
The Euler system of Heegner points

David Kurniadi Angdinata

Spring 2022

Abstract

Gross and Zagier proved that the derivative of the Hasse-Weil L-function of an elliptic curve over an
imaginary quadratic field is non-zero at 1 precisely when its Heegner point has infinite order, so that
the elliptic curve has rank at least one. A few years later, Kolyvagin constructed a family of derived
cohomology classes from Heegner points of higher conductors satisfying certain relations, which he terms
an Euler system, and used these to prove that the elliptic curve has rank exactly one. His methodology
involves computing the Selmer group using Galois cohomological techniques, and also gave bounds on
the size of the Tate-Shafarevich group. This report outlines his main argument as documented by Gross,
and is the final part in a series of three mini projects on the Birch and Swinnerton-Dyer conjecture.
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1 Introduction

Let E be an elliptic curve over Q. The modularity theorem parameterises E with a surjective morphism
X0 (N) ↠ E defined over Q, where N ∈ N is the conductor of E and X0 (N) is the modular curve whose
non-cuspidal points classify elliptic curves equipped with a cyclic N -isogeny.

Consider an imaginary quadratic field F = Q
(√

−D
)
satisfying the Heegner hypothesis, namely that

all primes dividing N splits in F and its ring of integers OF has unit group {±1}. There are infinitely many
such imaginary quadratic fields, since this is merely a congruence condition on D. Under this hypothesis,
the theory of complex multiplication defines a point in X0 (N) rational over the Hilbert class field F 1 of
F , which maps to a point h1 ∈ E

(
F 1
)
under the modular parameterisation. Applying the trace map

Tr1 : E
(
F 1
)
→ E (F ) to h1 yields a basic Heegner point h ∈ E (F ).

1



The Gross-Zagier formula [GZ86] establishes a direct relationship between the derivative of the Hasse-
Weil L-function LE/F (s) of E over F evaluated at s = 1 and the canonical height of h. In particular,
L′
E/F (1) is non-zero precisely if h has infinite order, so that the rank rkE (F ) is at least one. Kolyvagin’s

seminal paper on Euler systems [Kol90] provides an upper bound to this.

Theorem 1.1. If h ∈ E (F ) has infinite order, then rkE (F ) = 1.

In fact, the exact statement proven by Kolyvagin included the finiteness of Tate-Shafarevich group
X (F,E), with a more precise formulation on its order [Kol90, Theorem A]. The cohomological techniques
he used to bound the order of X (F,E), which was a priori not known to be finite in any generality, became
a staple example in the active study of Euler systems even to date [Rub00]. His main argument involves
computing the ℓ-Selmer group Sel (F,E [ℓ]), which nests in a short exact sequence of Fℓ-vector spaces

0 → E (F ) /ℓ
δ−→ Sel (F,E [ℓ]) → X (F,E) [ℓ] → 0.

Theorem 1.2. If ℓ ∈ N is an odd prime of good reduction such that GQ(E[ℓ])/Q ∼= GL2 Fℓ and h /∈ ℓE (F ),
then

Sel (F,E [ℓ]) ∼= Fℓ · δ (h) .

These assumptions on ℓ are mild, in the sense that they apply to almost all primes whenever h has infinite
order [Gro91, Section 2]. For instance, excluding the thirteen isomorphism classes of elliptic curves with
complex multiplication, there are only finitely many primes ℓ whose ℓ-adic representation is not surjective, by
Serre’s theorem on the image of Galois. Under these assumptions, it follows immediately that X (F,E) [ℓ] =
0, while the finiteness of all of X (F,E) is a refinement of these arguments by further techniques to bound
the orders of certain ideal class groups, of which will be omitted here.

The following short lemma will be useful to deduce Theorem 1.1 as well as for a later construction.

Lemma 1.3. If ℓ ∈ N is a prime such that GQ(E[ℓ])/Q ∼= GL2 Fℓ and K is a field linearly disjoint over Q to
Q (E [ℓ]), then E (K) [ℓ] = 0.

Proof. Suppose for a contradiction that 0 ̸= E (K) [ℓ] ≤ E [ℓ] ∼= F2
ℓ , so that either E (K) [ℓ] ∼= Fℓ or

E (K) [ℓ] = E [ℓ]. The first case has GK(E[ℓ])/K
∼= GQ(E[ℓ])/Q fixing Fℓ, while the second case hasQ (E [ℓ]) ⊆ K

giving Q (E [ℓ]) = Q (E [ℓ]) ∩K = Q, both of which are contradictions to GQ(E[ℓ])/Q ∼= GL2 Fℓ.

Theorem 1.1 then follows immediately by counting dimensions.

Proof of Theorem 1.1. Choose the odd prime ℓ such that ℓ ∤ D, so that the primes of Q ramified in F
and in Q (E [ℓ]) are disjoint by the Heegner hypothesis, and hence are linearly disjoint over Q. Lemma 1.3
then implies that E (F ) [ℓ] = 0, so that rkE (F ) = dimFℓ

(E (F ) /ℓ) by tensoring over Fℓ. This quantity is
bounded below by 1 by the existence of h and bounded above by 1 by Theorem 1.2.

The remainder of this report will be a discussion of the proof of Theorem 1.2, following Weston’s account
[Wes01]. The following two sections will recall the construction of Selmer groups and Heegner points,
defining appropriate generalisations and deriving a few basic properties from Tate duality and complex
multiplication respectively. These Heegner points are used to construct a tower of cohomology classes
satisfying compatibility relations, making them an Euler system, and an analysis of their local ramification
behaviour places them in certain Selmer groups. The final section details a series of computations in Galois
cohomology, which ultimately deduces the structure of Sel (F,E [ℓ]), thus proving Theorem 1.2.

Notation. All the assumptions in this section, particularly E, N , D, and ℓ, will prevail throughout the
remaining sections. The reader is assumed to be familiar with Silverman’s books on elliptic curves [Sil94;
Sil09], so the notation used will be standard according to the textbooks. Any new notation introduced in the
following sections will persist through the remainder of the report, unless specified otherwise. For instance,
the fraktur versions of a letter denoting a prime will always be used to denote the primes above it.
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2 Selmer groups and Tate duality

While the classical Selmer group may sometimes be rather difficult to compute directly, it may be nested
between two generalised Selmer groups, defined by relaxing or restricting certain local conditions, which are
more readily computed with an appropriate choice of local conditions. This section will define these Selmer
groups and provide relevant consequences due to class field theory.

2.1 Generalised Selmer groups

Recall that the multiplication by ℓ isogeny induces the global Kummer exact sequence

0 → E (F ) /ℓ
δ−→ H1 (F,E [ℓ])

σ−→ H1 (F,E) [ℓ] → 0,

and for each place v ∈ MF , the local Kummer exact sequence

0 → E (Fv) /ℓ
δv−→ H1 (Fv, E [ℓ])

σv−→ H1 (Fv, E) [ℓ] → 0.

For almost all places v ∈ MF , there is an alternative description of H1 (Fv, E) [ℓ] in terms of Gur
v := Gv/Iv.

Lemma 2.1. If v ∈ M0
F is a prime of good reduction such that v (ℓ) = 0, then

H1 (Fv, E) [ℓ] = Hom (Iv, E [ℓ])
Gur

v .

Proof. Since Gur
v

∼= Ẑ has cohomological dimension one, the inflation-restriction exact sequence reads

0 H1 (Gur
v , E [ℓ]) H1 (Fv, E [ℓ]) H1 (Iv, E [ℓ])

Gur
v H2

(
Gur

v , E [ℓ]
Iv
)

E (Fv) /ℓ Hom(Iv, E [ℓ])
Gur

v 0

infFur
v /Fv

∼=

resFur
v /Fv traFur

v /Fv

∼= ∼= ,

by the assumption on v, which identifies the two cokernels.

The classical Selmer group Sel (F,E [ℓ]) arises as the kernel of
∏

v∈MF
(·)v in the exact diagram

0 E (F ) /ℓ H1 (F,E [ℓ]) H1 (F,E) [ℓ] 0

0 E (Fv) /ℓ H1 (Fv, E [ℓ]) H1 (Fv, E) [ℓ] 0

δ σ

(·)v
(·)v

δv σv

.

Two generalised Selmer groups obtained by relaxing or restricting local conditions is defined as follows.

Definition. If S ⊆ MF is a finite set of places, define the relaxed Selmer group by

SelS (F,E [ℓ]) := ker

 ∏
v∈MF \S

(·)v : H1 (F,E [ℓ]) →
∏

v∈MF \S

H1 (Fv, E) [ℓ]

 ,

and define the restricted Selmer group by

SelS (F,E [ℓ]) := ker

(∏
v∈S

(·)v : SelS (F,E [ℓ]) →
∏
v∈S

H1 (Fv, E [ℓ])

)
.

Notation. For ease of notation in the remainder of this section only, since the parameters F , E, and ℓ are
fixed, denote Sel := Sel (F,E [ℓ]), denote SelS := SelS (F,E [ℓ]), and denote SelS := SelS (F,E [ℓ]).

Remark. In a more general context of Euler systems [Rub00, Chapter I], Rubin defines the notion of a
variable global Selmer structure compatible with local Selmer structures for a p-adic Galois representation
over a local field, which are used to define Selmer groups that specialise in the case of E [ℓ] to those defined
here. Lemma 2.1 is the agreement between the singular quotients of local Selmer structures, the geometric
structure induced by the Kummer sequence and the unramified structure induced by inflation-restriction.
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In other words, for a finite set of places S ⊆ MF , Sel
S allows a cohomology class c ∈ H1 (F,E [ℓ]) to

satisfy cv ̸= 0 for v ∈ S, while SelS requires a cohomology class c ∈ H1 (F,E [ℓ]) to further satisfy cv = 0 for
v ∈ S. By including a finite set of problematic places as per Lemma 2.1, namely

S0 :=
{
v ∈ M0

F

∣∣ E has bad reduction at v
}
∪
{
v ∈ M0

F

∣∣ v (ℓ) ̸= 0
}
∪M∞

F ,

the relaxed Selmer group may also be given an alternative description in terms of GS := GFS/F , where FS

denotes the maximal extension of F unramified outside S.

Lemma 2.2. If S0 ⊆ S ⊆ MF is a finite set of places, then

SelS = H1 (GS , E [ℓ]) .

Proof. The description in Lemma 2.1 identifies the relaxed Selmer group with

SelS = ker

H1 (F,E [ℓ]) →
∏

v∈MF \S

Hom(Iv, E [ℓ])

 = ker
(
res : H1 (F,E [ℓ]) → H1 (FS , E [ℓ])

)
,

since GFS
is determined by Iv for all v ∈ MF \ S, while the inflation-restriction exact sequence reads

0 → H1 (GS , E [ℓ])
infFS/F−−−−−→ H1 (F,E [ℓ])

resFS/F−−−−−→ H1 (FS , E [ℓ]) ,

which identifies the two kernels.

2.2 An application of Tate duality

Now let S ⊆ S′ ⊆ MF be finite sets of places. As a consequence of Tate duality, all three kinds of Selmer
groups sit in an exact sequence. To establish this, first note that they clearly satisfy the inclusions

SelS′ ⊆ SelS ⊆ Sel ⊆ SelS ⊆ SelS
′
,

with equalities when S = S′ = ∅, and that there are tautological exact sequences

0 → SelS → SelS
′ σS,S′
−−−→

∏
v∈S′\S

H1 (Fv, E) [ℓ] , (1)

and

0 → SelS′ → SelS
λS,S′
−−−→

∏
v∈S′\S

im δv. (2)

For each place v ∈ MF , local Tate duality says that H1 (Fv, E [ℓ]) is self-dual, which descends via the local
Kummer sequence to a duality between im δv ≤ H1 (Fv, E [ℓ]) and H1 (Fv, E [ℓ]) / im δv ∼= H1 (Fv, E) [ℓ].
Taking the dual of (2) gives an exact sequence

∏
v∈S′\S

H1 (Fv, E) [ℓ]
λ∨
S,S′

−−−→ Sel∨S → Sel∨S′ → 0,

which splices with (1) to yield a five-term complex

0 → SelS → SelS
′ σS,S′
−−−→

∏
v∈S′\S

H1 (Fv, E) [ℓ]
λ∨
S,S′

−−−→ Sel∨S → Sel∨S′ → 0. (Sel (S, S′))

This is exact everywhere except possibly at the middle term, whose exactness is supplied by global Tate
duality. For simplicity of notation and to compute Sel, it suffices to show exactness of Sel (∅, S).
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Proposition 2.3. The sequence Sel (∅, S) is exact.

Proof. It suffices to show that Sel (S, S′) is exact for S′ := S ∪ S0, since it furnishes an exact diagram

0 SelS
′
/ Sel

∏
v∈S′

H1 (Fv, E) [ℓ] (Sel / SelS′)
∨

0

0 SelS
′
/SelS

∏
v∈S′\S

H1 (Fv, E) [ℓ] (SelS / SelS′)
∨

0

0 0 0

σ∅,S′ λ∨
∅,S′

σS,S′ λ∨
S,S′

,

and an application of the snake lemma yields a short exact sequence

0 → SelS / Sel
σ∅,S−−−→

∏
v∈S′\S

H1 (Fv, E) [ℓ]
λ∨
∅,S−−−→ (Sel / SelS)

∨ → 0,

which is precisely the content of Sel (∅, S). Now under the assumption that S0 ⊆ S′, the middle three terms
of the Poitou-Tate exact sequence for S′, by Lemma 2.2, are identified with

SelS
′ τS′−−→

∏
v∈S′

H1 (Fv, E [ℓ])
τ∨
S′−−→ SelS

′∨ .

These maps, along with the local Kummer sequence for S′ \S and (1) for (∅, S′), furnishes an exact diagram

0 0 0

kerσ∨
S,S′ im τS′ kerλ∨

S,S′

0
∏

v∈S′\S

im δv ⊕
∏
v∈S

H1 (Fv, E [ℓ])
∏
v∈S′

H1 (Fv, E [ℓ])
∏

v∈S′\S

H1 (Fv, E) [ℓ] 0

0 imσ∨
S,S′ ⊕

∏
v∈S

H1 (Fv, E [ℓ]) SelS
′∨ Sel∨S 0

0

ι

σ∨
S,S′ τ∨

S′ λ∨
S,S′

σ∨
∅,S′

,

so another application of the snake lemma links the top row in a short exact sequence

0 → kerσ∨
S,S′

ι−→ im τS′ → kerλ∨
S,S′ → 0.

Thus kerλ∨
S,S′ is precisely the image of SelS

′
in
∏

v∈S′\S H1 (Fv, E) [ℓ], which is precisely imσS,S′ .

Remark. Gross’s proof only uses local Tate duality, instead appealing to an exact sequence in global class
field theory in a later step [Gro91, Proposition 8.2], which is subsumed under the Poitou-Tate exact sequence.

Note that the exact sequence respects the action of complex conjugation c ∈ GF/Q, so this entire argument
works under a fixed eigenspace. Now the right half of Sel (∅, S) induces a short exact sequence

0 → cokerσ∅,S
λ∨
S,S′

−−−→ Sel∨ → Sel∨S → 0.

Since these are all finite-dimensional Fℓ-vector spaces, their duals have the same dimensions, so Sel is
determined completely by cokerσ∅,S and SelS for an appropriate choice of S ⊆ MF .
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2.3 An application of Chebotarev density

Computing these generalised Selmer groups is only realistic with an appropriate set of primes S that satisfy
congruence conditions, which are in turn guaranteed by Chebotarev density. For the remainder of the report,
denote the eigenspaces of the action of complex conjugation c ∈ GF/Q by superscript signs. For instance,

write GK′/K = G+
K′/K ⊕ G−

K′/K and E [ℓ] = E [ℓ]
+ ⊕ E [ℓ]

−
, noting that both eigenspaces of the latter are

one-dimensional Fℓ-vector spaces by virtue of the Galois equivariance of the Weil pairing E [ℓ]×E [ℓ] → µℓ.

Lemma 2.4. Let L be a finite extension of F (E [ℓ]) such that

Sel (F,E [ℓ]) ⊆ infL/F H1 (L/F,E [ℓ]) .

Let F (E [ℓ]) ⊆ K ⊆ K ′ ⊆ L be intermediate extensions, and let σ ∈ G−
K′/K be a non-trivial automorphism.

Then there is a finite set of primes S ⊆ MF such that(
p|Q

K ′/Q

)
= cσ, p ∈ S,

and
SelS (F,E [ℓ]) ⊆ infK′/F H1 (K ′/F,E [ℓ]) .

Proof. Let n = [L : K ′], and let GL/K′ = {σ1, . . . , σn}. Chebotarev density ensures the existence of infinitely
many finite sets of primes S′ := {p1, . . . , pn} ⊆ ML such that(

pi
L/Q

)
= cσσi, i ∈ {1, . . . , n} ,

so that any prime p ∈ S := {p1|F , . . . , pn|F } ⊆ MF satisfies(
p|Q

K ′/Q

)
=

(
p|Q
L/Q

)∣∣∣∣
K′

= cσ,

by construction. It remains to show, under the inflation-restriction exact sequence

0 → H1 (K ′/F,E [ℓ])
inf−−→ H1 (L/F,E [ℓ])

res−−→ H1 (L/K ′, E [ℓ])
GK′/F ,

that res SelS (F,E [ℓ]) = 0, in other words that (res c) (σi) = 0 for any c ∈ SelS (F,E [ℓ]) and any i ∈
{1, . . . , n}. Note that pi remains inert in F/Q and splits completely in K/F , since(

pi|F
F/Q

)
=

(
pi

L/Q

)∣∣∣∣
F

= c,

(
pi|K
K/F

)
=

(
pi

L/Q

)∣∣∣∣2
K

= c2 = 1,

so its inertia degree inK/Q is exactly two. Now the restricted condition on S implies that (res c)
(

pi

L/K′

)
= 0,

and hence (res c)
(

pi

L/K

)
= 0 since res c extends to a homomorphism GL/K → E [ℓ]. Since(

pi
L/K

)
=

(
pi

L/Q

)2

= (cσσi)
2
= σ−1 (cσic)σσi,

this is equivalent to
− (res c) (σi) = (res c) (cσic) = c (res c) (σi) ,

so c ∈ SelS (F,E [ℓ]) and (res c) (σi) ∈ E [ℓ], and hence all of (res c)
(
GL/K

)
, live in opposite eigenspaces under

complex conjugation. The Galois invariance of res c ∈ H1 (L/K,E [ℓ]) translates to Galois equivariance as a
homomorphism res c : GL/K → E [ℓ], so (res c)

(
GL/K

)
is a GK/F -module. Since E [ℓ] ∼= F2

ℓ is irreducible as

a GF (E[ℓ])/F
∼= GL2 Fℓ-module, and hence as a GK/F -module, this is only possible if (res c)

(
GL/K

)
= 0.

Again, this entire argument works under a fixed eigenspace. The ambient field L here is only necessary
for the proof, and not for the purposes of application, since such a field always exists.

6



3 The Euler system of Heegner points

The basic Heegner point lies in the bottom of a tower of generalised Heegner points, which are used to derive
a family of cohomology classes satisfying certain relations that make them an Euler system. This section
will outline the construction of Heegner points of higher conductors, explicitly define the aforementioned
Euler system, and prove local ramification behaviour of the derived classes. In an attempt to deviate from
the general literature, many of the proofs in this section will be omitted for a reference or given as sketches,
while the statements will be illustrated with a detailed example.

Example. The example in consideration in this section will be the elliptic curve over Q of conductorN = 101
with Cremona label 101a1, given by the minimal Weierstrass equation

E : y2 + y = x3 + x2 − x− 1,

which is a model of the modular curve X0 (101) modulo its Fricke involution w101. Its Mordell-Weil group is
Z ·(1, 0), it has a prime 101 of non-split multiplicative reduction, and its ℓ-adic representations have maximal
images for all primes ℓ ∈ N, so ℓ = 3 is chosen arbitrarily, and its associated eigenform is

fE (q) = q − 2q3 − 2q4 − q5 − 2q7 + q9 − 2q11 + 4q12 + q13 + 2q15 + 4q16 + 3q17 − 5q19 + . . . ,

so the modular parameterisation sends τ ∈ X0 (101) (C) to

q − 2

3
q3 − 1

2
q4 − 1

5
q5 − 2

7
q7 +

1

9
q9 − 2

11
q11 +

1

3
q12 +

1

13
q13 +

2

15
q15 +

1

4
q16 +

3

17
q17 − 5

19
q19 + · · · ∈ C,

where q := e2πiτ . The imaginary quadratic field chosen is F = F 1 = Q
(√

−43
)
, which has trivial ideal class

group and has unit group {±1}, and satisfies the Heegner hypothesis since −43 ≡ 192 mod 101.

Remark. These choices were made as part of a brute-force search in SageMath and LMFDB, under the
standard hypotheses, as well as assumptions for computational simplicity, namely a trivial class group for F ,
a Kolyvagin conductor of p = 2, and a maximal Galois image for ℓ = 3. Out of the few remaining options,
it seems that this is the only one with a rational y-coordinate of its Heegner point.

3.1 Heegner points of higher conductors

Recall that under the Heegner hypothesis, the theory of complex multiplication for OF defines the basic
Heegner point h ∈ E (F ). This construction can be generalised to define Heegner points for non-maximal
orders of F . For proofs of the assertions in this section, refer to Cox’s book [Cox89].

Let OF,n := Z+ nOF be the order of F of conductor n ∈ N. The generalised ideal class group of OF,n is
ClOF,n := IF,n/PF,n, where IF,n is the group of fractional ideals coprime to nOF and PF,n is its subgroup
generated by principal fractional ideals congruent to some integer modulo nOF . By the existence theorem of
class field theory, there is a unique abelian extension Fn of F , called the ring class field of F of conductor
n, whose Galois group GFn/F over F is isomorphic to ClOF,n via the Artin map, and whose Galois group
GFn/Q over Q is isomorphic to GFn/F ⋊GF/Q via cσc = σ−1. A prime ramified in Fn/F necessarily divides

nOF , while a prime inert in F/Q lies in PF,n and hence splits completely in Fn/F . Since O×
F = {±1}, there

is an isomorphism Gn := GFn/F 1 ∼= (OF /n)
×
/ (Z/n)× induced by the short exact sequence

1 → (Z/n)× → (OF /nOF )
× → (IF,n ∩ PF ) /PF,n → 1,

so that by the Chinese remainder theorem, Gn ∼=
∏

p|n G
p whenever n is square-free. If p remains inert in

F/Q, then clearly Gp ∼= F×
p2/F×

p
∼= Z/ (p+ 1), and denote its generator by σp ∈ Gp.

Now let n ∈ N be coprime to ND, and let NF ⊴ OF be an ideal of norm N , which exists by the Heegner
hypothesis, so that the ideal NF,n = NF ∩ OF,n ≤ OF,n satisfies OF,n/NF,n

∼= Z/N . Since the fractional
ideals OF and N−1

F are lattices in C, they define complex elliptic curves C/OF,n and C/N−1
F,n related by a

cyclic N -isogeny, and hence a point in X0 (N) (C) under its moduli interpretation. By construction, both
C/OF,n and C/N−1

F,n have complex multiplication by OF , so the first main theorem of complex multiplication

applies to give j (C/OF,n) , j
(
C/N−1

F,n

)
∈ Fn, where j is the j-invariant function, but these are exactly the

coordinates of the point in X0 (N) (C). Applying the modular parameterisation X0 (N) ↠ E yields the
Heegner point hn ∈ E (Fn) of conductor n. The basic Heegner point is then simply h := Tr1 h1.
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Example. Let δ := 1+
√
−43
2 , and consider the ideal

NF := ⟨101, δ − 10⟩ ⊴ OF ,

so that OF /NF
∼= Z/101. Then NF corresponds to the point τ := δ−10

202 ∈ X0 (N) (C), which maps under
the modular parameterisation to the basic Heegner point

h := (1, 0) ∈ E (F ) ,

which happens to be twice the generator − (0, 1) ∈ E (Q). Now let n = 2, and consider the ideal

NF,2 := ⟨101, 2δ − 20⟩ ⊴ OF,2,

so that OF,2/NF,2
∼= Z/101 as well. Similarly, NF,2 corresponds to the point δ−10

101 ∈ X0 (N) (C), which maps
under the modular parameterisation to the Heegner point of conductor two

h2 := (α, 1) ∈ E
(
F 2
)
,

where α is a generator over F of the ring class field F 2 := F [X] /
〈
X3 +X2 −X − 3

〉
of conductor two.

While a lot more can be said about Heegner points of any conductor, for the purposes of this report it
suffices to consider Kolyvagin conductors, namely the square-free n ∈ N coprime to NDℓ such that

p | n prime =⇒
(

p

F (E [ℓ]) /Q

)
∼ c.

For the remainder of this report, let n = pq be a Kolyvagin conductor for some prime p ∈ N and some
q ∈ N. The assumption of n being a Kolyvagin conductor has several immediate consequences. In terms of

ramification behaviour, p remains inert in F/Q since
(

p
F/Q

)
= c, so that the corresponding prime p := pOF

of MF splits completely in F q/F and totally ramifies in F p/F . Additionally, since(
p

F (E [ℓ]) /F

)
=

(
p

F (E [ℓ]) /Q

)2

= c2 = 1,

the prime p also splits completely in F (E [ℓ]) /F . All this is summarised in the diagram

Fn F (E [ℓ])

F p F q

F

Q

split ramified

ramified split
splits

inert

.

Now since ℓ is odd and
(

p
F/Q

)
= c, their characteristic polynomials X2−apX+p = 0 and X2−1 = 0 acting

on E [ℓ] ∼= F2
ℓ are congruent modulo ℓ, so there are congruences

ap ≡ 0 mod ℓ, p+ 1 ≡ 0 mod ℓ.

The action of c also decomposes Ẽ (Fp) = Ẽ
(
Fp2

)
into eigenspaces Ẽ (Fp)

+ ⊕ Ẽ (Fp)
−
, with

#Ẽ (Fp)
+
= #Ẽ (Fp) = p+1−ap, #Ẽ (Fp)

−
= deg (Frobp + [1]) = det Frobp +1+TrFrobp = p+1+ap,

which are both divisible by ℓ, so that dimFℓ
Ẽ (Fp) [ℓ]

±
= 1.
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Example. The prime p = 2 is a Kolyvagin conductor. For instance, if a+b
√
−43

2 ∈ OF for some a, b ∈ Z of

the same parity, then 1 ≡
√
−43 mod 2 implies that

(
a+b

√
−43

2

)2
≡ a−b

√
−43

2 = c
(

a+b
√
−43

2

)
mod 2. Since

−43 ≡ 5 mod 8, 2 remains inert in F , and totally ramifies in F 2 as 2 = (α+ 1)
3
. Furthermore,

Ẽ (F4)
+
= {0, (1, 0) , (1, 1)} , Ẽ (F4)

−
= {0, (0, X) , (0, X + 1)} ,

where X is the generator of F4 over F2, which agrees with #Ẽ (F4)
+
= #Ẽ (F4)

−
= 3 since a2 = 0.

Most importantly, the Heegner points of Kolyvagin conductors satisfy the following compatibility relations
that Kolyvagin terms the axioms of an AX3 Euler system.

Proposition 3.1.

• Trp hn = [ap] hq in E (F q), where Trp =
∑p

i=0 σ
i
p.

• h̃n =
(

pq

F q/F

)
h̃q in Ẽ

(
Fpq

)
, where pq ∈ MF q is a prime above p.

Proof. This is a consequence of Eichler-Shimura theory [Gro91, Proposition 3.7].

Example. Let n = p = 2. In E
(
F 2
)
,

Tr2 h2 = h2 + σ2h2 + σ2
2h2 = −σ2

2h2 + σ2
2h2 = 0 = [0] h.

In Ẽ (F4), the Frobenius is simply multiplication by [2], so

h2 ≡ (−1, 1) ≡ (13,−49) = [2] h mod α+ 1.

Finally, let ϵ be the eigenvalue of the Fricke involution wN on the eigenform fE , which is also the
negative of the sign in the functional equation satisfied by the completed Hasse-Weil L-function ΛE/Q (s).
The following characterises the action of complex conjugation on Heegner points in terms of ϵ.

Lemma 3.2. chn = ϵσhn in E (Fn) /E (Fn)tors for some σ ∈ Gn.

Proof. This is an analysis of the action of wN on X0 (N) [Gro91, Proposition 5.3].

Example. Let n = 2. Note that −ϵ can also be computed as the product of all local root numbers, which
consists of 1 for the prime 101 of non-split multiplicative reduction and −1 for the unique archimedean place,
so that ϵ = 1. Then h2 involves a choice between three generators of F 2 over F , so complex conjugation acts
as the identity or sends one choice to another, but G2 acts transitively on these choices.

For the remaining sections, denote ϵn := (−1)
k
ϵ, where k is the number of prime factors of n.

3.2 Kolyvagin derivatives and Kolyvagin classes

With a tower of Heegner points hn ∈ E (Fn) at hand, one may obtain cohomology classes in H1 (F,E [ℓ])
by simply taking the trace map Trn : E (Fn) → E (F ) then applying the Kummer map δn : E (Fn) →
H1 (F,E [n]), yet this brutal approach does not yield interesting cohomology classes. Instead, Kolyvagin first
defines an operator on E (Fn) to construct Gn-invariant elements, before applying a trace map.

Definition. If n ∈ N, define the Kolyvagin derivative by

Dn :=
∏
p|n

p∑
i=1

iσi
p ∈ Z [Gn] ,

and define the derived Heegner point by Hn := Trn Dnhn ∈ E (Fn), where

Trn :=
∑
σ∈Sn

σ ∈ Z
[
GFn/F

]
,

and Sn is any set of coset representatives of Gn ≤ GFn/F .

9



Note that H1 = h. By construction, the Kolyvagin derivative and the trace map satisfy formal identities
in Z [Gn], which translates to crucial properties for the derived Heegner point as a class in E (Fn) /ℓ.

Lemma 3.3. The operators Dn and Trn satisfy the telescoping identities

(σp − 1)Dp = p+ 1− Trp, cDp = pTrp −σpDpc,

so that
[Hn] ∈ (E (Fn) /ℓ)

GFn/F ,ϵn .

Proof. The identities are completely explicit computations, while the latter statement follows from another
computation using Proposition 3.1 and Lemma 3.2 [Gro91, Proposition 3.6 and Proposition 5.4]

Example. For simplicity, let n = p = 2, so that ϵ2 = −1, although the general case when n > p is not
significantly more complicated. Then

(σ2 − 1)D2 = (σ2 − 1)
(
σ2 + 2σ2

2

)
= σ2

2 + 2− σ2 − 2σ2
2 = 3−

(
1 + σ2 + σ2

2

)
= 3− Tr2,

and since c
(
1 + σ2 + σ2

2

)
= 1 + σ2 + σ2

2 ,

cD2 = c
(
σ2 + 2σ2

2

)
= 2c

(
1 + σ2 + σ2

2

)
− σ2

2c− 2c = 2
(
1 + σ2 + σ2

2

)
− σ2

(
σ2 + 2σ2

2

)
c = 2Tr2 −σ2D2c.

By Proposition 3.1,

(σ2 − [1])D2h2 = [3] h2 − Tr2 h2 = [3] h2 ≡ 0 mod 3E
(
F 2
)
,

so G2 fixes D2h2, and hence GF 2/F fixes H2. By Lemma 3.2, there is some σ ∈ G2 such that

cH2 = Tr−1
2 cD2h2 = Tr−1

2 [2] Tr2 h2 − Tr−1
2 σ2D2ch2 = −σσ2 Tr

−1
2 D2h2 mod 3E

(
F 2
)
.

Since D2h2 is G2-invariant, Tr−1
2 D2h2 = H2 is GF 2/F -invariant, so σ and σ2 act trivially. Thus cH2 ≡ −H2

mod 3E
(
F 2
)
, and so H2 lies in the negative eigenspace of c.

Since E (Fn) [ℓ] = 0 by Lemma 1.3, the global Kummer sequences for F and Fn and the inflation-
restriction exact sequence fit in an exact diagram

H1
(
GFn/F , E (Fn) [ℓ]

)
= 0

0 E (F ) /ℓ H1 (F,E [ℓ]) H1 (F,E) [ℓ] 0

0 (E (Fn) /ℓ)
GFn/F H1 (Fn, E [ℓ])

GFn/F H1 (Fn, E) [ℓ]
GFn/F

H2
(
GFn/F , E (Fn) [ℓ]

)
= 0

infFn/F

δ

resFn/F

δn

traFn/F

,

so resFn/F is an isomorphism.

Definition. The Kolyvagin class c (n) ∈ H1 (F,E [ℓ]) is the unique class such that

resFn/F c (n) = δn ([Hn]) .

Since δn and resFn/F respect the action of complex conjugation, Kolyvagin classes belongs to the ϵn-
eigenspace of c by Lemma 3.3. It is easy to see that it can be explicitly described by the cocycle

c (n) : GF −→ E [ℓ]

σ 7−→ σ

[
1

ℓ

]
Hn −

[
1

ℓ

]
Hn −

[
1

ℓ

]
(σ − [1])Hn

,

which is well-defined again by Lemma 3.3. Unfortunately, cohomology classes are rather cumbersome to
illustrate with an example, so the assertions in the remaining sections will be given proofs.
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3.3 Local triviality of Kolyvagin classes

It remains to study the local ramification behaviour of Kolyvagin classes c (n) ∈ H1 (F,E [ℓ]) under the
maps (·)v : H1 (F,E [ℓ]) → H1 (Fv, E [ℓ]) and (·)v : H1 (F,E [ℓ]) → H1 (Fv, E) [ℓ] to place them in appropriate
Selmer groups, starting by proving that they vanish locally at the places away from n.

Lemma 3.4. If v ∈ MF and v ∤ n, then c (n)
v
= 0.

Proof. Assume that v is a prime of good reduction such that v (ℓ) = 0. Under this assumption, Lemma
2.1 identifies c (n)

v
with a homomorphism Iv → E [ℓ]. Since Fn

vn is unramified over Fv,
(
resFn/F c (n)

)vn
is

exactly the same homomorphism, but this is zero by exactness in the definition of c (n). On the other hand,
the archimedean case is trivial, while the remaining finitely many cases involve a careful analysis of a Néron
model of E, which is too far afield and will be omitted for a reference [Gro91, Proposition 6.2].

In terms of Selmer groups, this says that c (n) ∈ SelS (F,E [ℓ])
ϵn for the finite set of primes S =

{pOF ∈ MF | p | n}. The Kolyvagin classes for the primes dividing n do not necessarily vanish locally, but
the following key computation encodes a crucial relationship between local triviality and local ℓ-divisibility.

Lemma 3.5. If p | n and n = pq, then c (n)
p
= 0 if and only if Hq ∈ ℓE (Fp).

Proof. Similarly to Lemma 3.4, Lemma 2.1 identifies
(
resFn/F c (n)

)pn
with a homomorphism Ipn

→ E [ℓ]

that is zero by exactness, so it identifies c (n)
p
with a homomorphism Ip/Ipn → E [ℓ]. Since p splits completely

in F q/F and totally ramifies in Fn/F q, there are canonical isomorphisms

Ip/Ipn
∼= GFn,ur

pn
/Fur

p

∼= GFn
pn

/Fp
= GFn

pn
/F q

pq

∼= GFn/F q ∼= Gp,

so that c (n)
p
= 0 precisely if c (n) (σp) = 0. Since the reduction map ·̃ : E [ℓ] → Ẽ

(
Fp

)
is injective, this is pre-

cisely if ˜c (n) (σp) = 0 in Ẽ
(
Fp

)
, which reduces under the explicit description of c (n) to

[
1
ℓ

]
(σp − [1]) H̃n = 0,

since σp ∈ IF acts trivially on Ẽ
(
Fp

)
. Now note by Proposition 3.1 that there is an identity

σh̃n = σ

(
σ−1pq
F q/F

)
h̃q =

(
pq

F q/F

)
σh̃q, σ ∈ GF q/F ,

so that Trn Dqh̃n = [p+ 1]
(

pq

F q/F

)
H̃q as well. By this identity along with Proposition 3.1 again,

(σp − [1]) H̃n = Trn Dq (σp − [1])Dph̃n = [p+ 1]Trn Dqh̃n − Trp H̃q =

(
[p+ 1]

(
pq

F q/F

)
− [ap]

)
H̃q,

so that
[
1
ℓ

]
(σp − [1]) H̃n ∈ Ẽ

(
Fpq

)
= Ẽ (Fp) since ap ≡ p+ 1 ≡ 0 mod ℓ. Furthermore, the Frobenius of pq

is conjugate to c, so it acts on H̃q as [ϵq] by Lemma 3.2. On the other hand, H̃q generates the cyclic group

Ẽ (Fp)
ϵq /ℓ ∼= Ẽ (Fp) [ℓ]

ϵq ∼= Fℓ by Lemma 3.3. Since #Ẽ (Fp)
ϵq = |(p+ 1) ϵq − ap|, it follows immediately

that
[
1
ℓ

]
(σp − 1) H̃n = 0 precisely if H̃q = 0 in Ẽ (Fp) /ℓ. Now since p ̸= ℓ, there is an exact sequence

0 E1 (Fp) /ℓ E (Fp) Ẽ (Fp) [ℓ] 0,

E1 (Fp) [ℓ]

∼= ,

whose first term vanishes by Lemma 1.3, so H̃q = 0 in Ẽ (Fp) /ℓ precisely if Hq = 0 in E (Fp) /ℓ, or
equivalently Hq ∈ ℓE (Fp). Thus the lemma follows, through the equivalences

c (n)
p
= 0 ⇐⇒ c (n) (σp) = 0 ⇐⇒ ˜c (n) (σp) = 0

⇐⇒
[
1

ℓ

]
(σp − [1]) H̃n = 0 ⇐⇒ H̃q ∈ ℓẼ (Fp) ⇐⇒ Hq ∈ ℓE (Fp) .

This gives an equivalent condition for c (n)
p
= 0 in terms of the local ℓ-divisibility of Hq, which is

reminiscent of the global ℓ-divisibility assumption h /∈ ℓE (F ) that will be exploited in the following section.
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4 Computing the Selmer group

With an Euler system of Heegner points lying in certain generalised Selmer groups, the classical Selmer
group Sel (F,E [ℓ]) may then be computed using purely Galois cohomology, using the assumption h /∈ ℓE (F )
for the first time. This section will introduce preliminary results and proceed to compute the ±ϵ eigenspaces
of the Selmer group to finally complete the proof of Theorem 1.2. Throughout, there will be a tower of fields
F ⊆ K1 ⊆ K2 ⊆ K3, where K1 := F (E [ℓ]), K2 := K1

([
1
ℓ

]
h
)
, and K3 will be defined later. For these three

fields, denote a choice of a prime in Ki above a prime p ∈ MF by pKi ∈ MKi .

4.1 Preliminary results

The following are three general lemmas, the first of which is a consequence of the Weil pairing.

Lemma 4.1. If p is a Kolyvagin conductor, then dimFℓ
H1 (Fp, E) [ℓ]

±
= 1.

Proof. By Galois equivariance of the Weil pairing, it suffices to show that H1 (Fp, E) [ℓ]
± ∼= E [ℓ]

∓
. The

assumption of p being a Kolyvagin conductor implies that K1/F has trivial inertia at p, so E [ℓ] ⊆ E (Fp),
and hence µℓ ⊆ Fp by the Weil pairing. Lemma 2.1 then identifies

H1 (Fp, E) [ℓ] = Hom (Ip, E [ℓ])
Gur

p = Hom(Ip/ℓ, E [ℓ])
Gur

p ∼= Hom(µℓ, E [ℓ])
Gur

p = Hom(µℓ, E [ℓ]) ,

as Fℓ-vector spaces, which respects the action of c, except that it acts on µℓ by inversion.

The second lemma rephrases the vanishing of a Hochschild-Lyndon-Serre spectral sequence.

Lemma 4.2. H1
(
K1/F,E [ℓ]

)
= H2

(
K1/F,E [ℓ]

)
= 0.

Proof. Since GK1/F
∼= GL2 Fℓ, its centre Z := Z

(
GK1/F

) ∼= F×
ℓ has order ℓ − 1 coprime to the order ℓ2 of

E [ℓ] ∼= F2
ℓ since ℓ > 2, so Hi (Z,E [ℓ]) = 0 for all i ∈ N. In particular, E [ℓ]

Z
= 0, so Hi (I, E [ℓ]) = 0 for all

i ∈ N as well, where I := GK1/F /Z. The inflation-restriction exact sequence then reads

H1
(
I, E [ℓ]

Z
)

H1
(
K1/F,E [ℓ]

)
H1 (Z,E [ℓ])

I

0 0

inf
∼=

res

∼= ,

so that H1
(
K1/F,E [ℓ]

)
= 0, and the vanishing of H1 (Z,E [ℓ]) yields another application

H2
(
I, E [ℓ]

Z
)

H2
(
K1/F,E [ℓ]

)
H2 (Z,E [ℓ])

I

0 0

inf

∼=

res

∼= ,

so that H2
(
K1/F,E [ℓ]

)
= 0 as well.

It is clear by induction that Hi
(
K1/F,E [ℓ]

)
= 0 for all i ∈ N, but only the first two dimensions will be

necessary. The third lemma computes the Galois invariant endomorphisms of E [ℓ].

Lemma 4.3. Under the standard GK1/F -action, dimFℓ
Hom(E [ℓ] , E [ℓ])

GK1/F = 1.

Proof. Since GK1/F
∼= GL2 Fℓ, this is just Hom

(
F2
ℓ ,F2

ℓ

)GL2 Fℓ , so the Galois invariance of Hom (E [ℓ] , E [ℓ])
translates to the equivariant homomorphisms, which clearly includes the one-dimensional subspace of scalar
maps. It is easy to see that these are all the homomorphisms, by considering the matrices(

1 1
0 1

)
,

(
0 1
1 0

)
∈ GL2 Fℓ,

so that the dimension is exactly one.

The following two sections will proceed very similarly via invoking Lemma 2.4 to obtain certain Kolyvagin
classes. By first showing that the Galois group structure of a field extension is isomorphic to E [ℓ], the
dimension of its cohomology group over F , and hence of the restricted Selmer group, can be determined.
The relaxed Selmer group is bounded by the local triviality of these Kolyvagin classes under the assumption
h /∈ ℓE (F ), and these compute the classical Selmer group by the exact sequence in Proposition 2.3.
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4.2 The zero eigenspace

Apply Lemma 2.4 to the fields K ′ = K2 and K = K1 to obtain a finite set of primes S ⊆ MF such that(
p

K2/Q

)
= cσ, p ∈ S,

and
SelS (F,E [ℓ])

−ϵ ⊆ infK2/F

(
H1
(
K2/F,E [ℓ]

))−ϵ
.

This requires a choice of a non-trivial σ ∈ G−
K2/K1 , which is guaranteed by the following.

Lemma 4.4. There is an isomorphism of GK1/F -modules GK2/K1
∼−→ E [ℓ] induced by δ (h).

Proof. By Lemma 4.2, the inflation-restriction exact sequence reads

H1
(
K1/F,E [ℓ]

)
H1 (F,E [ℓ]) H1

(
K1, E [ℓ]

)GK1/F H2
(
K1/F,E [ℓ]

)
0 Hom (GK1 , E [ℓ])

GK1/F 0

infK1/F

∼=

resK1/F traK1/F

∼= ∼= .

The cocycle δ (h) ∈ H1 (F,E [ℓ]) restricts to a homomorphism resK1/F δ (h) ∈ Hom(GK1 , E [ℓ])
GK1/F , whose

kernel is exactly GK2 by definition, inducing an injection ρ : GK2/K1 ↪→ E [ℓ]. Let σ ∈ GK1/F be such
that ρ (σ) ̸= 0, which is possible since h /∈ ℓE (F ). For any P ∈ E [ℓ], there is some σ′ ∈ GK1/F such that
P = σ′ (ρ (σ)), since GK1/F

∼= GL2 Fℓ acts transitively on E [ℓ] \ {0} ∼= F2
ℓ \ {(0, 0)}. The Galois invariance

of resK1/F δ (h) translates to the Galois equivariance of ρ, so P = ρ
(
σ′−1σσ′). Thus ρ is surjective.

With such a choice, all primes p ∈ S are Kolyvagin conductors since(
p

K1/Q

)
=

(
p

K2/Q

)∣∣∣∣
K1

= cσ|K1 = c.

As an almost immediate consequence, the cohomology group over F is generated by δ (h).

Lemma 4.5. H1
(
K2/F,E [ℓ]

) ∼= Fℓ · δ (h).

Proof. By Lemma 4.2, Lemma 4.3, and Lemma 4.4, the inflation-restriction exact sequence reads

H1
(
K1/F,E [ℓ]

)
H1
(
K2/F,E [ℓ]

)
H1
(
K2/K1, E [ℓ]

)GK1/F H2
(
K1/F,E [ℓ]

)
0 Fℓ 0

infK1/F

∼=

resK1/F traK1/F

∼= ∼= ,

but H1
(
K2/F,E [ℓ]

)
already contains δ (h).

This bounds the restricted part, while the relaxed part is constrained via local ramification behaviour.

Lemma 4.6. If p ∈ S, then

1. c (p)
v
= 0 for all v /∈ S, and

2. c (p)
p ̸= 0.

Proof.

1. This follows immediately from Lemma 3.4.

2. Since σ ̸= c by choice, p splits completely in K2/F by the computation(
p

K2/F

)
=

(
p

K2/Q

)
= cσ,

so f
(
K2

pK2
/Fp

)
> 1, and hence h /∈ ℓE (Fp). Thus c (p)

p ̸= 0 by Lemma 3.5.

13



In particular, c (p) ∈ Sel{p} (F,E [ℓ])
−ϵ

by Lemma 3.3. The −ϵ eigenspace is now easy to compute.

Proposition 4.7. Sel (F,E [ℓ])
−ϵ

= 0.

Proof. By Lemma 3.3, δ (h) ∈ H1
(
K2/F,E [ℓ]

)ϵ
, so SelS (F,E [ℓ])

−ϵ ⊆ H1
(
K2/F,E [ℓ]

)−ϵ
= 0 by Lemma

4.5. By Lemma 4.6, c (p)
p
are the only non-zero elements generating the one-dimensional Fℓ-vector spaces

H1 (Fp, E) [ℓ]
−ϵ

by Lemma 4.1, so cokerσ∅,S = 0. Thus Proposition 2.3 yields

cokerσ∅,S Sel (F,E [ℓ])
−ϵ∨

SelS (F,E [ℓ])
−ϵ∨

0 0

∼= ∼= .

4.3 The non-zero eigenspace

Now let p ∈ S be an arbitrary choice of a prime, and letK3 be the fixed field of ker (resK2 c (p) : GK2 → E [ℓ]).
Apply Lemma 2.4 to the fields K ′ = K3 and K = K2 to obtain a finite set of primes S′ ⊆ MF such that(

q

K3/Q

)
= cσ, q ∈ S′,

and
SelS′ (F,E [ℓ])

ϵ ⊆ infK3/F

(
H1
(
K3/F,E [ℓ]

))ϵ
.

This requires a choice of a non-trivial σ ∈ G−
K3/K2 , which is guaranteed by the following.

Lemma 4.8. There is an isomorphism of GK2/F -modules GK3/K2
∼−→ E [ℓ] induced by c (p).

Proof. By Lemma 4.5, the inflation-restriction exact sequence reads

0 H1
(
K2/F,E [ℓ]

)
H1 (F,E [ℓ]) H1

(
K2, E [ℓ]

)
Fℓ · δ (h)

infK2/F

∼=

resK2/F

.

Then resK2/F c (p) ̸= 0, otherwise c (p) lies in the linear span of infK2/F δ (h), which lie in different eigenspaces
by Lemma 3.3. The proof then proceeds identically to Lemma 4.4, replacing K2/K1 with K3/K2 and δ (h)
with c (p), and working under the assumption h /∈ ℓE (F ).

With such a choice, all primes q ∈ S′ are Kolyvagin conductors since(
q

K2/Q

)
=

(
q

K3/Q

)∣∣∣∣
K2

= cσ|K2 = c.

As an almost immediate consequence, the cohomology group over F is generated by δ (h) and c (p).

Lemma 4.9. H1
(
K3/F,E [ℓ]

) ∼= Fℓ · δ (h)⊕ Fℓ · c (p).

Proof. By Lemma 4.5 and Lemma 4.8, the inflation-restriction exact sequence reads

0 H1
(
K2/F,E [ℓ]

)
H1
(
K3/F,E [ℓ]

)
H1
(
K3/K2, E [ℓ]

)GK2/F

Fℓ · δ (h) Hom (E [ℓ] , E [ℓ])
GK2/F

inf

∼=

res

∼= .

Since GK1/F
∼= GL2 Fℓ is a quotient of GK2/F , Hom (E [ℓ] , E [ℓ])

GK2/F is at most one-dimensional, by Lemma

4.3, but H1
(
K3/F,E [ℓ]

)
already contains infK2/F δ (h) and c (p), linearly independent by Lemma 3.3.
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This bounds the restricted part, while the relaxed part is constrained via local ramification behaviour.

Lemma 4.10. If q ∈ S′, then

1. c (pq)
v
= 0 for all v /∈ S′, and

2. c (pq)
q ̸= 0.

Proof.

1. Lemma 3.4 reduces this to showing that c (pq)
p
= 0 for all p ∈ S, and Lemma 3.5 reduces this to

showing that Hq ∈ ℓE (Fp). Now q splits completely in K2/F by the computation(
q

K2/F

)
=

(
q

K2/Q

)2

= c2 = 1,

so f
(
K2

qK2
/Fp

)
= 1, and hence h ∈ ℓE (Fq). By Lemma 3.3, Lemma 3.4, and Lemma 3.5, c (q) ∈

Sel (F,E [ℓ])
−ϵ

, which is zero by Proposition 4.7, so 0 = resF q/F c (q) = δq ([Hq]). Thus Hq ∈ ℓE (F q) ⊆
ℓE
(
F q
p

)
= ℓE (Fp), as required.

2. Since σ ̸= c by choice, qK2 splits completely in K3/K2 by the computation(
qK2

K3/K2

)
=

(
q

K3/Q

)
= cσ ̸= 1,

so the localisation c (p)q : GK3
q
K3

/K2
q
K2

∼−→ E [ℓ] of the isomorphism in Lemma 4.8 is not trivial. On

the other hand, q splits completely in F p/F , so the restriction GF → GFq
factors in a diagram

E (F ) /ℓ E (F p) /ℓ E (Fq) /ℓ

H1 (F,E [ℓ]) H1 (F p, E [ℓ]) H1 (Fq, E [ℓ])

δ δp δq

Commutativity says δq ([Hp]) = c (p)q ̸= 0, so Hp /∈ ℓE (Fq), and hence c (pq)
q ̸= 0 by Lemma 3.5.

In particular, c (pq) ∈ Sel{q} (F,E [ℓ])
ϵ
by Lemma 3.3. The ϵ eigenspace is now easy to compute.

Proposition 4.11. Sel (F,E [ℓ])
ϵ ∼= Fℓ · δ (h).

Proof. By Lemma 3.3, δ (h) ∈ H1
(
K3/F,E [ℓ]

)ϵ
, so SelS′ (K,E [ℓ])

ϵ ⊆ H1
(
K3/F,E [ℓ]

)ϵ ∼= Fℓ · δ (h) by
Lemma 4.9. By Lemma 4.10, c (pq)

q
are the only non-zero elements generating the one-dimensional Fℓ-

vector spaces H1 (Fq, E) [ℓ]
ϵ
by Lemma 4.1, so cokerσ∅,S′ = 0. Thus Proposition 2.3 yields

cokerσ∅,S′ Sel (F,E [ℓ])
ϵ∨

SelS′ (F,E [ℓ])
ϵ∨

0

0

∼= ,

which is an isomorphism since Sel (F,E [ℓ])
ϵ
already contains δ (h) by exactness.

The proof of Theorem 1.2 is now complete.

Proof of Theorem 1.2. This follows immediately from Proposition 4.7 and Proposition 4.11.
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5 The Birch and Swinnerton-Dyer conjecture

The works of Gross-Zagier and Kolyvagin have huge implications on the Birch and Swinnerton-Dyer conjec-
ture [Dar04, Theorem 3.22]. Recall that ϵ is the negative of the sign in the functional equation satisfied by
the completed Hasse-Weil L-function ΛE/F (s). Depending on ϵ, an imaginary quadratic field F = Q

(√
−D

)
satisfying the Heegner hypothesis may be constructed while simultaneously satisfying a non-zero condition
on the Hasse-Weil L-function LED/Q (s) for the quadratic twist ED of E over Q.

Lemma 5.1.

• If ϵ = +, there is an imaginary quadratic field F = Q
(√

−D
)
satisfying the Heegner hypothesis such

that LED/Q (1) ̸= 0.

• If ϵ = −, there is an imaginary quadratic field F = Q
(√

−D
)
satisfying the Heegner hypothesis such

that L′
ED/Q (1) ̸= 0.

Proof. These are delicate analytic arguments on L-functions [Wal85; BFH90; MM91].

With this lemma, the weak Birch and Swinnerton-Dyer conjecture holds for analytic rank at most one.

Theorem 5.2. If ords=1 LE/Q (s) ≤ 1, then

ords=1 LE/Q (s) = rkE (Q) .

Proof. Applying higher derivatives at s = 1 in the functional equation ΛE/Q (s) = −ϵΛE/Q (2− s) yields

L
(k)
E/Q (1) = − (−1)

k
ϵL

(k)
E/Q (1) ,

and similarly for any quadratic twist of E over Q. It necessitates to consider the cases ϵ = ± separately.

• Let ϵ = +. Then LE/Q (1) = 0 for parity reasons, so ords=1 LE/Q (s) = 1 by assumption. By Lemma

5.1, LED/Q (1) ̸= 0 for some F = Q
(√

−D
)
, so ords=1 LED/Q (s) = 0, and hence ords=1 LE/F (s) = 1.

The Gross-Zagier formula implies that h ∈ E (F ) has infinite order, so Theorem 1.1 implies that
rkE (F ) = 1. By Lemma 3.2, ch = h in E (F ) /E (F )tors, so h ∈ E (Q), and thus rkE (Q) = 1.

• Let ϵ = −. Then L′
E/Q (1) = 0 for parity reasons, so ords=1 LE/Q (s) = 0 by assumption. By Lemma 5.1,

L′
ED/Q (1) ̸= 0 for some F = Q

(√
−D

)
, and LED/Q (1) = 0 for parity reasons, so ords=1 LED/Q (s) = 1,

and hence ords=1 LE/F (s) = 1. The Gross-Zagier formula implies that h ∈ E (F ) has infinite order,
so Theorem 1.1 implies that rkE (F ) = 1. By Lemma 3.2, ch = −h in E (F ) /E (F )tors, so h ∈
E (F ) \ E (Q), and thus rkE (Q) = 0.

It is conjectural that almost all rational elliptic curves have rank at most one, and there are recent
advancements to show that this holds for a positive proportion of all rational elliptic curves when ordered
by a naive height, and hence validates the weak conjecture due to Gross-Zagier and Kolyvagin. The precise
bounds on the order of the Tate-Shafarevich group proven by Kolyvagin also provided some validation for
the strong conjecture, although the full statement for rank at most one has yet to be proven to date.
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