E [n])

H1 (F,E) [n] WC (E/F ) [n] Twist
(
Pn−1/F

)
H1 (F,PGLn) BrF

∼

ObF

∼ φ ∼

.

It turns out that the right trapezium actually commutes, which says that the second forgetful map coincides
exactly with the period-index obstruction, so the characterisation using theta groups also carry over.

(3.2.10) Proposition. The period-index obstruction ObF : H1 (F,E [n]) → BrF maps an F -Brauer-Severi diagram
[φ : C → V ] ∈ BSn (E/F ) to its F -Brauer-Severi variety V ∈ Twist

(
Pn−1/F

)
.

Proof. Let σ ∈ Gal
(
F/F

)
be a fixed automorphism. A 1-cocycle ξ ∈ H1 (F,E [n]) mapping σ to a point

Pσ ∈ E [n] sends σ to the automorphism of F -Brauer-Severi diagrams
(
τPσ , T̂Pσ

)
∈ AutL, by the description

in Proposition 3.2.9. The second forgetful map then corresponds to sending this pair to the automorphism
of varieties T̂Pσ : Pn−1 → Pn−1, so this is in fact a 1-cocycle ξ ∈ H1 (F,PGLn) ↪→ BrF that maps σ to a

projective transformation T̂Pσ ∈ PGLn, which coincides exactly with the description of ObF .
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Remark. Interestingly, an interpretation of n-Selmer group can be read off almost immediately from the
construction of Brauer-Severi diagrams. In particular, there is a bijective correspondence of pointed sets

Sn (K,E) !
{[
φ : C → Pn−1

]
∈ BSn (E/K)

∣∣ ∀v ∈ VK , C (Kv) 6= ∅
}
⊆ BSn (E/K) ,

so the latter subset also inherits a subgroup structure. This correspondence is an immediate consequence of
the fundamental sequence of global class field theory and a simple diagram chase.

Returning to the original objective of proving weak metabolicity, first consider the case of F = Kv for a
fixed place v ∈ VK . For ease of notation, denote the left map in the local Kummer sequence by

κv : E (Kv) /n ↪→ H1 (Kv, E [n]) ,

so that the adelic injection κ is a direct product of the local injections κv. Proving that imκv is a Lagrangian
submodule of H1 (Kv, E [n]) reduces to proving total isotropy and maximality, but total isotropy follows from
relating the period-index obstruction to the various correspondences of Brauer-Severi diagrams.

(3.2.11) Proposition. The submodule imκv is totally isotropic. That is,

imκv ⊆ ker ObKv .

Proof. Along with the local Kummer sequence, consider the diagram of pointed sets

0 E (Kv) /n H1 (Kv, E [n]) H1 (Kv, E) [n] 0

BSn (E/Kv) WC (E/Kv) [n]

BrKv H1 (Kv,PGLn) Twist
(
Pn−1/Kv

)

κv

ObKv

µv

∼ ∼

µ′v

φ

∼

,

which commutes by Proposition 3.2.10, where the dashed arrow denotes the induced map restricted to
E (Kv) /n. Then imκv is exactly the kernel of µv, which corresponds to that of the forgetful map µ′v.
On the other hand, this sends a Kv-Brauer-Severi diagram [φ : C → V ] ∈ BSn (E/Kv) to its Kv-torsor
C ∈ WC (E/Kv) [n], which corresponds to the trivial class in H1 (Kv, E [n]) if and only if C (Kv) 6= ∅.
Applying the Kv-morphism φ : C → V also forces V (Kv) 6= ∅, which holds precisely when its Kv-Brauer-
Severi variety V ∈ Twist

(
Pn−1/Kv

)
corresponds to the trivial class in H1 (Kv,PGLn). Thus any element of

imκv is sent via the period-index obstruction to the trivial class in BrKv.

Remark. The proof of Proposition 3.2.11 is independent of locality, and would work for a general field F .

In a similar vein as before, proving maximality does utilise local duality.

(3.2.12) Proposition. The submodule imκv is maximal. That is,

imκv = (imκv)
⊥
.

Proof. Consider the long exact sequence of cohomology groups inducing the local Kummer sequence

· · · → E (Kv)
κv−→ H1 (Kv, E [n])→ H1 (Kv, E)→ . . . ,

so that imκv is simultaneously the image of E (Kv) and of E (Kv) /n inside H1 (Kv, E [n]). By Tate’s
local duality for E [n], their Pontryagin dual maps are H1 (Kv, E [n]) → E (Kv)

?
and H1 (Kv, E [n]) →

(E (Kv) /n)
?

respectively, whose kernels are both (imκv)
⊥

. It then suffices to identify H1 (Kv, E) with
E (Kv)

?
or (E (Kv) /n)

?
, after which the result follows by exactness, and doing this entails splitting into cases

depending on the place v ∈ VK . The non-archimedean case follows immediately by Tate’s local duality for
elliptic curves. In the archimedean case of C, completeness implies that E (C) /n = 0, while connectedness
implies that π0 (E (C)) = 0, but the Pontryagin dual of the latter is exactly H1 (C, E). Likewise, in the
archimedean case of R, completeness implies that E (R) /n ∼= Z/2 whenever n is even, which is equal to
π0 (E (C)) ∼= Z/2, so Tate’s local duality for elliptic curves applies again. The previous argument fails when
n is odd, but in this case H1 (R, E [n]) is simultaneously 2-torsion, by virtue of Gal (C/R), and n-torsion, by

virtue of E [n], so it is in fact trivial. Thus imκv and (imκv)
⊥

are both trivial and the result follows.
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Recall that the restricted product of weakly metabolic quadratic Z/n-modules with respect to their
Lagrangian submodules is naturally also weakly metabolic. Now apply this to H1 (AK , E [n]), which was
defined to be the restricted product of H1 (Kv, E [n]) with respect to H1

u (Kv, E [n]).

(3.2.13) Corollary. The ambient module H1 (AK , E [n]), equipped with the quadratic form

q : H1 (AK , E [n]) −→ Q/Z
(ξv)v∈VK 7−→

∑
v∈VK

invKv (ObKv (ξv))

is a well-defined non-degenerate quadratic Z/n-module.

Proof. Since the local Hasse invariant is a homomorphism, the fact that it is a non-degenerate quadratic
Z/n-module follows immediately from properties of the local period-index obstruction in Corollary 3.2.7, so
it suffices to verify that it is a well-defined finitary sum, but this also follows from Proposition 3.2.11 and
that imκv ∼= E (Kv) /n ∼= H1

u (Kv, E [n]) for all but finitely many places v ∈ VK .

With a well-defined quadratic Z/n-module, it now makes sense for its submodules to be Lagrangian.

(3.2.14) Corollary. The submodule imκ is Lagrangian. That is,

imκ ⊆ ker q, imκ = (imκ)
⊥
.

Proof. This follows immediately from taking direct products of the local components in Proposition 3.2.11
and Proposition 3.2.12, together with the definition of the quadratic form in Corollary 3.2.13.

Thus this establishes that H1 (AK , E [n]) is weakly metabolic. Now the bulk of the work in this subsection
deals with the submodule imκ, while the fact that the submodule imλ is Lagrangian is almost an immediate
consequence of global class field theory and Tate’s global duality.

(3.2.15) Proposition. The submodule imλ is Lagrangian. That is,

imλ ⊆ ker q, imλ = (imλ)
⊥
.

Proof. The fundamental sequence of global class field theory induces a row-exact diagram of abelian groups

H1 (K,E [n]) H1 (AK , E [n])

0 BrK
⊕
v∈VK

BrKv Q/Z 0

λ

ObK
∑

ObKv
q

,

which commutes by δ-functoriality of Galois cohomology. Here, the composition q ◦ λ factors through the
global period-index obstruction, and imλ is sent to the trivial class in Q/Z upon summing the local Hasse

invariants. Hence imλ is contained in ker q, while for the equality of imλ and (imλ)
⊥

, extract the middle
terms of the Poitou-Tate exact sequence to establish exactness at

H1 (K,E [n])
τ1

−→ H1 (AK , E [n]) ∼= H1 (AK , E [n])
? σ1

−→ H1 (K,E [n])
?
.

The result then follows by identifying λ = τ1 and its Pontryagin dual map λ? = σ1.

With more work, it can be shown that imκ is also a direct summand, hence further establishing strong
metabolicity, and that imλ is often a direct summand, at least for almost all elliptic curves. Describing
when imλ is a direct summand would be more enlightening after writing down the explicit assumption in
the following subsection, so the proof of strong metabolicity will be delayed to after the following subsection.
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3.2.3 Triviality of the first Tate-Shafarevich group

The aim of this subsection is to attain a frequently applicable criterion for the vanishing of the first Tate-
Shafarevich group X1 (K,E [n]) when n = pe ∈ N+ is a prime power. The overall proof is a purely algebraic
computation, detailing the arithmetic justification in the paper on modelling distributions of elliptic curves
by Bhargava, Kane, Lenstra, Poonen, and Rains [BKLPR15]. This will involve a long-winded series of
inflation-restriction exact sequences, beginning with the reduction to a more workable cohomology group.

Given a finite Gal
(
K/K

)
-module A, its Gal

(
K/K

)
-action induces a homomorphism

ρA : Gal
(
K/K

)
→ AutA.

On the other hand, any subgroup G ≤ im ρA induces natural restriction maps

resG : Hm (im ρA, A)→ Hm (G,A) , m ∈ N,

where A is now considered as a finite im ρA-module. Considering the direct sum of such restriction maps
over all cyclic subgroups furnishes the m-th cyclic cohomology groups

Hm
c (im ρA, A) := ker

⊕ resC : Hm (im ρA, A)→
⊕

C≤im ρA cyclic

Hm (C,A)

 , m ∈ N.

The first result reduces the vanishing of the first Tate-Shafarevich group to a cyclic cohomology group.

(3.2.16) Lemma. Let A be a finite im ρA-module. Then there is a monomorphism

X1 (K,A) ↪→ H1
c (im ρA, A) .

Proof. For this proof, write R := im ρA. The first isomorphism theorem gives an isomorphism of finite groups
R ∼= Gal

(
K/K

)
/ ker ρA, so the finite version of the Galois correspondence applies to identify R ∼= Gal (L/K)

for some fixed finite Galois extension L over K. Then the inflation-restriction exact sequence applied to the
finite Galois group Gal

(
K/K

)
/Gal

(
K/L

) ∼= Gal (L/K) yields

0→ H1 (R,A)
inf−−→ H1 (K,A)

res−−→ H1 (L,A) ,

where AGal(K/L) = A since Gal
(
K/L

)
acts trivially on A by assumption. Now each place v ∈ VK extends

to a choice of a place w ∈ VL, so applying the same argument everywhere locally yields

0→
∏
v∈VK

H1 (Rv, A)
∏

infv−−−−→
∏
v∈VK

H1 (Kv, A)
∏

resv−−−−→
∏
v∈VK

H1 (Lw, A) ,

where Rv := Gal (Lw/Kv). Then combining both sequences with the obvious restriction maps and extracting
the first few terms through the snake lemma, by definition, establishes a left exact sequence of abelian groups

0→X1 (L/K,A)→X1 (K,A)→X1 (L,A) .

By Chebotarev’s density theorem, any cyclic subgroup of R is isomorphic to a local Galois group Rv for
some non-archimedean place v ∈ V0

K , so there is a monomorphism X1 (L/K,A) ↪→ H1
c (R,A). On the other

hand, any homomorphism Gal
(
K/L

)
→ A that becomes trivial upon restriction to all cyclic subgroups C ≤

Gal
(
K/L

)
must also be trivial, so the direct sum of such restriction maps resC : H1 (L,A)→ H1 (C,A) has

trivial kernel. Thus Chebotarev’s density theorem applies again to these cyclic subgroups for the triviality of
X1 (L,A), and the desired monomorphism is the composition X1 (K,A) ∼= X1 (L/K,A) ↪→ H1

c (R,A).

More explicitly, the vanishing of X1 (K,A) simply reduces to the injectivity of the restriction map
resC : H1 (im ρA, A)→ H1 (C,A) for at least one cyclic subgroup C ≤ im ρA. Returning to the relevant case
of the n-torsion subgroup E [n], the induced homomorphism ρE[n] : Gal

(
K/K

)
→ GL2 (Z/n) is really a

two-dimensional modulo n Galois representation, and triviality holds unconditionally when n = p is prime.
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(3.2.17) Proposition.
X1 (K,E [p]) = 0.

Proof. For this proof, write R := im ρE[p]. By Lemma 3.2.16, it suffices to show that the induced restriction
map resC : H1 (R,E [p]) → H1 (C,E [p]) is injective for some cyclic subgroup C ≤ R. If p - #R, the group
H1 (R,E [p]) is trivially annihilated by p and the restriction map is vacuously injective, so now assume that

p | #R. Since # GL2 (Fp) = p (p+ 1) (p− 1)
2
, by the Sylow theorems, the unique conjugacy class of p-Sylow

subgroups of GL2 (Fp) ∼= AutF2
p
∼= AutE [p] precisely coincides with its cyclic subgroups of order p, and at

least one such subgroup C ≤ GL2 (Fp) is also contained in R by assumption. Thus the result follows from
the injectivity of restriction maps on p-Sylow subgroups.

To prove the injectivity of the restriction map in the general case of n = pe entails further work, and
the upcoming proof works only under the mild assumption that SL2 (Z/pe) ≤ im ρE[pe], which begins with
another reduction to a cyclic cohomology group.

(3.2.18) Lemma. Assume that SL2 (Z/n) ≤ im ρE[n]. Then there is a monomorphism

X1 (K,E [n]) ↪→ H1
c (SL2 (Z/n) , E [n]) .

Proof. For this proof, write R := im ρE[n] and S := SL2 (Z/n), so the assumption reads S ↪→ R. The
inflation-restriction exact sequence applied to R/S yields

0→ H1
(
R/S,E [n]

S
)

inf−−→ H1 (R,E [n])
res−−→ H1 (S,E [n]) .

Any S-invariant element of E [n] ∼= (Z/n)
2

is in particular fixed by ( 1 1
0 1 ), ( 1 0

1 1 ) ∈ S, which can only be the

trivial element of (Z/n)
2
, so the invariant subgroup E [n]

S
, and hence H1

(
R/S,E [n]

S
)

, is trivial. Thus the

restriction map is injective, and the desired monomorphism is induced by the composition

H1 (R,E [n])
res
↪−→ H1 (S,E [n])

⊕
resC−−−−−→

⊕
C≤S cyclic

H1 (C,E [n])
⊆
↪−→

⊕
C≤R cyclic

H1 (C,E [n]) ,

and then applying Lemma 3.2.16.

The non-degenerate case of p > 2 is easy to deal with, by virtue of the subgroup {±1} ≤ SL2 (Z/pe).

(3.2.19) Proposition. Let p > 2. Assume that SL2 (Z/pe) ≤ im ρE[pe]. Then

X1 (K,E [pe]) = 0.

Proof. For this proof, write S := SL2 (Z/pe). By Lemma 3.2.18, it suffices to show a stronger condition that
H1 (S,E [pe]) is trivial. The inflation-restriction exact sequence applied to S/ {±1} yields

0→ H1
(
S/ {±1} , E [pe]

{±1}
)

inf−−→ H1 (S,E [pe])
res−−→ H1 ({±1} , E [pe]) .

The natural {±1}-action on E [pe] ∼= (Z/pe)2
is either the identity map or the inversion map, so the invariant

subgroup E [pe]
{±1}

is simply E [pe] [2], which is simultaneously p-torsion and 2-torsion, and hence trivial.
The same torsion argument applies for the triviality of H1 ({±1} , E [pe]), so the result follows.

The remainder of this subsection deals with the degenerate case of p = 2, which is significantly more
cumbersome in both proof and notation. It suffices to consider e > 1, since the trivial scenario when
e = 1 is already dealt with. First observe that reducing integers modulo 2d induces natural quotient maps
σed : SL2 (Z/2e)� SL2

(
Z/2d

)
, so for the remainder of this subsection, denote

Sd := SL2

(
Z/2d

)
, σed : Se � Sd.

With this notation, the kernels of these reduction maps induce a descending filtration of groups

0 = kerσee ≤ kerσee−1 ≤ · · · ≤ kerσe1 ≤ kerσe0 = Se,

and a canonical isomorphism of groups Se/ kerσed
∼= Sd by the first isomorphism theorem.
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(3.2.20) Lemma. Assume that Se ≤ im ρE[2e]. Then there is an isomorphism of abelian groups

H1 (Se, E [2])
∼−→ H1 (Se, E [2e]) .

Proof. As per Proposition 3.2.19, the inflation-restriction exact sequence applied to Se/ {±1} yields

0→ H1
(

Se/ {±1} , E [2e]
{±1}

)
inf−−→ H1 (Se, E [2e])

res−−→ H1 ({±1} , E [2e]) ,

but the invariant subgroup E [2e]
{±1}

is now E [2], while an explicit cohomological computation yields

H1 ({±1} , E [2e]) = E [2e] /2E [2e] ∼= (Z/2e)2
/ (2Z/2e)2 ∼= (Z/2)

2
,

by the third isomorphism theorem. Recall that the restriction map factors as a composition H1 (Se, E [2e])→
H1 ({±1} , E [2e])

Se/{±1} → H1 ({±1} , E [2e]). As per Proposition 3.2.17, any Se/ {±1}-invariant element of

(Z/2)
2

is fixed by ( 1 1
0 1 ), ( 1 0

1 1 ) ∈ Se/ {±1}, so the invariant subgroup H1 ({±1} , E [2e])
Se/{±1}

must be trivial
and the inflation map is an isomorphism. Recalling again that the inflation map factors as a composition
H1 (Se/ {±1} , E [2])→ H1 (Se, E [2])→ H1 (Se, E [2e]) gives a commutative diagram of abelian groups

H1 (Se/ {±1} , E [2])

. . . H0 (Se, 2E [2e]) H1 (Se, E [2]) H1 (Se, E [2e]) H1 (Se, 2E [2e]) . . .

inf
∼

δ0

,

where the exact bottom row arises from applying group cohomology to the short exact sequence of abelian
groups induced by multiplication by two

0→ E [2]
↪→−→ E [2e]

[2]−→ 2E [2e]→ 0.

Thus the required isomorphism follows from the triviality of H0 (Se, E [2e]) = (2E [2e])
Se ∼=

(
(2Z/2e)2

)Se
,

which holds by a similar invariance argument with ( 1 1
0 1 ), ( 1 0

1 1 ) ∈ Se as above.

Next is a short analysis of the filtration of the kernels of the reduction maps σed : Se � Sd for e > 1.

(3.2.21) Lemma. Let e > 1. Then

(kerσe1)
2

= kerσe2,

where (−)
2

is the subgroup generated by the squares of all elements.

Proof. This is an induction with two straightforward but tedious base cases e = 2 and e = 3 checked
explicitly. If e = 2, an easy manipulation of congruence equations yields

kerσ2
1 =


(
a b
c d

) ∣∣∣∣∣∣
a, d ∈ {1, 3} ,
b, c ∈ {0, 2} ,
ad− bc ≡ 1 mod 4

 =

(
1 0
0 1

)
+ 2

{(
a b
c a

) ∣∣∣∣ a, b, c ∈ {0, 1}} ,
so
(
kerσ2

1

)2
= 0 = kerσ2

2 by definition. If e = 3, a further manipulation of congruence equations yields

kerσ3
1 =


(
a b
c d

) ∣∣∣∣∣∣
a, d ∈ {1, 3, 5, 7} ,
b, c ∈ {0, 2, 4, 6} ,
ad− bc ≡ 1 mod 8

 =


(
a b
c a

) ∣∣∣∣∣∣∣
a ∈ {1, 3, 5, 7} ,{
b ∈ {0, 2, 4, 6} , c ∈ {0, 4}
b ∈ {0, 4} , c ∈ {2, 6}


∪
{(

a b
c a+ 4

) ∣∣∣∣ a ∈ {1, 3, 5, 7} ,
b, c ∈ {2, 6}

}
,

kerσ3
2 =


(
a b
c d

) ∣∣∣∣∣∣
a, d ∈ {1, 5} ,
b, c ∈ {0, 4} ,
ad− bc ≡ 1 mod 8

 =

(
1 0
0 1

)
+ 4

{(
a b
c a

) ∣∣∣∣ a, b, c ∈ {0, 1}} ,
and it can also be verified that(

kerσ3
1

)2
=

{(
1 0
0 1

)
,

(
1 0
4 1

)
,

(
1 4
0 1

)
,

(
1 4
4 1

)
,

(
5 0
0 5

)
,

(
5 0
4 5

)
,

(
5 4
0 5

)(
5 4
4 5

)}
= kerσ3

2 .
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Now assume the result for e− 1 ≥ 3. By the same manipulation as above,

kerσee−1 =


(
a b
c d

) ∣∣∣∣∣∣
a, d ∈

{
1, 2e−1 + 1

}
,

b, c ∈
{

0, 2e−1
}
,

ad− bc ≡ 1 mod 2e

 =

(
1 0
0 1

)
+ 2e−1

{(
a b
c a

) ∣∣∣∣ a, b, c ∈ {0, 1}} ,
but

(
2e−2

)2
becomes trivial in Se since e ≥ 4, so any matrix in kerσee−1 can be written as(

1 0
0 1

)
+ 2e−1

(
a b
c a

)
=

((
1 0
0 1

)
+ 2e−2

(
a b
c a

))2

∈ (kerσe1)
2
,

giving the inclusion kerσee−1 ≤ (kerσe1)
2
. On the other hand, any matrix in Se that becomes trivial in S1

squares to also become trivial in S2, so there is also an inclusion (kerσe1)
2 ≤ kerσe2. Thus

(kerσe1)
2
/ kerσee−1 =

(
kerσe1/ kerσee−1

)2
= kerσe2/ kerσee−1,

by the inductive hypothesis and the canonical isomorphism kerσe−1
d
∼= kerσed/ kerσee−1, so a simple counting

argument of cosets gives an equality (kerσe1)
2

= kerσe2.

In particular, this says that any homomorphism from kerσe1 to a 2-torsion group contains kerσe2, so the
restriction map res : H1 (kerσe1, E [2])→ H1 (kerσe2, E [2]) is really the trivial map.

(3.2.22) Lemma. Let e > 1. Then there is an isomorphism of abelian groups

H1 (S2, E [2])
∼−→ H1 (Se, E [2]) .

Proof. The inflation-restriction exact sequence applied to Se/ kerσe2
∼= S2 yields

0→ H1
(

S2, E [2]
kerσe2

)
inf−−→ H1 (Se, E [2])

res−−→ H1 (kerσe2, E [2]) ,

but kerσe2 clearly fixes E [2] ∼= (Z/2)
2
, so the invariant subgroup E [2]

kerσe2 is E [2]. On the other hand,
taking into account the filtration, this restriction map factors into a composition of two restriction maps

res : H1 (Se, E [2]) = H1 (kerσe0, E [2])
res1−−→ H1 (kerσe1, E [2])

res2−−→ H1 (kerσe2, E [2]) ,

the second of which is trivial by Lemma 3.2.21. Thus the inflation map is the required isomorphism.

It helps to reduce an arbitrary group H1 (Se, E [2e]) down to H1 (S2, E [2]), since the latter can be reas-
onably computed by hand, which is achieved by considering the generators of S2.

(3.2.23) Lemma. Let ξ ∈ H1 (S2, E [2]) be a 1-cocycle such that ξ (( 1 1
0 1 )) and ξ (( 1 0

1 1 )) are both trivial. Then ξ is
also trivial.

Proof. It can be verified with an explicit computation that any matrix M ∈ S2 can be generated by products
of powers of ( 1 1

0 1 ) and ( 1 0
1 1 ), so the result can be acquired by induction. In particular, let M = M1M2 be a

decomposition into a product of two matrices M1,M2 ∈ S2 that are generated by strictly fewer total powers
of ( 1 1

0 1 ) and ( 1 0
1 1 ), and assume that ξ (M1) and ξ (M2) are both trivial. Then the crossed condition dictates

that ξ (M) = ξ (M1) +M1ξ (M2), so the result follows by the inductive hypothesis.

While the elements ( 1 1
0 1 ), ( 1 0

1 1 ) ∈ S2 multiply to generate the whole group, they individually generate
two cyclic subgroups within S2, namely the upper and lower unitriangular matrix groups

Ue :=

{(
1 a
0 1

) ∣∣∣∣ a ∈ Z/2e
}
, Le :=

{(
1 0
a 1

) ∣∣∣∣ a ∈ Z/2e
}
,

equipped with the natural reduction modulo four maps υe2 : Ue � U2 and τe2 : Le � L2, whose cohomology
groups will serve as the final reduction. Note that the previous three results do not use the prevailing
assumption that Se ≤ im ρE[2e], but the final result combines all of the previous results nonetheless.
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(3.2.24) Proposition. Let e > 1. Assume that Se ≤ im ρE[2e]. Then

X1 (K,E [2e]) = 0.

Proof. By Lemma 3.2.18, it suffices to show that the induced restriction map

resUe ⊕ resLe : H1 (Se, E [2e])→ H1 (Ue, E [2e])⊕H1 (Le, E [2e])

is injective. Combining Lemma 3.2.20 and Lemma 3.2.22 establishes isomorphisms of abelian groups

H1 (S2, E [2])
∼−→ H1 (Se, E [2])

∼−→ H1 (Se, E [2e]) ,

and analogous maps will now be constructed for the unitriangular matrix groups Ue and Le as follows. As
for the special linear group Se, there is a canonical isomorphism of groups Ue/ ker υe2

∼= U2 by the first
isomorphism theorem, and applying the inflation-restriction exact sequence to this yields

0→ H1
(

U2, E [2]
ker υe2

)
inf−−→ H1 (Ue, E [2])

res−−→ H1 (ker υe2, E [2]) ,

but ker υe2, analogous to kerσe2, fixes E [2] ∼= (Z/2)
2
, so the invariant subgroup E [2]

ker υe2 is again E [2]. On
the other hand, applying group cohomology to the short exact sequence of abelian groups

0→ E [2]
↪→−→ E [2e]

[2]−→ 2E [2e]→ 0,

yields a long exact sequence

· · · → H0 (Ue, E [2e])
[2]−→ H0 (Ue, 2E [2e])

δ0−→ H1 (Ue, E [2])
φ−→ H1 (Ue, E [2e])→ . . . .

However in this case, since ( 1 0
1 1 ) /∈ Ue, the same invariance argument fails, but it is still easy to see that

H0 (Ue, E [2e]) = E [2e]
Ue ∼=

(
(Z/2e)2

)Ue ∼= Z/2e ⊕ 0,

H0 (Ue, 2E [2e]) = (2E [2e])
Ue ∼=

(
(2Z/2e)2

)Ue ∼= 2Z/2e ⊕ 0,

so the first multiplication by two map is surjective, and it follows that the connecting homomorphism is the
trivial map and the last map is injective. Completely analogously, there are similar constructions of this
last monomorphism φ : H1 (Le, E [2]) ↪→ H1 (Le, E [2e]) and the previous inflation map inf : H1 (L2, E [2]) ↪→
H1 (Le, E [2]) for Le, which are again both injective. Combining all four of these monomorphisms with the
isomorphisms for Se establishes, by construction, a commutative diagram of abelian groups

H1 (S2, E [2]) H1 (Se, E [2]) H1 (Se, E [2e])

H1 (U2, E [2])⊕H1 (L2, E [2]) H1 (Ue, E [2])⊕H1 (Le, E [2]) H1 (Ue, E [2e])⊕H1 (Le, E [2e])

∼

res2

∼

rese resUe ⊕ resLe

inf φ

,

where the vertical restriction maps are induced by the obvious inclusion maps Ue ↪→ Se and Le ↪→ Se. Thus
it suffices to show the injectivity of the left restriction map, after which the desired injection follows by the
composition of all of these maps, but this is exactly the content of Lemma 3.2.23.

The results of this subsection can now be summarised as follows.

(3.2.25) Corollary. Assume that SL2 (Z/pe) ≤ im ρE[pe]. Then

X1 (K,E [pe]) = 0.

Proof. This follows immediately from Proposition 3.2.17, Proposition 3.2.19, and Proposition 3.2.24.

Remark. Using similar cohomological methods, one can obtain various frequently applicable criteria for
the vanishing of X1 (K,M) for other finite Gal

(
K/K

)
-modules M [PR12, Proposition 3.3], so this result

is itself unsurprising. There is also an analogue proven for elliptic curves defined over function fields under
a slightly different hypothesis, namely that im ρE[pe] needs to be cyclic, but this assumption, as with the
above assumption, remains applicable to almost all elliptic curves [BKLPR15, Proposition 6.1].
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3.2.4 Direct summands and strong metabolicity

This subsection finishes the proof that the two Lagrangian submodules imκ and imλ are often direct sum-
mands of H1 (AK , E [n]), using purely group theoretic techniques. The proof combines the arguments in
the paper on modelling distributions of elliptic curves by Bhargava, Kane, Lenstra, Poonen, and Rains
[BKLPR15], and in the paper on Selmer groups and adelic cohomology by Gillibert, Gillibert, Gillibert, and
Ranieri [GGGR19]. Several well-known results taken from Fuchs’s book on infinite abelian groups [Fuc70]
will be admitted without proof, as they are relatively straightforward but the technical arguments used are
irrelevant for immediate elucidation. The first of these generalises the structure theorem of finite abelian
groups to arbitrary torsion groups, and is often called Prüfer’s first theorem in the literature.

(3.2.26) Theorem ([Fuc70, Theorem III.17.2]). An n-torsion abelian group is a direct sum of cyclic groups.

Assuming this statement, imκ is easily a direct summand, noting that Z/n-modules are synonymous
with n-torsion abelian groups. For each place v ∈ VK , again write κv to denote the local injection.

(3.2.27) Proposition. The submodule imκv is a direct summand.

Proof. Theorem 3.2.26, assuming the structure theorem, establishes a decomposition of abelian groups

H1 (Kv, E) [n] ∼= (Z/pe11 )
n1 ⊕ · · · ⊕ (Z/pekk )

nk , ni ∈ N+,

for distinct prime powers peii ∈ N+. Then for each peii , there is a row-exact diagram of abelian groups

0 E (Kv) /p
ei
i H1 (Kv, E [peii ]) H1 (Kv, E) [peii ] 0

0 E (Kv) /n H1 (Kv, E [n]) H1 (Kv, E) [n] 0

κ′v µ′v

φ

κv µv

,

arising from including the respective local Kummer sequences. In particular, any 1-cocycle ξ ∈ H1 (Kv, E) [n]
with order exactly peii belongs to some H1 (Kv, E) [peii ] ∼= (Z/peii )

ni , which by the surjectivity of µ′v lifts to
some 1-cocycle ξ′ ∈ H1 (Kv, E [peii ]) with order also exactly peii , since it is also a peii -torsion group. Applying
the map φ sends ξ′ to a 1-cocycle φ (ξ′) ∈ H1 (Kv, E [n]) with order dividing peii , but the commutativity of
the right square ensures that µv (φ (ξ′)) = ξ and φ (ξ′) has order exactly peii . Thus this defines a partial
section H1 (Kv, E) [n]→ H1 (Kv, E [n]) that glues across all peii to construct a well-defined section of µv, so the
bottom short exact sequence splits as a direct sum decomposition H1 (Kv, E [n]) ∼= imκv⊕H1 (Kv, E) [n].

Remark. The proof of Proposition 3.2.27 is irrespective of locality, so it generalises to arbitrary Kummer
sequences, and indeed to a very general family of Kummer-like exact sequences [GG18, Theorem 1.1].

The fact that imκ is a direct summand follows immediately.

(3.2.28) Corollary. The submodule imκ is a direct summand.

Proof. This follows by repeatedly applying Proposition 3.2.27 to the adelic Kummer sequence.

Proving that imλ is also a direct summand is slightly more involved, starting with the notion of a pure
subgroup A ⊆ B of abelian group, which says that mA = A ∩mB for any m ∈ N+. This will be relevant
only to quote two useful results abstractly characterising images of monomorphisms.

(3.2.29) Lemma ([Fuc70, Theorems V.28.2 and V.29.1(c)]). Let φ : A ↪→ B be a monomorphism of abelian groups.

1. imφ ⊆ B is a direct summand if imφ ⊆ B is pure and B/ imφ is a direct sum of cyclic groups.

2. imφ ⊆ B is pure if and only if the induced maps φm : A/m→ B/m are injective for all m ∈ N+.

The latter injectivity condition is equivalent to preserving divisibility of elements by any m ∈ N+ upon
retracting from B to A, a step that will be utilised in the upcoming abstract diagram chasing arguments.
Considering these two statements in the case of n-torsion abelian groups instead, this divisibility-preserving
condition turns out to be necessary and sufficient for images of monomorphisms to be direct summands.
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(3.2.30) Lemma. Let φ : A ↪→ B be a monomorphism of n-torsion abelian groups. Then imφ ⊆ B is a direct
summand if and only if the induced maps φm : A/m→ B/m are injective for all m | n.

Proof. Assume that imφ ⊆ B is a direct summand, so there is an internal direct sum decomposition B =
imφ⊕ C for some subgroup C ⊆ B. Let m | n, and let a ∈ A be an element such that φm (a) = 0 in B/m,
so φ (a) = mb for some element b ∈ B. By assumption, there are elements a′ ∈ A and c ∈ C such that
b = φ (a′) + c, so φ (a) = mb = mφ (a′) + mc. Then φ (a−ma′) = φ (a) −mφ (a′) = mc ∈ imφ ∩ C = 0,
so a = ma′ ∈ mA by injectivity of φ. Hence a = 0 in A/m, so φm is injective. Conversely, assume that φm
is injective for all m | n, which is equivalent to all m ∈ N+ by virtue of n-torsion. Then imφ ⊆ B is pure
by Lemma 3.2.29.2, and since B/ imφ is clearly n-torsion, it is also direct sum of cyclic groups by Theorem
3.2.26. Thus imφ ⊆ B is a direct summand by Lemma 3.2.29.1.

(3.2.31) Lemma. Let

A B C

A′ B′ C ′

α

φ

β

χ ψ

α′ β′

be a row-exact diagram of abelian groups, such that B′ is n-torsion, imβ = C [n], and the induced maps

φm : A/m→ A′/m, α′m : A′/m→ B′/m, ψm : C/m→ C ′/m

are injective for all m | n. Then the induced maps χm : B/m→ B′/m are injective for all m | n.

Proof. Let m | n, and let b ∈ B be an element such that χm (b) = 0 in B′/m, so χ (b) = mb′ for some element
b′ ∈ B′. Commutativity of the right square yields ψ (β (b)) = β′ (χ (b)) = β′ (mb′) = mβ′ (b′), so β (b) = mc
for some element c ∈ C by injectivity of ψm. Since B′ is n-torsion, χ (nb/m) = nχ (b) /m = nb′ = 0, so
nb/m = 0 by injectivity of χ. Then nc = nβ (b) /m = β (nb/m) = 0, so c ∈ C [n] = imβ, and hence c = β (e)
for some element e ∈ B. Now β (b−me) = β (b) − mβ (e) = 0, so b − me ∈ kerβ = imα, and hence
b − me = α (a) for some element a ∈ A. Commutativity of the left square yields α′ (φ (a)) = χ (α (a)) =
χ (b−me) = χ (b) −mχ (e) = m (b′ − χ (e)), so a = md for some element d ∈ A by injectivity of φm and
α′m. Thus b = α (a) +me = m (α (d) + e) = 0 in B/m, so χm is injective.

Returning to the discussion of imλ, the various conditions in Lemma 3.2.31 can be verified for the
Kummer diagram, but doing so will require an assumption on X1 (K,E [m]) for each m | n.

(3.2.32) Proposition. Let X1 (K,E [m]) be trivial for all m | n. Then the submodule imλ is a direct summand.

Proof. For each m | n, consider the long row-exact diagram of cohomology groups

. . . E (K) H1 (K,E [m]) H1 (K,E) . . .

. . .
∏
v∈VK

E (Kv)
∏
v∈VK

H1 (Kv, E [m])
∏
v∈VK

H1 (Kv, E) . . .

α

φ

β

χ ψ

α′ β′

,

which induces the Kummer diagram ifm = n, where each H1 (Kv, E [n]) is n-torsion and imβ = H1 (K,E) [n].
Zooming in at the first two connecting homomorphisms furnishes commutative squares of abelian groups

E (K) /m H1 (K,E [m])

∏
v∈VK

E (Kv) /m
∏
v∈VK

H1 (Kv, E [m])

α

φm χ

α′

,

H1 (K,E) /m H2 (K,E [m])

∏
v∈VK

H1 (Kv, E) /m
∏
v∈VK

H2 (Kv, E [m])

δ1

ψm χ′

δ′1

.

By Tate’s global duality for E [m], the assumption establishes the triviality of both X1 (K,E [m]) = kerχ
and X2 (K,E [m]) = kerχ′, so the induced maps φm and ψm are injective. Corollary 3.2.28 says that imα′

is a direct summand, which by Lemma 3.2.30 also gives the injectivity of α′m. Thus the conditions of Lemma
3.2.31 are satisfied, and the result follows by the converse of Lemma 3.2.30.
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Remark. The result that imλ is a direct summand was originally a conjecture, and was thought to have no
counterexamples [BKLPR15, Conjecture 6.9]. This is false [GGGR19, Theorem 1.4], but it is also possible
to construct an explicit family of elliptic curves that always satisfies this [GGGR19, Corollary 1.3].

Fortunately, the assumption in Proposition 3.2.32 is satisfiable, at least for the purposes of proving the
main result, since X1 (K,E [pe]) is trivial for a prime power pe ∈ N+ whenever SL2 (Z/pe) ≤ im ρE[pe], by
Corollary 3.2.25. It remains to justify that the latter assumption is a mild one.

3.2.5 Ubiquity of surjective Galois representations

This final short subsection elucidates why the assumption SL2 (Z/n) ≤ im ρE[n] holds for almost all elliptic
curves in E (K), for a fixed n ∈ N+. In fact, the stronger statement that ρE[n] is usually surjective is also
true, given a generic elliptic curve in E (K), which trivialises the assumption. This is really a consequence
of Hilbert’s irreducibility theorem and the theory of modular curves, but to avoid a potentially
huge detour to both areas, the relevant results will be stated without proof. In its simplest form, Hilbert’s
irreducibility theorem says that an irreducible polynomial f ∈ Q [X,Y ] remains irreducible after specialising
X to some x ∈ Q and obtaining a polynomial f (x,−) ∈ Q [Y ]. This has since been extensively reformulated
in the language of algebraic geometry, and a relevant consequence can be stated in terms of Galois groups.

(3.2.33) Theorem ([Zyw10, Theorem 1.1]). Let f ∈ F (X) [Y1, . . . , Yn] be an irreducible polynomial, and let Ff be
the splitting field of f over F (X). Then for almost all x ∈ F such that f (x,−) ∈ F [Y1, . . . , Yn] is separable,
specialisation of X to x induces an isomorphism of Galois groups

Gal (Ff/F (X)) ∼= Gal
(
Ff(x,−)/F

)
,

where Ff(x,−) is the splitting field of f (x,−) over F .

Remark. Hilbert’s irreducibility theorem admits many applications in number theory, such as the partial
resolution of the inverse Galois problem via polynomials in Q (t) under the above formulation [Ser89, Section
9.3]. Other applications within elliptic curves include the construction of elliptic curves with large rank, and
showing that almost all elliptic curves have trivial torsion subgroups, the latter of which also involves the
theory of modular curves [BKLPR15, Lemma 5.7]. Note that the infinitude and density of the specialisations
can also be formulated in terms of Hilbert sets or thin sets [Ser89, Proposition 9.2.2].

The remaining ingredient arises as a result on elliptic curves defined over a transcendental extension of
K, which is a corollary of showing that Gal (C (T ) (E [n]) /C (T )) ∼= SL2 (Z/n). The proof itself builds the
theory of modular curves and elliptic functions, and will bring the discussion too far afield.

(3.2.34) Lemma ([CSS97, Section III.1.1]). Let E be an elliptic curve defined over the field of rational functions
Q (T ) with j-invariant T . Then the modulo n Galois representation induces an isomorphism of groups

Gal (Q (T ) (E [n]) /Q (T ))
∼−→ GL2 (Z/n) .

Assuming these two results, a brief sketch of the proof goes as follows.

(3.2.35) Proposition. The modulo n Galois representation is surjective for almost all elliptic curves E ∈ E (K).

Proof sketch. Pick a generic elliptic curve defined over K (T ), and apply the number field analogue of Lemma
3.2.34 to relate the Galois group of K (T ) (E [n]) with GL2 (Z/n). Then use its n-division polynomial
characterisation to construct irreducible polynomials in K (T ) [X,Y ], and obtain the required isomorphism
with the Galois group of K (E [n]) to almost all specialisations of T by Theorem 3.2.33.

Remark. This result is heuristically expected, since by Serre’s open image theorem, the modulo p
Galois representations of elliptic curves without complex multiplication are surjective for all but finitely
many primes p ∈ N+ [Sil09, Theorem III.7.9]. An explicit elliptic curve can also be constructed with
surjective modulo n Galois representations for all odd n ∈ N+ not divisible by its conductor [Ser89, Section
10.4]. Furthermore, using sieve-theoretic techniques, one can obtain an asymptotic upper bound on the
decreasing proportion of elliptic curves where the criterion SL2 (Z/pe) ≤ im ρE[pe] fails [Zyw18, Proposition
5.6]. In general, images of modulo n Galois representations are usually quite large, and any further discussion
on this well-studied subject would be too much to fit in this remark.

Thus the initial assumption is justified by Proposition 3.2.35, and the proof of Theorem 3.2.1 is complete.
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3.3 Model for Selmer groups

Instead of tackling Conjecture 1.1.1 directly, Theorem 3.2.1 suggests a probabilistic model based on the
idea that a pe-Selmer group, for some prime power pe ∈ N+, is almost always a natural intersection of
two Lagrangian direct summands in an ambient metabolic quadratic Z/pe-module of infinite rank. On the
other hand, the resulting distribution of such a pseudo pe-Selmer group could be attained more simply by
considering an ambient metabolic quadratic Z/pe-module of finite rank, hence utilising counting tricks in

finitary combinatorics, then taking the limiting average as the rank tends to infinity. Recall that (Z/pe)2n
,

for any n ∈ N+, equipped with the standard hyperbolic quadratic form

ω(Z/pe)2n : (Z/pe)2n −→ Z/pe

(x1, . . . , xn, y1, . . . , yn) 7−→
n∑
i=1

xiyi
,

is a metabolic quadratic Z/pe-module, called the standard hyperbolic Z/pe-module, with a Lagrangian direct
summand (Z/pe)n ⊕ 0n. Thus the aim of this section is to prove the following heuristic.

(3.3.1) Theorem. Let L1, L2 ∈ LG (Z/pe)2n
be Lagrangian direct summands chosen uniformly at random. Then

lim
n→∞

E [# (L1 ∩ L2)] = σ1 (pe) ,

where σ1 : N+ → N is the sum of divisors function.

The only missing piece here is the mysterious set LG (Z/pe)2n
and its associated measure, but this will

be clarified in the next short subsection, and the proof itself proceeds in three steps spanning across the
following three subsections. By first building up some pseudo-linear algebraic results, the size of the relevant
sample space can be computed, which is then used to deduce the average size of the pseudo pe-Selmer group.
Finally, a potential flaw with the model is justified in the final subsection. The overall argument is adapted
from the paper on modelling distributions of elliptic curves by Bhargava, Kane, Lenstra, Poonen, and Rains
[BKLPR15], with an alternative, more elementary, proof for a key result on the size of the sample space
taken from the paper on MDS codes by Dougherty, Kim, and Kulosman [DKK08]. Throughout this section,
R will be one of the finite local rings Fp or Z/pe for a prime power pe ∈ N+, and M will be a free R-module,
with N ≤M denoting that N is a direct summand of M , while k, l,m, n ∈ N will be arbitrary.

3.3.1 Lagrangian Grassmannians

Consider the sample space of all Lagrangian direct summands of a metabolic quadratic R-module M .

Definition. The Lagrangian Grassmannian LG (M) is the space of Lagrangian direct summands of M .

Remark. In fact, the Lagrangian Grassmannian of a metabolic quadratic R-module of rank 2n, or some-
times referred to as the orthogonal Grassmannian, is a functor representable by a smooth projective scheme
over Z of relative dimension 1

2n (n− 1) [BKLPR15, Proposition 4.4], a fact useful in a later remark.

A general Lagrangian Grassmannian can be equipped with a canonical measure, which induces a distri-
bution to sample Lagrangian direct summands from, but, unlike the case of sampling elliptic curves, is more
complicated to describe. Fortunately, in the relevant case of the finite Z/pe-module (Z/pe)2n

, there is an

alternative construction by simply considering the discrete uniform distribution on LG (Z/pe)2n
, so relevant

notions like the average size of the intersection L1 ∩ L2 can be defined by

E [# (L1 ∩ L2)] :=
(

# LG (Z/pe)2n
)−2 ∑

L1,L2∈LG(Z/pe)2n
# (L1 ∩ L2) ,

which is the uniform average of all possible intersections. It now makes sense to choose elements uniformly
at random from LG (Z/pe)2n

, and this will be the prevailing assumption from now on.

Remark. There is a perhaps more canonical measure to equip on the Zp-scheme of finite type LG (Zp)2n

that considers LG (Z/pe)2n
for all pe ∈ N+ at once [BKLPR15, Proposition 2.1], which is constructed as a

generalisation of the normalised Haar measure on orthogonal groups in the usual Grassmannian variety.
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3.3.2 Combinatorial linear algebra

This subsection details several results generalising linear algebra to free Z/pe-modules, starting with the
formalisation of the notion that free submodules are indeed equivalent to internal direct summands, as per
the reasoning in the first section. Statements will be made as general as provably possible, so there is no
assumption that M has to be (Z/pe)2n

, nor that it is equipped with any quadratic form.

(3.3.2) Lemma. Let M be a free Z/pe-module of finite rank, and let N ⊆M be a submodule. Then N is free if and
only if N ≤M is a direct summand.

Proof. If N is a free Z/pe-module of finite rank, it is isomorphic to a finite direct product of the base ring
Z/pe, which is injective as a module over itself, so N is itself injective, and hence being a submodule of M
is equivalent to being a internal direct summand of M . Conversely, if N is an internal direct summand of
M , it is also a free Z/pe-module, as a consequence of Nakayama’s lemma applied to the local ring Z/pe.

(3.3.3) Proposition. Let M be a free Z/pe-module of rank m, and let N ≤ M be a direct summand of rank k.
Then there is a bijective correspondence of Z/pe-modules

{L ≤M | N ≤ L} ! {L/N ≤M/N}
L 7−→ L/N

.

Proof. The fourth isomorphism theorem gives a bijective correspondence of Z/pe-modules

{L ⊆M | N ⊆ L} ! {L/N ⊆M/N}
L 7−→ L/N

,

so, by Lemma 3.3.2, it suffices to prove that L is free precisely when L/N is free. As per the previous
argument, the assumption on N makes it injective, so the short exact sequence of Z/pe-modules

0→ N → L→ L/N → 0

splits as a direct sum decomposition L ∼= N ⊕ L/N . Applying Nakayama’s lemma again shows that the
freeness of L/N is equivalent to its projectivity, which holds whenever L is free by this isomorphism, while
the converse follows immediately by assumption, so the bijective correspondence follows.

(3.3.4) Corollary. Let M be a free Z/pe-module of rank m, and let N ≤M be a direct summand of rank k. Then
M/N is a free Z/pe-module of rank m− k.

Proof. Setting L = M in the proof of Proposition 3.3.3 and applying the same argument for M/N proves
that it is free, while a simple finite counting argument verifies its rank to be exactly m− k.

Remark. The proof really only uses the locality and self-injectivity of Z/pe, so the same statement would
generalise to free modules over local self-injective rings, which are admittedly rather rare.

Next is a result arising as a variant of a usual combinatorial argument accounting for zero divisors.

(3.3.5) Lemma. Let M be a free Z/pe-module of rank m, and let x1, . . . , xk ∈M be k linearly independent elements.
Then

# 〈mM,x1, . . . , xk〉 = p(e−1)m+k,

where m := pZ/pe ⊆ Z/pe is the unique maximal ideal.

Proof. This primarily relies on the fact that, by tensoring with Fp over Z/pe, Nakayama’s lemma naturally
lifts a basis of the m-dimensional Fp-vector space M/mM to a basis of m linearly independent elements of
the free Z/pe-module M , and vice versa. Since the ideal 〈x1, . . . , xk〉 is free, it is an internal direct summand
of M by Lemma 3.3.2, so there is an internal direct sum decomposition M = 〈x1, . . . , xk〉 ⊕ 〈xk+1, . . . , xm〉
for some m− k linearly independent elements xk+1, . . . , xm ∈M . Thus it is easy to see that

# 〈x1, . . . , xk〉 ⊕#m 〈xk+1, . . . , xm〉 = (# (Z/pe))k (#m)
m−k

= (pe)
k (
pe−1

)m−k
= p(e−1)m+k,

so the result follows.
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(3.3.6) Proposition. Let M be a free Z/pe-module of rank m. Then

#
{
L ≤M

∣∣ rkZ/pe L = l
}

=

(
m

l

)
pe

:=

p
(e−1)(m−l)l

l−1∏
i=0

pm − pi

pl − pi
m ≥ l

0 m < l

.

Proof. It suffices to count the number of ways to pick l linearly independent elements in M that generate
a free submodule L, and divide this quantity by the number of ways to generate the same free submodule,
ensuring at each step that the element chosen contains at least one component outside the unique maximal
ideal m := 〈p〉 ⊆ Z/pe so as to generate the complete free submodule. Now there are always pem elements
to choose from, but p(e−1)m+k of these are either zero divisors in m or are linearly dependent after k choices
are made, by Lemma 3.3.5. Thus the coefficients compute to be exactly(

m

l

)
pe

=

∏l−1
i=0

(
pem − p(e−1)m+i

)∏l−1
i=0

(
pel − p(e−1)l+i

) =
p(e−1)ml

∏l−1
i=0

(
pm − pi

)
p(e−1)l2

∏l−1
i=0 (pl − pi)

= p(e−1)(m−l)l
l−1∏
i=0

pm − pi

pl − pi
,

whenever m ≥ l, and clearly zero otherwise.

Remark. This set of coefficients is a generalisation of the usual Gaussian p-binomial coefficients in
combinatorics, which omits the left factor when e = 1, and counts the number of l-dimensional subspaces
of an m-dimensional Fp-vector space in the usual Grassmannian variety. This also further generalises, by
simply replacing p with a prime power q ∈ N+, to free modules over Galois rings (Z/q) [X] / 〈f (X)〉, for any
monic irreducible polynomial f (X) ∈ (Z/q) [X] of degree e [DKK08, Theorem 3.7].

(3.3.7) Corollary. Let M be a free Z/pe-module of rank m, and let N ≤M be a direct summand of rank k. Then

#
{
L ≤M

∣∣ rkZ/pe L = l, N ≤ L
}

=

(
m− k
l − k

)
pe
.

Proof. This follows immediately from Corollary 3.3.4 and Proposition 3.3.6.

Now are several results on metabolic quadratic Z/pe-modules and Lagrangian direct summands.

(3.3.8) Lemma. Let M be a quadratic Z/pe-module of rank m, and let N ≤M be totally isotropic direct summand
of rank k. Then N⊥ is a free Z/pe-module of rank m− k.

Proof. Composing the pairing isomorphism M
∼−→ M? and the map M? → N? dual to the inclusion map

N ↪→M furnishes a short exact sequence of Z/pe-modules

0→ N⊥ →M → N? → 0,

where N⊥ fits into the sequence by definition. Since N? ∼= N is a free of rank k, it is projective, so the
sequence splits as a direct sum decomposition M ∼= N⊥⊕N?. Thus N⊥ is projective over a local ring Z/pe,
and hence free of rank m− k, again as a consequence of Nakayama’s lemma.

(3.3.9) Proposition. Let M be a metabolic quadratic Z/pe-module of rank m, let L ∈ LG (M) be a Lagrangian
direct summand, and let N ≤M be a totally isotropic direct summand of rank k. Then the free Z/pe-module
N⊥/N , equipped with the quadratic form

ωN⊥/N : N⊥/N −→ Z/pe
x+N 7−→ ωM (x)

,

is a metabolic quadratic Z/pe-module of rank m− 2k, with a Lagrangian direct summand πN (L), where

πN : LG (M) −→ LG
(
N⊥/N

)
L 7−→

(
L ∩N⊥ +N

)
/N

.

Thus πN : LG (M)→ LG
(
N⊥/N

)
is surjective and induces a bijective correspondence of spaces

{L ∈ LG (M) | N ≤ L} ! LG
(
N⊥/N

)
L 7−→ L/N

.
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Proof. Assuming that the prior statements are true, the bijective correspondence follows immediately from
Proposition 3.3.3 and the construction of the quadratic form, while the freeness of N⊥/N and its rank
follows immediately from Corollary 3.3.4 and Lemma 3.3.8. Now it remains to verify that the induced map
ωN⊥/N : N⊥/N → Z/pe is well-defined, that it is a non-degenerate quadratic form, and that the induced

map πN : LG (M)→ LG
(
N⊥/N

)
is well-defined in the sense that πN (L) is a Lagrangian direct summand,

but all of these hold by construction through reducing the corresponding properties to M and noting the
total isotropy of L = L⊥. For instance, whenever x, y ∈ N⊥ are elements such that x− y ∈ N , then

ωN⊥/N (x+N) = ωM (x) = ωM (x− y) + ωM (y) = ωM (y) = ωN⊥/N (y +N) ,

by the definition of orthogonal complements, so ωN⊥/N is well-defined.

Remark. The same statement is clearly also true for any choice of quadratic form.

(3.3.10) Corollary. Let M be a quadratic Z/pe-module of rank m, and let L ∈ LG (M) be a Lagrangian direct
summand. Then m is even, and L is a free Z/pe-module of rank 1

2m.

Proof. This follows immediately from Lemma 3.3.8 and the maximality of L.

3.3.3 Sizes of Lagrangian Grassmannians

The aim of this subsection will be to compute the size of the Lagrangian Grassmannian LG (Z/pe)2n
, with

detailed calculations on the particular case of LG (Fp)2n
. In the latter case, the Fp-module of rank 2n becomes

synonymous to the 2n-dimensional Fp-vector space, and all submodules, or simply referred to as subspaces,
are trivially free direct summands, so computations are easier. The proof will be a slightly long-winded
induction, where the base case is n = 1 and can be counted by explicit elimination.

(3.3.11) Proposition.

# LG (Fp)2
= 2.

Proof. Let L ⊆ F2
p be a Lagrangian subspace, and let (x1, x2) ∈ F2

p and (y1, y2) ∈ L be two arbitrary vectors.
The condition that 〈(x1, x2) , (y1, y2)〉F2n

p
= 0 is simply (x1 + y1) (x2 + y2) = x1x2 +y1y2, which is equivalent

to x1y2 + y1x2 = 0, and this holds for all vectors (x1, x2) ∈ F2
p. Since y1y2 = 0 for all vectors (y1, y2) ∈ L

by total isotropy, there are only two distinct possibilities for the one-dimensional Lagrangian subspace L,
namely one where all x1 = y1 = 0 and another where all x2 = y2 = 0.

By the surjection πN : LG (M)→ LG
(
N⊥/N

)
, any Lagrangian direct summand of N⊥/N for a totally

isotropic direct summand N ≤ M is of the form πN (L) ∈ LG
(
N⊥/N

)
for a non-unique Lagrangian direct

summand L ∈ LG (M). Yet this map is nowhere injective, and its fibre is constant and readily computed in
the relevant case of M = F2n

p through first establishing a bijective correspondence.

(3.3.12) Lemma. Let N ⊆ F2n
p be a one-dimensional subspace, and let πN (L) ∈ LG

(
N⊥/N

)
be a Lagrangian

subspace for some Lagrangian subspace L ∈ LG (Fp)2n
. Then there is a bijective correspondence of spaces{

L′ ∈ LG (Fp)2n
∣∣∣ πN (L′) = πN (L)

}
! {N ′ ⊆ L | dimN ′ = n− 1, N 6⊆ N ′} ∪ {L}

L′ 7−→ L′ ∩ L
.

Proof. To check that the map is well-defined, first consider the case where N ⊆ L′, which in turn bijectively
corresponds to L and hence L′∩L = L, so it suffices to consider the case where N 6⊆ L′. If x ∈ L′∩N⊥, then
x+N ∈

(
L′ ∩N⊥ +N

)
/N = πN (L′) = πN (L) = L/N , so x ∈ L and hence L′ ∩N⊥ ⊆ L ⊆ N⊥, where the

latter inclusion is by total isotropy. The second isomorphism theorem gives an isomorphism of groups(
L′ ∩N⊥ +N

)
/N ∼=

(
L′ ∩N⊥

)
/
(
L′ ∩N⊥ ∩N

) ∼= L′ ∩N⊥,

the latter isomorphism of which follows by L′ ∩N = ∅. Then

dimFp (L′ ∩ L) = dimFp
(
L′ ∩N⊥

)
= dimFp πN (L′) = dimFp πN (L) = dimFp (L/N) = n− 1,
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where the last equality follows from Corollary 3.3.10 and dimension subtraction, so the map is well-defined.
Now to obtain the bijective correspondence, it suffices to show that any (n− 1)-dimensional subspace N ′ ⊆ L
not containing N is contained in a unique Lagrangian subspace L′ ∈ LG (Fp)2n

such that πN (L′) = πN (L)
and L 6= L′. Applying Proposition 3.3.9 again establishes a bijective correspondence of spaces{

L′ ∈ LG (Fp)2n
∣∣∣ N ′ ⊆ L′} ! LG

(
N ′⊥/N ′

)
L′ 7−→ L′/N ′

,

but N ′⊥/N ′ is a two-dimensional Fp-vector space equipped with a quadratic form induced by F2n
p , so has

exactly two Lagrangian subspaces by Proposition 3.3.11, one of which is the Lagrangian subspace L/N ′ ∈
LG
(
N ′⊥/N ′

)
. Thus the remaining Lagrangian subspace L′/N ′ ∈ LG

(
N ′⊥/N ′

)
uniquely satisfies πN (L′) =

πN (L) and maps to L′ ∩ L = N ′ by construction, so the bijective correspondence follows.

The fibre of πN : LG (M) → LG
(
N⊥/N

)
is exactly the left set in the bijective correspondence, so it

remains to count the cardinality of the right set, which is an easy consequence of previous results.

(3.3.13) Corollary. Let N ⊆ F2n
p be a one-dimensional subspace, and let πN (L) ∈ LG

(
N⊥/N

)
be a Lagrangian

subspace for some Lagrangian subspace L ∈ LG (Fp)2n
. Then

#π−1
N (πN (L)) = pn−1 + 1.

Proof. With the bijective correspondence in Lemma 3.3.12, it remains to count the number of (n− 1)-
dimensional subspaces of L that does not contain N , but Corollary 3.3.7 computes this to be exactly(

n

n− 1

)
p

−
(
n− 1

n− 2

)
p

=

n−2∏
i=0

pn − pi

pn−1 − pi
−
n−3∏
i=0

pn−1 − pi

pn−2 − pi
=

(pn − 1) pn−2

pn−1 − pn−2
−
(
pn−1 − 1

)
pn−3

pn−2 − pn−3
= pn−1.

Thus the result follows after including the singleton {L} in the bijective correspondence.

Computing the size of LG (Fp)2n
is then a simple matter of induction from Corollary 3.3.13.

(3.3.14) Proposition.

# LG (Fp)2n
=

n−1∏
i=0

(
pi + 1

)
.

Proof. The base case is Proposition 3.3.11, so assume the result for n − 1. Then taking a one-dimensional
subspace N ⊆ F2n

p and considering the quotient N⊥/N reduces to the inductive hypothesis, after which

there are exactly pn−1 + 1 distinct choices for N that map to the same Lagrangian subspace in F2(n−1)
p by

Corollary 3.3.13. Thus the result for n follows from multiplying pn−1 + 1 by the result for n− 1.

There are several ways to extend Proposition 3.3.14 to M = (Z/pe)2n
, one of which simply involves

meticulously tracing the computations in this subsection to the general case, taking into account subtle
corrections in the presence of zero divisors, and reusing the general results proven in the previous subsection.
For the sake of brevity, the final result will just be stated. Note that the formula above can be rewritten as

# LG (Fp)2n
=

n−1∏
i=0

(
pi + 1

)
=

n−1∏
i=0

pi
n−1∏
i=0

(
1 + p−i

)
= p

∑n−1
i=0 i

0∏
i=1−n

(
1 + pi

)
= p

1
2n(n−1)

n∏
i=1

(
1 + pi−n

)
,

which ties in directly with the formula below.

(3.3.15) Proposition.

# LG (Z/pe)2n
= p

1
2 en(n−1)

n∏
i=1

(
1 + pi−n

)
.

Proof sketch. Obtain Z/pe analogues of results in this subsection using results in the previous subsection.

Remark. A fancier approach to deduce the general result is to realise the Lagrangian Grassmannian as a
projective scheme over Z that is smooth of relative dimension 1

2n (n− 1) [BKLPR15, Lemma 4.8]. Via a
generalisation of Hensel’s lemma, each Lagrangian Grassmannian over Fp can be lifted to one over Z/pe by
smoothness, while the relative dimension dictates the sizes of each fibre.
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3.3.4 Average sizes of Selmer groups

This subsection finishes the proof that the intersection of two Lagrangian direct summands chosen uniformly
at random from LG (Z/pe)2n

has average size equal to the sum of divisors of pe, hence providing a heuristic
model for the average size of pe-Selmer groups. This is achieved through probing the size of an intersection
by counting the number of possible monomorphisms of Z/pe-modules into it. First define the finite set

Hom↪→
R (M) := {φ ∈ HomR (R,M) | φ : R ↪→M} .

(3.3.16) Lemma. Let M be a free Z/pe-module of rank m. Then

# Hom↪→
Z/pe (M) = pem − p(e−1)m.

Proof. A monomorphism Z/pe ↪→ M is uniquely determined by an element of M with order exactly pe.
Each component has Φ (pe) = pe−1 (p− 1) elements of Z/pe that induce elements of M with order exactly
pe, so there are pe− pe−1 (p− 1) = pe−1 elements of Z/pe that induce elements of M with order strictly less
than pe in each component. Thus, considering all components and subtracting this from the total number of
elements of M , the desired number of monomorphisms Z/pe ↪→M is (pe)

m−
(
pe−1

)m
= pem− p(e−1)m.

It is also possible to compute the proportion of monomorphisms Z/pe ↪→ M that land in a particular
submodule of M , albeit with some tedious calculations. Instead, if the rank of M will eventually be made
to tend to infinity, the same computations can be heavily simplified with a limiting probabilistic argument.

(3.3.17) Proposition. Let L1, L2 ∈ LG (Z/pe)2n
be Lagrangian direct summands chosen uniformly at random. Then

lim
n→∞

E
[
# Hom↪→

Z/pe (L1 ∩ L2)
]

= pe.

Proof. With n tending to infinity in mind, the desired limiting average is simply the number of mono-
morphisms Z/pe ↪→ L1, multiplied by the probability that a randomly chosen Lagrangian direct summand

L2 ∈ LG (Z/pe)2n
contains the image of some monomorphism of Z/pe-modules φ : Z/pe ↪→ L1, the result of

which may or may not be an integer. The former number is exactly pen − p(e−1)n by Corollary 3.3.10 and
Lemma 3.3.16, while the latter probability, by the bijective correspondence in Proposition 3.3.9, is exactly
the proportion of LG

(
imφ⊥/ imφ

)
as a space living inside LG (Z/pe)2n

. The construction of the metabolic
quadratic Z/pe-module imφ⊥/ imφ ensures that it is a free Z/pe-module of rank 2n− 2 that is isomorphic

to (Z/pe)2n−2
, so Proposition 3.3.15 computes the final probability to be

# LG (Z/pe)2n−2

# LG (Z/pe)2n =
p

1
2 e(n−1)(n−2)

∏n−1
i=1

(
1 + pi−n+1

)
p

1
2 en(n−1)

∏n
i=1 (1 + pi−n)

= pe(1−n)
(
1 + p1−n) .

Thus multiplying both quantities yields

E
[
# Hom↪→

Z/pe (L1 ∩ L2)
]
→
(
pen − p(e−1)n

)(
pe(1−n)

(
1 + p1−n)) = pe + pe+1−n − pe−n − pe+1−2n,

which clearly tends to pe as n tends to infinity.

The main result of this section can now be proven with a simple telescoping argument.

Proof of Theorem 3.3.1. As per a previous argument, a monomorphism Z/pe ↪→ L1∩L2 is uniquely determ-
ined by an element of L1 ∩L2 with order exactly pe, but there are exactly # (L1 ∩ L2)−# (L1 ∩ L2)

[
pe−1

]
such elements, and Proposition 3.3.17 shows that the limiting average of this quantity is pe. Now observe
that (L1 ∩ L2)

[
pd
]

is also Z/pd-module for any d ≤ e, so the same principle applies to compute the limiting

average number of monomorphisms Z/pd ↪→ (L1 ∩ L2)
[
pd
]

to be pd. Thus, as n tends to infinity,

E [# (L1 ∩ L2)] =

e∑
d=0

E
[
# (L1 ∩ L2)

[
pd
]
−# (L1 ∩ L2)

[
pd−1

]]
→

e∑
d=0

pd,

which is exactly the sum of divisors of pe.
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Remark. With a further inclusion-exclusion argument, given another free Z/pe-module N of rank k, it is
easy to compute the number of monomorphisms N ↪→M in terms of m and k [BKLPR15, Theorem 5.10]. On
the other hand, it is more noteworthy that this is always a finite value, so that when M is randomly sampled,
such as the case of L1 ∩L2, this implies that the limiting k-th moment for #M is bounded. As such, under
the assumption that L1 ∩ L2 does indeed model Spe (K,E) for an elliptic curve E defined over a number
field K, and assuming the conjecture that the limiting moments of #Spe (K,E) are also bounded, this yields
the actual average number of monomorphisms of N into Spe (K,E) [BKLPR15, Remark 5.13]. This in turn
provides a method of computing the higher moments of #Spe (K,E), including its actual average.

3.3.5 Freeness of the ambient module

This final short subsection identifies an important issue of the model with regards to the ambient module. In
particular, the construction of the free ambient module (Z/pe)2n

in this subsection implicitly assumes that
the ambient module H1 (AK , E [pe]) in the previous subsection is free, although it is almost never the case.

(3.3.18) Proposition. Let e > 2. Then H1 (AK , E [pe]) is not free for almost all elliptic curves E ∈ E (K).

Proof. It suffices to show, for almost all elliptic curves E ∈ E (K), that E (Kv) /p
e is not a free Z/pe-module

for some place v ∈ VK , since it is a direct summand of H1 (Kv, E [pe]), by Proposition 3.2.27, and hence of
H1 (AK , E [pe]). Proposition 3.2.35 yields the surjectivity of modulo pe Galois representations for almost all
elliptic curves E ∈ E (K), so for any such elliptic curve, there is an automorphism σ ∈ Gal

(
K/K

)
such that

ρE[pe] (σ) =

(
p+ 1 0

0 p+ 1

)
.

By Chebotarev’s density theorem, σ corresponds to a Frobenius substitution σw ∈ Gal
(
K/K

)
of a non-

archimedean place w ∈ V0
K

extending some non-archimedean place v ∈ V0
K . The Gal

(
Kv/Kv

)
-action on

E [pe] is governed by ρE[pe] (σ), so its invariant subgroup E (Kv) [pe] consists of precisely the elements in

(Z/pe)2
annihilated by p, which is exactly F2

p. Now the first isomorphism theorem equates the cardinalities
of the finite groups E (Kv) /p

e and E (Kv) [pe] ∼= F2
p, so the former cannot be a free Z/pe-module.

Remark. The same is also true for e = 2 using a similar argument by checking cases, or alternatively noting
that E (Kv) [pe] is a direct summand of E (Kv) [BKLPR15, Proposition 6.13].

In spite of this drawback, it is heuristically expected that the consequences induced by the model continue
to hold due to its compatibility with known results and conjectures, while a potentially more complicated
linear algebraic model incorporating freeness of the ambient module remains open-ended.
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Chapter 4

Heuristic consequences

This final chapter briefly presents several consequences, assuming that the pe-Selmer group is indeed modelled
by the intersection of two Lagrangian direct summands chosen uniformly at random from LG (Z/pe)2m

when
m tends to infinity, as in the previous chapter. In what follows, the arguments will mostly be presented
without proof, and their details will be deferred to the paper on modelling distributions of elliptic curves
by Bhargava, Kane, Lenstra, Poonen, and Rains [BKLPR15] and to the paper on boundedness of ranks of
elliptic curves by Park, Poonen, Voight, and Wood [PPVW19]. Throughout this chapter, let E be an elliptic
curve defined over a number field K, let m,n ∈ N+ be arbitrary, and let pe ∈ N+ be a prime power.

4.1 Modelling short exact sequences

Despite Theorem 3.2.1 presenting only the case of pe-Selmer groups, general n-Selmer groups behave well
under pe-torsion subgroups, in the sense that for almost all elliptic curves E ∈ E (K),

Sn (K,E) [pe] ∼= Spe (K,E) , pe | n,

a purely cohomological result relying on the fact that almost all elliptic curves have trivial torsion subgroups
[BKLPR15, Proposition 5.9]. As such, a general n-Selmer group is built up from gluing pe-Selmer groups

in some fashion, each of which modelled by intersecting two Lagrangian direct summands in LG (Z/pe)2m
.

One may then wonder if the tempting analogue of Theorem 3.3.1 holds for L1, L2 ∈ LG (Z/n)
2m

, namely if

lim
m→∞

E [# (L1 ∩ L2)] = σ1 (n) ,

where σ1 : N+ → N is the sum of divisors function, since this would affirm Conjecture 1.1.1 under appropri-
ately bounded second moments. While it may be possible to prove this by considering each (L1 ∩ L2) [pe]
and using the multiplicativity of σ1, deriving properties of Z/n-modules analogous to those in the previous

chapter would pose a significant challenge, especially in the size computation of LG (Z/n)
2m

.
Instead, a viable alternative model based on short exact sequences can be constructed as follows. Take

the direct limit of multiplication by p maps over all prime powers n = pe, and denote Sp∞ (K,E) :=
lim−→e
Spe (K,E). There is a fundamental short exact sequence of abelian groups

0→ E (K)⊗Qp/Zp → Sp∞ (K,E)→X (K,E) [p∞]→ 0, (4.1)

and each of these can be endowed with the structure of a Zp-module. Now for two arbitrary Lagrangian

direct summands L1, L2 ∈ LG (Zp)2m
, construct three Zp-modules by

R := (L1 ∩ L2)⊗Zp Qp/Zp, S :=
(
L1 ⊗Zp Qp/Zp

)
∩
(
L2 ⊗Zp Qp/Zp

)
, T := S/R.

These fit in a split short exact sequence of Zp-modules [BKLPR15, Corollary 5.3]

0→ R→ S → T → 0, (4.2)

which all have finitely generated Pontryagin duals.
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As remarked previously, it turns out that one can define a canonical measure on LG (Zp)2m
that restricts

to a uniform measure on each LG (Z/pe)2m
, so that choosing L1, L2 ∈ LG (Zp)2m

uniformly at random
induces a discrete probability distribution on the set of isomorphism classes of short exact sequences of Zp-
modules whose Pontryagin duals are finitely generated, which converges when m tends to infinity [BKLPR15,
Theorem 1.2]. Thus (4.2) would supply a conjectural model for (4.1) [BKLPR15, Conjecture 1.3], and
the distributions of the Mordell-Weil rank rk (E/K), the p∞-Selmer group Sp∞ (K,E), and the p-primary
component of the Tate-Shafarevich group X (K,E) [p∞] can be modelled simultaneously.

It then remains to justify the construction of this model. Amongst other desirable consequences, the
truthfulness of this model is heuristically supported by various evidence.

� There is an isomorphism of abelian groups R ∼= (Qp/Zp)rk(E/K)
, while the same is true for E (K) ⊗

Qp/Zp by the Mordell-Weil theorem. Moreover, by splitting LG (Zp)2m
into spaces of Lagrangian

Grassmannians with odd or even dimensions [BKLPR15, Proposition 4.5] and computing the dimen-
sions of Schubert subschemes [BKLPR15, Proposition 4.9], the model would also affirm the rank
distribution conjecture that δ (rk (E/K) = 0) = δ (rk (E/K) = 1) = 1

2 [BKLPR15, Proposition 5.6].

� The construction of S mirrors the model for all Spe (K,E) simultaneously. Moreover, due to the
isomorphisms Sp∞ (K,E) [pe] ∼= Spe (K,E) and S [pe] ∼= (L1/p

e) ∩ (L2/p
e) [BKLPR15, Proposition

5.4], the distribution of Spe (K,E) would coincide with the limiting distribution of L1 ∩L2 for each pe.

� The finiteness of T [BKLPR15, Corollary 5.2] would imply the finiteness of X (K,E) [p∞], at least for
almost all elliptic curves E ∈ E (K), and this is part of the Tate-Shafarevich conjecture. Moreover, T
can be equipped with a natural non-degenerate alternating Z-bilinear pairing [BKLPR15, Proposition
5.5], which mirrors the Cassels-Tate pairing on X (K,E) [p∞].

Assuming its truthfulness, however, a plausible model for a general n-Selmer group

Sn (K,E) ∼=
⊕
p

Sp∞ (K,E)
[
pordp n

]
, (4.3)

which is ideally obtained from S, still requires an understanding of the behaviour of R and T .

4.2 Modelling Tate-Shafarevich groups

The rank distribution conjecture predicts that δ (rk (E/K) ≥ 2) = 0, which is reflected in this model in such

a way that, if L1, L2 ∈ LG (Zp)2m
were Lagrangian direct summands chosen uniformly at random, the set

LGm
r :=

{
(L1, L2) ∈

(
LG (Zp)2m

)2
∣∣∣∣ rkZp (L1 ∩ L2) = r

}
would have measure zero for any fixed r ∈ N≥2. Unfortunately, this means that the induced distribution of
T , and hence of X (K,E) [p∞], where E ∈ E (K) is sampled with the condition rk (E/K) = r, cannot be
predicted. There are at least three proposed workarounds to this, outlined as follows.

� Choose a tuple (L1, L2) uniformly at random directly from the set LGm
r , which carries a product

measure induced by LG (Zp)2m
. This induces a natural discrete probability distribution on the set of

isomorphism classes of T , which converges when m tends to infinity [BKLPR15, Theorem 1.6].

� In accordance with Delaunay’s interpretation of the Cohen-Lenstra heuristics for ideal class groups,
consider the set of all symplectic p-groups, finite abelian groups G of orders powers of p and equipped
with a non-degenerate alternating pairing G × G → Qp/Zp, and identify them up to isomorphisms
respecting the pairing. Define a probability distribution on this set by

ProbG :=
(#G)

1−r

# AutG

∏
i>r

(
1− p1−2i

)
,

where AutG denotes the group of automorphisms of G respecting the symplectic structure. This
generalises Delaunay’s distributions to elliptic curves of rank r [BKLPR15, Section 5.6].

43



Chapter 4. Heuristic consequences 4.3. Modelling Mordell-Weil ranks

� Choose a matrix M uniformly at random from the space of matrices

Matmr :=
{
M ∈ Matm Zp

∣∣ Mᵀ = −M, rkZp (kerM) = r
}
, m ≡ r mod 2,

which also carries a Haar-like measure as a Zp-scheme of finite type. This induces a probability
distribution on the set of isomorphism classes of (cokerM)tors, which converges when m ≡ r mod 2
tends to infinity [BKLPR15, Theorem 1.10]. Furthermore, (cokerM)tors can also be equipped with a
non-degenerate alternating pairing [BKLPR15, Section 3.5], making it a symplectic p-group. It is worth
noting that the construction is inspired by, and analogous to, the Friedman-Washington interpretation
of the Cohen-Lenstra heuristics for ideal class groups [BKLPR15, Remark 1.11].

It turns out that all three distributions coincide [BKLPR15, Theorems 1.6(c) and 1.10(b)], establishing a
new model for T via isomorphism classes of symplectic p-groups compatible with the short exact sequence.

All of the above discussion culminates in a model for a general n-Selmer group defined as follows. Since
the three distributions for T are now conditioned on rk (E/K) = r, and the original model for T distributes
r uniformly amongst {0, 1}, choose r ∈ {0, 1} uniformly at random. Choose a symplectic p-group Tp at
random for each prime p ∈ N+ using any of the three distributions, and define

Sn := (Z/n)
r ⊕

(⊕
p

Tp

)
[n] . (4.4)

Then (4.4) would precisely model (4.3), and by the previous chapter, this would affirm Conjecture 1.1.1
[BKLPR15, Section 5.7], noting that the p-primary components of Sn are independent for distinct primes p.

4.3 Modelling Mordell-Weil ranks

Coincidentally, the third distribution above also suggests a model for the Mordell-Weil rank. Since con-
ditioning on r yields a distribution with the prescribed Mordell-Weil rank, removing this condition would
ideally cause r to be distributed like the Mordell-Weil rank instead. This cannot be literally true, since an
alternating matrix always has even rank and m ≡ r mod 2. Furthermore, due to a similar measure zero
issue for r ≥ 2, this distribution cannot predict the relative frequencies of higher Mordell-Weil ranks.

Rather, a model can be constructed such that m is sampled uniformly from odd and even natural numbers,
and M is sampled from a subspace of matrices with entries bounded by a constant. Letting both sampling
processes depend on an appropriate notion of height of the elliptic curve to be modelled, the refined model
would solve both issues and provide a conjectural distribution for the Mordell-Weil rank. In particular, the
model for an elliptic curve of height h ∈ N is proposed as follows.

� Choose functions X : N→ R and Y : N→ R such that X (x)
Y (x)

= x1/12+o(1) as x→∞.

� Choose m uniformly at random from {dY (h)e , dY (h)e+ 1}.

� Choose M uniformly at random from Matm Z such that Mᵀ = −M with entries bounded by X (h).

The choice of condition for the functions here is made with significant arithmetic justification, namely the
expectation that the average size of the Tate-Shafarevich group of elliptic curves of height h and rank zero is
h1/12+o(1), the proof of which is elided for brevity [PPVW19, Theorem 6.4.2(c)]. Further theoretical evidence
to the validity of this model is the agreement with the three distributions above and the rank distribution
conjecture [PPVW19, Section 8.1], with much computational evidence as well [PPVW19, Section 10.1].

Using sieve-theoretic techniques, the construction culminates in a very surprising result, namely that all
but finitely many elliptic curves E ∈ E (Q), under a slightly different notion of heights, satisfy rk (E/K)Q ≤
21 [PPVW19, Theorem 7.3.3(a)]. This would mean that there is an upper bound to the Mordell-Weil rank
of rational elliptic curves, which ultimately answers the rank boundedness conjecture in the affirmative.
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