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Preface

The aim of the project is to introduce the theory of finite projective planes of small orders to the reader.
This is done by giving proofs of general propositions and widely-known theorems in the field without going
into too much detail, as well as providing interesting side remarks throughout. The structure of the project
is so as to fully explain the following table in an accessible order:

order non-isomorphic planes
2 unique: Desarguesian
3 unique: Desarguesian
4 unique: Desarguesian
5 unique: Desarguesian
6 impossible (by Bruck-Ryser)
7 unique: Desarguesian
8 unique: Desarguesian
9 exactly 4: Φ, Ω, ΩD, Ψ (by Lam, Kolesova, Thiel)

10 impossible (by Lam, Thiel, Scwierz)
11 at least 1: Desarguesian
12 unknown (conjectured to be impossible)
13 at least 1: Desarguesian
14 impossible (by Bruck-Ryser)

Chapter 1 introduces the axiomatic definition of projective planes and proves several elementary results
derivable directly from the axioms. Chapter 2 discusses the existence and uniqueness of Desarguesian planes
as well as some of its properties. Chapter 3 proves the non-existence of certain planes due to the Bruck-Ryser
theorem and briefly touches on undiscovered planes of other orders. Chapter 4 justifies that there are in
fact non-Desarguesian planes coordinatisable with quasi-fields that are not skew-fields. Each chapter has its
own style of discussion, with the first chapter being geometric, the second chapter being algebraic, the third
chapter being number theoretic, and the fourth chapter being a combination of all three.

An assumption is made that the reader has elementary background knowledge of a few algebraic struc-
tures, including definitions and properties of groups, rings, and modules. The flow of information throughout
each chapter should be highly accessible and easily followed by undergraduates with relatively little experi-
ence in algebra. An attempt is made to link these new ideas to their past experiences.

Throughout the project, most sources of information were obtained from several library textbooks, but
web resources were also used extensively for inaccessible articles of the past. The bibliography would contain
most if not all of these sources, but some are explicitly mentioned in the text for direct references. All
write-ups are done by the group unless otherwise stated.

We would like to thank our supervisor Dr Ambrus Pál for support and guidance, as well as clarifications
of any doubts we had, throughout the project duration. Without him, this project would be an impossibility.
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Chapter 1

Introduction

Informally, as in [32], a projective plane is a surface without boundary derived from a usual plane by addition
of a line at infinity. Just as a straight line in projective geometry contains a single point at infinity at which
the endpoints meet, a plane in projective geometry contains a single line at infinity at which the edges of
the plane meet. A projective plane can be constructed by gluing both pairs of opposite edges of a rectangle
together giving both pairs a half-twist. It is a one-sided surface, but cannot be realized in three-dimensional
space without crossing itself.

1.1 Background

A more formal definition is as follows.

Definition (Projective plane). A projective plane P is an ordered triple (P,L, I), where P is the set of
points p of P, L is the set of lines l of P, and I ⊆ P × L is the incidence relation (·, ·) satisfying the
following axioms:

(P1) for any two distinct points p1, p2 ∈ P , there is a unique line l ∈ L, such that (p1, l), (p2, l) ∈ I,

(P2) for any two distinct lines l1, l2 ∈ L, there is a unique point p ∈ P , such that (p, l1), (p, l2) ∈ I, and

(P3) there are four distinct points in P such that no line in L is incident with more than two of them.

P is said to be finite if the number of points in P is finite, otherwise it is said to be infinite. Intuitively,
incidence relates points and lines in a familiar fashion, such that ”points being incident with lines” can be
interpreted as ”points lying on lines” or as ”lines passing through points”. As such:

(P1) implies that a line can alternatively be defined as the unique edge joining any two points,

(P2) states that no lines are parallel to each other, and

(P3) rules out certain degenerate cases that are trivial or uninteresting.
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Families of degenerate planes

These degenerate cases include two general families of degenerate
planes as in [1]:

1. all projective planes P ≡ (P,L, I) with:

(a) P ≡ {p1, ..., pn} for some n ∈ N,

(b) L ≡ {l1, ..., lm} for some m ∈ N,

(c) I ≡ {(pi, l1) | i ∈ {1...n}} ∪ {(p1, li) | i ∈ {2...m}}, and

2. all projective planes P ≡ (P,L, I) with:

(a) P ≡ {p1, ..., pn} for some n ∈ N,

(b) L ≡ {l1, ..., ln} for the same n,

(c) I ≡ {(pi, l1) | i ∈ {2...n}}
∪ {(p1, li) | i ∈ {2...n}} ∪ {(pi, li) | i ∈ {2...n}}.

They include trivial cases like empty points or empty lines, which do not
have enough structure to be considered interesting. Although they are
presented as finite cases, they can be naturally extended to infinite cases,
and hence hold for infinite projective planes as well. For historical reasons,
these are not considered projective planes in any discussion.

For convenience, an abuse of notation will be used in the rest of the project. Let P ≡ (P,L, I) be a
projective plane. Then for any p, p′ ∈ P and any l, l′ ∈ L:

• P (l) := {p ∈ P | (p, l) ∈ I},

• L(p) := {l ∈ L | (p, l) ∈ I},

• l = p ∪ p′ ⇔ (p, l), (p′, l) ∈ I, and

• p = l ∩ l′ ⇔ (p, l), (p, l′) ∈ I.

This allows for the three axioms to be redefined in a less cumbersome manner.

1.2 Properties

For this section, let P ≡ (P,L, I) be a finite projective plane, unless otherwise stated.

1.2.1 Duality

At first glance, it stands out that there is an inherent symmetry to the roles of points and lines in projective
planes. In fact, exchanging their roles will still yield a valid definition of projective planes. This crucial
notion is known as duality, as illustrated in the theorem below.

Theorem 1.2.1 (Principle of plane duality). Let S be a statement of projective planes directly proven from
the three axioms P1, P2, and P3. Let S′ be the statement derived directly from S by exchanging every
instance of ”point” with ”line” and vice versa. Then S′, called the dual statement to S, is still a valid
statement of projective planes.

However, axiom P3 presents a tiny subtlety, which needs to be justified in the following lemma.

Lemma 1.2.2. There are four distinct lines in L such that no point in P is incident with more than two of
them.

Proof. Axiom P3 gives four distinct points p1, ..., p4 ∈ P , such that no line in L is incident with more than
two of them. Set the distinct lines as l1 = p1 ∪ p2, l2 = p2 ∪ p3, l3 = p3 ∪ p4, and l4 = p4 ∪ p1. Clearly all
points are incident with exactly two of these lines. Axiom P2 gives two additional distinct points p5 = l1∩ l3
and p6 = l2 ∩ l4. Clearly they are also incident with exactly two of these lines. Thus no points in P are
incident with more than two of these four lines.
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The proof of the lemma introduces two fundamental substructures in any projective plane.

Definition (Quadrangle). A quadrangle is any four distinct points in P that satisfies axiom P3.

Definition (Quadilateral). A quadilateral is any four distinct lines in L that satisfies Lemma 1.2.2.

The proof of the theorem is then trivial by the lemma.

Proof (of Theorem 1.2.1). It is sufficient to show that the three axioms P1, P2, and P3 imply the three
derived dual axioms Q1, Q2, and Q3. Clearly P1 and P2 are dual axioms, so Q1 ⇔ P2 and Q2 ⇔ P1.
Lemma 1.2.2 shows that Q3 can be derived from P1, P2, and P3.

Applying this exchange to a particular finite projective plane will indeed result in a related valid finite
projective plane, albeit labelled differently.

Definition (Dual plane). The dual plane of P, derived directly from P by exchanging every instance of
”point” with ”line” and vice versa, is a finite projective plane PD := (L,P, I∗), where I∗ = {(l, p) | (p, l) ∈
I} ⊆ L× P is the inverse relation of I.

This exchange will be named appropriately for the sake of brevity.

Definition (Plane duality). A plane duality is a map transforming P to its dual plane PD.

1.2.2 Order

Now it is worth noting that the number of points and lines of any projective plane are restricted by a lower
bound. This is a direct consequence of the previous section ruling out trivial cases.

Proposition 1.2.3. |P | ≥ 7 and |L| ≥ 7.

Proof. Axiom P3 gives four points in the quadrangle, of which must be pairwise incident to a unique line by

P2. A simple combinatorial argument gives |L| ≥
(

4
2

)
= 6. Out of the

(
6
2

)
= 15 pairs of these lines, three

pairs are not yet incident to a unique point. Axiom P2 assigns three points to these, so with the initial four
points, we have |P | ≥ 4 + 3 = 7. A similar dual argument shows that |L| ≥ 7 as well.

The three points not in the initial quadrangle are given names for easy reference.

Definition (Diagonal point). A diagonal point is any one of the three additional points in P not in the
quadrangle in Proposition 1.2.3.

It is entirely possible that the simplest finite projective plane has exactly 7 points and 7 lines, which will
be explored in the next chapter. For now, it can be seen that points and lines are heavily related.

Proposition 1.2.4. There is a unique n ∈ N≥2 such that:

(i) for any line l ∈ L, we have |P (l)| = n+ 1, and

(ii) for any point p ∈ P , we have |L(p)| = n+ 1.

Two lemmas will be introduced to prove this more succinctly.

Lemma 1.2.5. Let p ∈ P be a point and l ∈ L be a line. Then:

1. |P (l)| ≥ 3, and

2. |L(p)| ≥ 3.

Proof. Check both parts.

1. Axiom P3 gives four points p1, ..., p4 ∈ P in the quadrangle. For any line l ∈ L, assume without loss
of generality that p1, p2 /∈ P (l). Axiom P1 gives unique distinct lines l1 = p2 ∪ p3, l2 = p1 ∪ p3, and
l3 = p1 ∪ p2. Axiom P2 gives three distinct unique points qi = l ∩ li, so |P (l)| ≥ 3.
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2. A similar dual argument shows that |L(p)| ≥ 3 for any point p ∈ P as well.

Lemma 1.2.6. For any point p ∈ P , there is a line l ∈ L such that p /∈ P (l).

Proof. Fix a point p ∈ P . Lemma 1.2.5 gives a line l ∈ L(p), a second distinct point p′ ∈ P (l), and a second
distinct line l′ ∈ L(p′). By axiom P2, since l is uniquely incident to p and p′, it must be that p /∈ P (l′).

The proof, albeit slightly longer, follows easily from the axioms and previous lemmas.

Proof (of Proposition 1.2.4). Proof adopted from [23].

(i) Fix two distinct lines l, l′ ∈ L, which is possible by Proposition 1.2.3, which has a unique point p = l∩ l′
by axiom P2. Lemma 1.2.5 gives a third distinct line l′′ ∈ L(p) and a second distinct point p′ ∈ P (l′′).
Now assume P (l) = {p, q1, ..., qm}, which is possible by Lemma 1.2.5. Axiom P1 gives unique distinct
lines mi = p′ ∪ qi. Axiom P2 gives unique distinct points q′i = l′ ∩mi. Hence p, q′1, ..., q

′
m ∈ P (l′), such

that |P (l′)| ≥ m + 1 = |P (l)|. Swapping the roles of l and l′ shows that |P (l)| ≥ m + 1 = |P (l′)|, so
that |P (l)| = m+ 1 = |P (l′)|. Now set n := m.

(ii) Fix a point p ∈ P . By Lemma lemma:otherline, there is a line l ∈ L such that p /∈ P (l). Now assume
P (l) = {p1, ..., pn+1}. Axiom P1 gives unique distinct lines li = p ∪ pi, so |L(p)| ≥ n + 1. E Suppose
there is another distinct line l′ ∈ L(p). Axiom P2 gives a unique distinct point p′′ = l∩ l′, so p′′ ∈ P (l).
E Thus indeed |L(p)| = n+ 1.

This strong relation between points and lines allows the order, the most important property of a finite
projective plane, to be defined.

Definition (Order). An order of a finite projective plane is the unique n ∈ N≥2 satisfying Proposition
1.2.4.

A combinatorial argument arising from this yields the equivalence between the number of points and
lines of any finite projective plane.

Corollary 1.2.7. Let P be of order n. Then |P | = |L| = n2 + n+ 1.

Proof. Proof adopted from [22].
Assume P has order n, and fix a point p ∈ P . Proposition 1.2.4 gives |L(p)| = n+1, and |P (l)| = n+1 for any
line l ∈ L(p), so |P (l)\{p}| = n. Since the points and lines are distinct, we have |P | ≥ n(n+1)+1 = n2+n+1.
E Suppose there is another distinct point p′ ∈ P . Axiom P2 gives a unique distinct line l′ = p∪p′, so l′ ∈ L(p).
E Thus indeed |P | = n2 + n+ 1. A similar dual argument shows that |L| = n2 + n+ 1 as well.

1.2.3 Isomorphism

With order being defined, it can be said that plane duality does preserve order. However, despite the
similarity of roles between points and lines, it is not the case that plane duality necessarily preserves the
structure of the plane. In other words, duality applies to the theory of projective planes but not the individual
projective planes. As with any algebraic or geometric structure, it is useful to define a notion of isomorphism
between projective planes for this purpose.

Definition (Isomorphism). Let P1 ≡ (P1, L1, I1) and P2 ≡ (P2, L2, I2) be two projective planes. An
isomorphism from P1 to P2 is an ordered pair of bijections (π, λ), where π : P1 → P2 and λ : L1 → L2,
such that for all (p, l) ∈ I1, we have (π(p), λ(l)) ∈ I2. P1 is said to be isomorphic to P2, denoted by P1 ∼= P2,
if there exists an isomorphism from P1 to P2. Otherwise P1 is said to be non-isomorphic to P2, denoted
by P1 � P2.
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Remark. The isomorphism relation ∼= between finite projective planes is an equivalence relation. This is
a trivial result from realising that the identity isomorphism imply reflexivity, inverse isomorphisms imply
symmetry, and bijective composition of isomorphisms imply transitivity.

Isomorphic finite projective planes are hence considered structurally equivalent and are virtually indis-
tinguishable from each other. A common notion among isomorphisms is to consider the isomorphisms from
a plane to itself.

Definition (Automorphism). Let P ≡ (P,L, I) be a finite projective plane. An automorphism φ of P is
an isomorphism from P to itself.

The set of all automorphisms and their relation to each other also forms a group.

Definition (Automorphism Group). Let P be a finite projective plane. The automorphism group of P,
denoted by Aut(P), is a group (S(P), ◦), where S(P) is the set of all automorphisms of a projective plane P,
and ◦ is the composition operation between automorphisms.

It is tempting to say that plane duality is isomorphism-invariant, but this is only restricted to a class of
planes which have a certain property.

Definition (Self-dual). Let PD be the dual plane of P. If P ∼= PD, then P is said to be self-dual.

Most finite projective planes are not self-dual, but a class of planes known as Desarguesian planes are
always self-dual, provided they are finite. Indeed, when considering the planes of order 9, there are exactly
four non-isomorphic finite projective planes, of which two are self-dual and the other two being duals of each
other. However, it is also a known fact that there is exactly one unique plane of, say, order 3, yet there are
no planes of, say, order 6. The mere subtlety in the number of non-isomorphic finite projective planes of
each order is interesting in its own way, that it has become a subject of great interest for mathematicians.
Many results have been proved, including the fact that there must exist a plane for certain orders but not
other orders. However, the classification of all finite projective planes is still far from complete. For instance,
it still remains an open problem whether there exists a plane of order 12. All these facts will be heavily
justified in the next few chapters.
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Chapter 2

Existence of planes of special orders

For this chapter, denote (x, y, z)T as xyz, for ease of notation.

2.1 The projective plane of order 2 (Fano plane)

Prior to this chapter, there has yet been a discussion or even an example of a particular finite projective
plane, which might lead one to question if they truly exist, especially due to the unfamiliar axioms proposed.
This chapter assures the existence of these planes implicitly by providing proofs.

2.1.1 Construction

Due to Proposition 1.2.3, if a finite projective plane exists, it must have at least seven points and seven lines.
With the properties of order in Proposition 1.2.7, it is clear that a plane of order 1, which would theoretically
have three points and three lines, cannot possibly exist. Hence the smallest plane would need to be of order
at least 2, which would have exactly seven points and seven lines. Indeed, a plane of order 2 exists, as
illustrated in the following informal construction.

Example. Let P ≡ (P,L, I) be labelled such that:

P := {p001, p010, p011, p100, p101, p110, p111},

L := {l001, l010, l011, l100, l101, l110, l111},

and the incidence relation as

I := {(p001, l010), (p001, l100), (p001, l110),

(p010, l001), (p010, l100), (p010, l101),

(p011, l011), (p011, l100), (p011, l111),

(p100, l001), (p100, l010), (p100, l011),

(p101, l010), (p101, l101), (p101, l111),

(p110, l001), (p110, l110), (p110, l111),

(p111, l011), (p111, l101), (p111, l110)},

as seen in the diagram below. A simple verification shows that this is indeed a projective plane. It is labelled
in this fashion using binary representations of 1, ..., 7 for many pedantic reasons. They will be made clear
over later sections and chapters, which will periodically refer back to this explicit construction as an example.
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Projective plane of order 2

This notation, despite being very explicit, is clearly extremely cumbersome, especially if used on finite
projective planes of higher orders, if they exist. An alternative algebraic construction representing the same
plane would be useful, and would possibly generalise better. The following proposition presents exactly this
and a proof that it is indeed a finite projective plane.

Proposition 2.1.1. Let V be a three-dimensional vector space over the finite field F2, and let:

1. P := {pn | n ∈ V },

2. L := {lm | m ∈ V }, and

3. I := {(pn, lm) | pn ∈ P, lm ∈ L, 〈n,m〉 = 0}.

Then P := (P,L, I) is a finite projective plane of order 2 as constructed above.

Proof. It is sufficient to check the three axioms of projective planes.

1. For any two distinct points pn, pm ∈ P , the line ln+m = pn ∪ pm is unique.

2. For any two distinct lines ln, lm ∈ L, the point pn+m = ln ∩ lm is unique.

3. The four distinct points p001, p010, p100, p111 ∈ P are such that no line in L is incident with more than
two of them.

A simple verification shows that the above indeed holds for all points and lines.

2.1.2 Uniqueness

An informal way of constructing a finite projective plane of order 2 could be to argue axiomatically as in
[23]. Restricted by a lower bound of seven points and seven lines, a diagram of a plane equivalent to the
plane constructed above will be drawn inevitably. This suggests that it the plane in question may be unique
up to isomorphism and order, as illustrated in the following proposition.

Proposition 2.1.2. Let P and P′ be two finite projective planes of order 2. Then P ∼= P′.

Proof. It is sufficient to show that there is an isomorphism from any finite projective plane P ≡ (P,L, I) of
order 2 to the plane P′ ≡ (P ′, L′, I ′) constructed in Proposition 2.1.1.
Corollary 1.2.7 gives |P | = |L| = 22 + 2 + 1 = 7, so let p1, ..., p7 ∈ P and l1, ..., l7 ∈ L. Axiom P3 gives a
quadrangle, which can be labelled as p1, p2, p4, p7. Proposition 1.2.3 gives six explicit lines, each unique to a
pair of points in the quadrangle, which can be labelled as l1 = p2 ∪ p4, l2 = p1 ∪ p4, l3 = p4 ∪ p7, l4 = p1 ∪ p2,
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l5 = p2 ∪ p7, and l6 = p1 ∪ p7. There are also three additional diagonal points, which can be labelled as
p3 = l3∩ l4, p5 = l2∩ l5, and p6 = l1∩ l6. By this labelling, Proposition 1.2.4 holds for all lines and all points
in the quadrangle, but not for any diagonal point. It is easy to see that only (p3, l7), (p5, l7), (p6, l7) ∈ I will
make Proposition 1.2.4 hold for diagonal points.
Let V be the vector space over F2 representing P′. Now let π : P → P ′ and λ : L → L′ be such that
π(pn) = pn′ and λ(lm) = lm′ , where n′ and m′ are the binary representations in V of n and m respectively,
such that β(1) = 001, β(2) = 010, β(4) = 100, etc. Then π and λ are clear bijections. It is also simple to
verify that indeed 〈pn′ , lm′〉 = 0 for all points pn ∈ P and all lines lm ∈ L such that (pn, lm) ∈ I. Thus
φ := (π, λ) is an isomorphism.

Indeed, the finite projective plane of order 2 is unique. This particular plane is of such historical
and mathematical importance that it was entitled a name after the Italian mathematician G Fano for his
massive contributions to finite geometry.

Definition (Fano plane). The Fano plane is the unique finite projective plane of order 2.

The Fano plane is indeed the smallest non-trivial finite projective plane, having an automorphism group
of 168 elements. This particular group is the projective special linear group PSL(2, 7), which is in fact the
second smallest non-abelian finite simple group, only to be preceeded by the alternating group A5.

2.2 Desarguesian planes of prime power order

As per the previous section, the plane of order 2 does indeed exist. In the previous chapter, albeit briefly
as a remark, it was mentioned that the plane of order 3 exists, but a plane of order 6 does not. These
curious facts suggest that there may be a pattern among ”valid” orders, which is the case, as illustrated in
the following theorem.

Theorem 2.2.1. Let n ∈ N be a prime power, so that n = pq for q ∈ N and prime p ∈ N. Then there
exists a finite projective plane of order n.

2.2.1 Skew-fields

The proof of this theorem relies on an alternate representation of a finite projective plane with algebraic
methods. In particular, linear algebra in the form of modules, which are vector spaces generalised to arbitrary
rings, over a field-like structure will be used in the construction of a projective plane. For this purpose, the
ring structure required will be defined as follows.

Definition (Skew-field). A skew-field is a ring (R,+, ·, 0, 1), where for all r ∈ R \ {0}, there is a unique
s ∈ R \ {0} such that r · s = s · r = 1.

It is clear, both in definition and nomenclature, that all fields are skew-fields, and that skew-fields differ
from fields only in that commutativity of the multiplication operation is not required. However, as the scope
of discussion is limited to finite projective planes, only finite skew-fields will be considered, leading directly
to the following well-known theorem.

Theorem 2.2.2 (Wedderburn’s little theorem). Let F be a finite skew-field. Then F is a finite field.

Proof. Omitted, see [2].

This amazing result implies that modules over finite skew-fields are equivalent to vector spaces over finite
fields, and that all properties of finite fields, such as necessarily having orders equal to prime powers, are
inherited. As such, using the term ”vector space over finite skew-field” is clear by context.

10



2.2.2 Homogeneous coordinates

The construction of the projective plane is then similar to Proposition 2.1.1, but it will be presented with the
standard method of construction known as homogeneous coordinates. This is done by considering a three-
dimensional vector space over a finite skew-field, then defining points as one-dimensional linear subspaces,
lines as two-dimensional linear subspaces, and incidence as orthogonality. A more concrete statement is as
follows.

Proposition 2.2.3. Let V be a three-dimensional vector space over a finite skew-field F , and let V ∗ :=
V \ {000} and F ∗ := F \ {0}. For any v ∈ V ∗, let the equivalence class of all scalar multiples be [v] := {λv |
λ ∈ F ∗} and let the set of all equivalence classes be V ∗/F ∗ := {[v]|v ∈ V ∗}. Now let:

1. P := {p[v] | [v] ∈ V ∗/F ∗},

2. L := {l[v] | [v] ∈ V ∗/F ∗}, and

3. I := {(p[n], l[m]) | p[n] ∈ P, l[m] ∈ L, 〈n,m〉 = 0}.

Then P(F ) := (P,L, I) is a finite projective plane, coordinatised by V and F .

Remark. It is clear that points in P are indeed one-dimensional linear subspaces. Lines in L are also two-
dimensional linear subspaces, as each two-dimensional subspace can be uniquely represented by its normal
line.

Proof. Proof adopted from [23].
Let V be a vector space over a finite skew-field F . Theorem 2.2.2 says that V is a vector space over a finite
field F . Again, the three axioms of projective planes will be checked.

1. For any two distinct points p[n], p[m] ∈ P , we have that n and m are distinct up to scalar multiples, so
that rank(n,m) = 2. Then if n ≡ n1n2n3 and m ≡ m1m2m3, there is a unique v := v1v2v3 ∈ V ∗ such
that for all λ ∈ F ∗, (

n1 n2 n3
m1 m2 m3

)λ
v1v2
v3

 =

(
0
0

)
. Thus [v] := {λv | λ ∈ F ∗} is the unique equivalence class for the line l[v] = p[n] ∪ p[m].

2. For any two distinct lines l[n], l[m] ∈ L, it can be shown similarly that there is a unique v ∈ V ∗ such
that [v] = {λv | λ ∈ F ∗} is the unique equivalence class for the point p[v] = l[n] ∩ l[m].

3. Since 0, 1 ∈ F , we have 001, 010, 100, 111 ∈ V ∗. Then the four distinct points p[001], p[010], p[100], p[111] ∈
P are such that no line in L is incident with more than two of them.

The construction of the Fano plane can now be restated as in the following example.

Example. Let V be a three-dimensional vector space over the finite skew-field F2 ≡ {0, 1}, and let P , L,
and I be as in Proposition 2.2.3. Then P ≡ (P,L, I) is the Fano plane.

With this identification, it is then trivial to prove Theorem 2.2.1.

Proof (of Theorem 2.2.1). Theorem 2.2.2 says that V is a vector space over the finite field F . Then |F | = n,
where n is a prime power. By Proposition 2.2.3, this coordinatises a finite projective plane P(F ) ≡ (P,L, I).
Now fix a two-dimensional vector subspace W ⊂ V , defined to be a line l ∈ L. A simple combinatorial
argument gives |W | = n2, such that there are n2 − 1 distinct one-dimensional non-zero vectors. There are

also n−1 distinct bases for one-dimensional vector subspaces U ⊂W . Thus, there are n2−1
n−1 = n+ 1 distinct

one-dimensional vector subspaces U , defined to be points p ∈ P , such that |P (l)| = n+1. Thus the definition
of order defined in Proposition 1.2.4 says P(F ) has order n.

11



Indeed, for every prime power, there is a finite projective plane of that order, which immediately estab-
lishes the existence of countably infinite planes.

Remark. For an explicit list of ”valid” orders less than a fixed small order, an easy way is to simply loop
across primes and exponentiate them with natural numbers, leading to the sequence A246655 on the Online
Encyclopaedia of Integer Sequences (OEIS) [18] (2, 3, 4, 5, 7, 8, 9, 11, 13, ...). Note that 6, 10, and 12
are missing from this list for reasons that will be discussed in the next chapter. All known finite projective
planes have orders in this list, and it is currently an open problem if there exists a finite projective plane of
order not in this list.

The class of all projective planes constructed by this method was named after the French mathematician
G Desargues, one of the founders of projective geometry.

Definition (Desarguesian plane). A finite Desarguesian plane of order n is a finite projective plane
of order n constructed as in Proposition 2.2.3. If a finite projective plane cannot be constructed as in
Proposition 2.2.3, it is said to be non-Desarguesian.

Remark. It is easy to see that any Desarguesian plane is self-dual due to its inherent symmetry.

As a side note, infinite Desarguesian planes can be naturally extended by considering infinite skew-fields
rather than finite ones. In this case, vector spatial properties are not inherited, as infinite skew-fields are
not necessarily fields by Theorem 2.2.2. However, attempting to consider vector spaces over fields directly in
the construction leads to another class of projective planes, named after Pappus of Alexandria, as follows.

Definition (Pappian plane). A Pappian plane, also known as a field plane, is a Desarguesian plane
constructed over fields rather than skew-fields. A finite Pappian plane is also called a Galois plane.

All finite Pappian planes are clearly Desarguesian planes and vice versa, but infinite Desarguesian planes
constructed over certain infinite skew-fields, such as the quaternions, are not Pappian planes.

Remark. Most textbooks define Desarguesian planes and Pappian planes as projective planes that satisfy De-
sargues’s theorem and Pappus’s theorem respectively, then deriving an equivalence with these methods
of construction afterwards.

2.2.3 Other Desarguesian planes

As mentioned above every finite projective plane of order 2 is isomorphic to the Fano plane, but this does
not hold in general. In other words, for a given prime power order, there may be other planes that are non-
isomorphic to their corresponding Desarguesian plane. This was highlighted briefly in the previous chapter
in the case of order 9, which is indeed the lowest order for a non-Desarguesian plane. In fact, each of the
planes of order 3, 4, 5, 7, and 8 is unique up to isomorphism. The unique planes of order 3 and 4
are illustrated below.

Projective plane of order 3 Projective plane of order 4
The proofs for each of these are lengthy and not generalised easily, and as such will be omitted for the

sake of further discussion. As the order of a finite projective plane increases, the current approach makes it
clear that the complexity of the proof of its uniqueness increases rapidly. For instance, the plane of order 8
was proven to be unique in [19], after checking over a hundred cases of structures by hand. At the present,
is still unknown if finite projective planes of a general valid order higher than 9, such as order 11, is unique.
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2.3 Incidences of planes of small orders

As demonstrated in previous sections, a linear algebraic construction of finite projective planes is sufficient
to imply their existence. However, this method of construction is not easily visualised due to the definition
of incidence, so a semi-pictorial approach is taken to increase geometrical intuition.

2.3.1 Examples

An incidence matrix, defined below, is an explicit representation of a finite projective plane.

Definition (Incidence matrix). An incidence matrix of a finite projective plane P ≡ (P,L, I) of order n,
with m := |P | = |L| = n2 +n+ 1, where P ≡ {p1, ..., pm} and L ≡ {l1, ..., lm}, is a square matrix A ∈ Fm×m2 ,
such that for all i, j ∈ {1, ...,m}:

Aij =

{
1 (pi, lj) ∈ I
0 (pi, lj) /∈ I

.

For the rest of this section, let P be a finite projective plane of order n with m := n2 + n + 1, and let
A ∈ Fm×m2 be an incidence matrix of P.

Incidence matrices provide an explicit but exact way of describing the incidence relation of a finite
projective plane, so as to be reproduced easily. The following example constructs the incidence matrix for
the Fano plane constructed in Proposition 2.1.1.

Example. A ∈ F7×72

p001 p010 p011 p100 p101 p110 p111
l001 0 1 0 1 0 1 0
l010 1 0 0 1 1 0 0
l011 0 0 1 1 0 0 1
l100 1 1 1 0 0 0 0
l101 0 1 0 0 1 0 1
l110 1 0 0 0 0 1 1
l111 0 0 1 0 1 1 0

It is also immediately obvious that incidence matrices are not unique in the sense that the points and
lines are arbitrarily labelled. There are several canonical forms of these matrices for Desarguesian planes,
such as the Paige-Wexler normal form in [17], constructed by L J Paige and C Wexler. The following
example constructs this canonical form for the unique finite projective plane of order 3, labelling the points
as p1, ..., p13 and the lines as l1, ..., l13.

Example. A ∈ F13×132

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13
p1 1 1 1 1 0 0 0 0 0 0 0 0 0
p2 1 0 0 0 1 1 1 0 0 0 0 0 0
p3 1 0 0 0 0 0 0 1 1 1 0 0 0
p4 1 0 0 0 0 0 0 0 0 0 1 1 1
p5 0 1 0 0 1 0 0 1 0 0 1 0 0
p6 0 1 0 0 0 1 0 0 1 0 0 1 0
p7 0 1 0 0 0 0 1 0 0 1 0 0 1
p8 0 0 1 0 1 0 0 0 1 0 0 0 1
p9 0 0 1 0 0 1 0 0 0 1 1 0 0
p10 0 0 1 0 0 0 1 1 0 0 0 1 0
p11 0 0 0 1 1 0 0 0 0 1 0 1 0
p12 0 0 0 1 0 1 0 1 0 0 0 0 1
p13 0 0 0 1 0 0 1 0 1 0 1 0 0
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Incidence matrices of finite projective planes of higher orders will not be explicitly shown due to their
size, but their constructions are simple routines provided their incidence relation sets are fully known.

2.3.2 Properties

Now incidence matrices are clearly not symmetric, but they do have interesting properties worth investigating.
Several propositions will be presented for this, as follows.

Proposition 2.3.1. For any row Ai and any column Aj in A:

〈Ai, Aj〉 =

{
n+ 1 i = j

1 i 6= j
.

Proof. If i 6= j, since two lines are incident with a unique point, there is only one unique 1 ≤ k ≤ m,
such that Aik = Ajk = 1, thus 〈Ai, Aj〉 = 1. Otherwise if i = j, since |P (l)| = n + 1, there are distinct
1 ≤ k1, ..., kn+1 ≤ m, such that Aik = Ajk = 1, thus 〈Ai, Aj〉 = n+ 1.

Proposition 2.3.2. It holds that AAT = nIm+Jm, where Im ∈ Fm×m2 is the identity matrix and Jm ∈ Fm×m2

is the matrix with entries all 1.

Proof. Clearly [AAT ]ij = 〈Ai, Aj〉, which is given by Proposition 2.3.1 as:

[AAT ]ij =

{
n+ 1 i = j

1 i 6= j
.

This is exactly AAT = nIm + Jm as required.

Proposition 2.3.3. The determinant det(A) = ±(n+ 1)n
n2+n

2 .

Proof. Proof adopted from [15].
By properties of determinants, we have det(AAT ) = det(A)det(AT ) = det(A)2 ≥ 0. As adding scalar
multiples of rows to rows and columns to columns preserve the absolute value of the determinant, subtracting
the first row from all other rows and then adding all other columns to the first column gives, by Proposition
2.3.2:

∣∣det(AAT )
∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

n+ 1 1 . . . 1 1
1 n+ 1 . . . 1 1
...

...
. . .

...
...

1 1 . . . n+ 1 1
1 1 . . . 1 n+ 1

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

n+ 1 1 . . . 1 1
−n n . . . 0 0
...

...
. . .

...
...

−n 0 . . . n 0
−n 0 . . . 0 n

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

(n+ 1)2 1 . . . 1 1
0 n . . . 0 0
...

...
. . .

...
...

0 0 . . . n 0
0 0 . . . 0 n

∣∣∣∣∣∣∣∣∣∣∣
.

This is upper diagonal with all diagonal elements positive, hence giving det(AAT ) = (n + 1)2nn
2+n. Thus

det(A) = ±(n+ 1)n
n2+n

2 .

These properties can easily be verified for the two examples given above.
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Chapter 3

Non-existence of planes of certain
orders

The previous chapter has made it clear that finite projective planes do actually exist, and that there is an
entire class of countably infinite planes. Again, one might suspect, based on this fact and the lack of proof
for ”invalid” orders, that there are planes of any order. This chapter attempts to prove that there are certain
orders for which, if a plane should exist, it would lead to a contradiction, and hence cannot possibly exist.

3.1 Ruling out planes of invalid orders

As a start, a plane of order 6 does not exist. This has been historically proven in several ways, such
as being an indirect result stemming from the separate work of G Tarry in [27] and R C Bose in [3]. The
slick method discussed here will be through the Bruck-Ryser theorem for projective planes, which in turn
generalises another class of orders for which planes cannot exist. This theorem, proven earlier as a special
case of the more general Bruck-Ryser-Chowla theorem in combinatorics named after R H Bruck, H J Ryser,
and S D S Chowla, is illustrated as follows.

Theorem 3.1.1 (Bruck-Ryser theorem). Let n ∈ N be such that:

1. n ≡ 1 mod 4 or n ≡ 2 mod 4, and

2. there are no a, b ∈ N such that n = a2 + b2.

Then there are no finite projective planes of order n.

3.1.1 Lagrange’s four square theorem

The theorem hinges on several fundamental ideas in number theory, which will be formulated in this section.
The first of which is Lagrange’s four square theorem, stated as follows.

Theorem 3.1.2 (Lagrange’s four square theorem). Let n ∈ N. Then there are a, b, c, d ∈ N such that
n = a2 + b2 + c2 + d2, called a sum of four squares.

The proof of this theorem requires several elementary but important lemmas introduced below.

Lemma 3.1.3 (Euler’s four square identity). Let a1, a2, a3, a4, b1, b2, b3, b4 ∈ Z. Then:

(a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24) = (a1b1 − a2b2 − a3b3 − a4b4)2

+ (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 + a3b1 + a4b2)2

+ (a1b4 + a2b3 − a3b2 + a4b1)2.
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Proof. Indeed:

RHS = (a1b1 − a2b2 − a3b3 − a4b4)2

+ (a1b2 + a2b1 + a3b4 − a4b3)2

+ (a1b3 − a2b4 + a3b1 + a4b2)2

+ (a1b4 + a2b3 − a3b2 + a4b1)2

= a21b
2
1 + a22b

2
2 + a23b

2
3 + a24b

2
4

+ a21b
2
2 + a22b

2
1 + a23b

2
4 + a24b

2
3

+ a21b
2
3 + a22b

2
4 + a23b

2
1 + a24b

2
2

+ a21b
2
4 + a22b

2
3 + a23b

2
2 + a24b

2
1

= (a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24)

= LHS.

Lemma 3.1.4. Let n ∈ N be even. Then n
2 is a sum of four squares.

Proof. Fix an even n ∈ N. Theorem 3.1.2 gives that n = a2 + b2 + c2 + d2 for some a, b, c, d ∈ N. Since n
is even, an even number of {a, b, c, d} is odd, so assuming without loss of generality that a and b have the
same parity and c and d have the same parity gives a±b

2 , c±d2 ∈ N. Thus:

n

2
=
a2

2
+
b2

2
+
c2

2
+
d2

2
=

(
a+ b

2

)2

+

(
a− b

2

)2

+

(
c+ d

2

)2

+

(
c− d

2

)2

.

Lemma 3.1.5. Let p ∈ N be an odd prime. Then there are a, b, c, d,m ∈ N such that:

0 < a2 + b2 + c2 + d2 = mp <
p2

2
< p2.

Proof. Fix an odd prime p ∈ N and S := {n2 | n ∈ N, 0 ≤ n < p−1
2 }. E Suppose for two distinct a2, b2 ∈ S,

we have a2 ≡ b2 mod p, then either a ≡ b mod p or a ≡ −b mod p. E Thus elements in S are pairwise
non-congruent modulo p, which by the Pigeonhole principle gives u2, v2 ∈ S such that u2 ≡ −v2− 1 modulo

p. Then there is a m ∈ N such that u2 = −v2−1+mp, so 0 < u2 +v2 +12 +02 = mp. Since u2, v2 ≤
(
p−1
2

)2
,

we also have u2 + v2 + 12 ≤ 1 + 2
(
p−1
2

)2
= p2−2p+3

2 < p2

2 < p2.

The theorem can then be proven as follows.

Proof (of Theorem 3.1.2). Proof adopted from [28].
Fix n ∈ N.
By the Fundamental Theorem of Arithmetic, if n is not prime, there are primes p1, ..., pk ∈ N such that
n = p1...pk. If any two a, b ∈ N are both sums of four squares, then ab is also a sum of four squares by
Lemma 3.1.3. Thus by induction, if all primes pi are sums of four squares, then n is also a sum of four
squares. Since 2 = 12 + 12 + 02 + 02, we have that 2q is also a sum of four squares for any q ∈ N. Thus it is
sufficient to consider when n is an odd prime.
Lemma 3.1.5 gives a, b, c, d,m ∈ N such that 0 < m < n and mn = a2 + b2 + c2 + d2. Assume that m is
minimal. Now suppose for a contradiction that m 6= 1.
E Suppose also that m is even, then Lemma 3.1.4 shows that it is is not minimal. E E Suppose instead that
m divides all of a, b, c, d, then m2 divides a2 + b2 + c2 + d2 = mn, so m | n, which contradicts 0 < m < n
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since n is prime. E Thus m is odd and does not divide all of a, b, c, d.
Since m−1

2 , ..., m+1
2 is a full set of residues, there are w, x, y, z ∈ Z such that:

w ≡ a mod m, w2 ≤
(
m− 1

2

)2

,

x ≡ b mod m, x2 ≤
(
m− 1

2

)2

,

y ≡ c mod m, y2 ≤
(
m− 1

2

)2

, and

z ≡ d mod m, z2 ≤
(
m− 1

2

)2

.

Then w2 + x2 + y2 + z2 ≡ 0 mod m and w2 + x2 + y2 + z2 < 4
(
m
2

)2
= m2 < p2. Hence there is a n ∈ N

such that 0 < l < m < n and w2 + x2 + y2 + z2 = lm. Multiplying with a2 + b2 + c2 + d2 = mn gives

(aw − bx− cy − dz)2 + (ax+ bw + cz − dy)2 + (ay − bz + cw + dx)2 + (az + by − cx+ dw)2 = lm2n.

This is 0 modulo m2, so dividing by m2 makes ln a sum of four squares, contradicting the minimality of
m 6= 1. Thus m = 1, so n = a2 + b2 + c2 + d2.

In addition to the theorem, it is worth noting that Lemma 3.1.3 can be written in a more succinct manner
with a matrix, which has an important property.

Proposition 3.1.6. Let a1, a2, a3, a4, b1, b2, b3, b4, c1, c2, c3, c4 ∈ Z be such that:

(a21 + a22 + a23 + a24)(b21 + b22 + b23 + b24) = c21 + c22 + c23 + c24.

Let B ∈ Z4×4 be a matrix where:

B =


b1 b2 b3 b4
−b2 b1 −b4 b3
−b3 b4 b1 −b2
−b4 −b3 b2 b1

 .

Then (c1, c2, c3, c4) = (a1, a2, a3, a4)B and det(B) = 0 if and only if b1 = b2 = b3 = b4 = 0.

Proof. It is easy to verify that indeed (c1, c2, c3, c4) = (a1, a2, a3, a4)B and det(B) = (a2 + b2 + c2 +d2)2.

3.1.2 Sums of integral squares

The second being that any sum of two rational squares is a sum of two integral squares.

Proposition 3.1.7. Let n ∈ N. If there are a
c ,

b
c ∈ Q such that n =

(
a
c

)2
+
(
b
c

)2
, then there are x, y ∈ N

such that n = x2 + y2.

Again, several lemmas will be introduced for this.

Lemma 3.1.8. Let a1, a2, b1, b2 ∈ Z. Then:(
a21 + a22

) (
b21 + b22

)
= (a1b1 − a2b2)2 + (a1b2 + a2b1)2.

Proof. Indeed:(
a21 + a22

) (
b21 + b22

)
= a21b

2
1 + a22b

2
2 + a21b

2
2 + a22b

2
1 = (a1b1 − a2b2)2 + (a1b2 + a2b1)2.

Lemma 3.1.9. Let p ∈ N be an odd prime. If there are a, b ∈ N such that a2+b2 ≡ 0 mod p, then p = a2+b2.
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Proof. This is a similar but a simpler version of Theorem 3.1.2. Fix an odd prime p ∈ N, and let a, b ∈ N be
such that a2 + b2 ≡ 0 mod p, so a2 + b2 = np for some n ∈ N.
Assume that n is minimal, and suppose for a contradiction that n 6= 1. Since the set of all integers in[
m−1
2 , m+1

2

]
is a full set of residues, there are x, y ∈ Z such that:

x ≡ a mod n, x2 ≤
(n

2

)2
, and

y ≡ −b mod n, y2 ≤
(n

2

)2
.

Then x2 + y2 ≡ a2 + b2 ≡ 0 mod n, so that there is a m ∈ N such that x2 + y2 = nm. It holds that:

m =
x2 + y2

n
≤
(
n
2

)2
+
(
n
2

)2
n

=
n

2
< n.

By Lemma 3.1.8 mn2p = (np)(nm) = (a2 + b2)(x2 + y2) = (ax + by)2 + (ay + bx)2, which is 0 modulo n2.
Thus dividing by n2 makes mp a sum of two squares, contradicting the minimality of n 6= 1. Thus n = 1
and p = a2 + b2.

The proposition can then be proven as follows.

Proof (of Proposition 3.1.7). Proof adopted from [15].

Fix n ∈ N, such that n =
(
a
c

)2
+
(
b
c

)2
for some a

c ,
b
c ∈ Q, so a2 + b2 = nc2.

If a, b, c have common factors, then they can be cancelled out to give a similar equation a′2 + b′2 = nc′2,
so assume they are coprime. If n is not square-free, it can be written as n = mu2 for some u ∈ N and
square-free m ∈ N, such that it can be merged to give a similar equation a2 + b2 = m(uc)2, so assume n is
square-free. By the Fundamental Theorem of Arithmetic, there are distinct primes p1, ..., pk ∈ N such that
n = p1...pk.
E Suppose that there is a prime pi such that pi | a and pi | b. Then either p2i | n, or pi | c. E Thus there is
no such prime pi.
Rewriting gives a2 + b2 = p1...pkc

2, so that a2 + b2 ≡ 0 mod pi for all primes pi. Lemma 3.1.9 gives that each
prime pi = x2i + y2i for some xi, yi ∈ N, so that n = (x21 + y21)...(x2k + y2k). Thus by induction with Lemma
3.1.8, n is a sum of two squares.

Remark. Note that the above proposition holds for any two general rational numbers, since they can be
rewritten such that their denominators are equal.
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3.1.3 The Bruck-Ryser theorem

The previous lemmas allow the proof to be more conveniently presented.

Proof (of Theorem 3.1.1). Proof adopted from [12] and [15].
Fix n ∈ N such that n ≡ 1 mod 4 or n ≡ 2 mod 4.
Let P be a finite projective plane of order n with m := n2 +n+ 1, and let A ∈ Fm×m2 be an incidence matrix
of P. Now let x := (x1, ..., xm) and xm+1 be variables to be determined later, and z ≡ (z1, ..., zm) be such
that z = xA. Then each zi is a linear combination of x1, ..., xm, so zi =

∑m
j=1 aijxj for some aij ∈ Z.

By Proposition 2.3.2:

zzT = xA(xA)T = x(AAT )xT = x(nIm + Jm)xT = nxxT + xJmx
T .

Letting t :=
∑m

i=1 xi, we have xJmx
T = t2, and so this can be rewritten as:

m∑
i=1

z2i = n

m∑
i=1

x2i + xJmx
T = n

m∑
i=1

x2i + t2.

Since m+ 1 = n2 + n+ 2 ≡ 0 mod 4, adding nx2m+1 to both sides gives:

m∑
i=1

z2i + nx2m+1 = n

m+1∑
i=1

x2i + t2 = n

m+1
4∑

i=1

(
x2i + x2i+1 + x2i+2 + x2i+3

)
+ t2.

Theorem 3.1.2 gives n = a2 + b2 + c2 + d2 for some a, b, c, d ∈ N, so this can be rewritten as:

m∑
i=1

z2i + nx2m+1 =

m+1
4∑

i=1

(
x2i + x2i+1 + x2i+2 + x2i+3

)
(a2 + b2 + c2 + d2) + t2.

Let y := (y1, ..., ym+1) be such that (yi, yi+1, yi+2, yi+3) = (xi, xi+1, xi+2, xi+3)B with invertible B con-
structed as in Proposition 3.1.6, with b1 = a, b2 = b, b3 = c, b4 = d. Then by construction:

m∑
i=1

z2i + nx2m+1 =

m+1
4∑

i=1

(
y2i + y2i+1 + y2i+2 + y2i+3

)
+ t2 =

m+1∑
i=1

y2i + t2.

Additionally, each yi is also a linear combination of x1, ..., xm+1, so yi =
∑m

j=1 bijxj for some bij ∈ Z. As
x1, ..., xm+1 are variables, it is possible to choose x1, ..., xm depending on aij and bij , such that zi = ±yi for
all i ∈ {1..m}, giving:

m∑
i=1

y2i + nx2m+1 =

m+1∑
i=1

y2i + t2 =⇒ nx2m+1 = y2m+1 + t2.

Finally, this can be rewritten as n =
(

ym+1

xm+1

)2
+
(

t
xm+1

)2
, which by Proposition 3.1.7 proves that n is a sum

of two squares.

Remark. Considering orders less than a fixed small order, say 24, it is not difficult to check if an order
is a sum of two squares. One method would be through a simple number sieve, by first systematically
enumerating all the possibly sums of two squared integers less than 24, then remove all of these sum of two
squares, prime powers, as well as natural numbers congruent to 0 or 3 modulo 4. This eventually results to
the sequence A046712 on the OEIS [25], which begins with 6, 14, 21, and 22. By this argument, there are
no finite projective planes of order 6, 14, 21, or 22.
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3.2 Search of planes of other orders

With finite projective planes of orders ruled out by the Bruck-Ryser theorem out of the way, the focus is
shifted to the existence of planes of orders that are not.

Remark. The orders of finite projective planes not more than 100 that are not ruled out by Theorem 2.2.1
and Theorem 3.1.1 are 10, 12, 15, 18, 20, 24, 26, 28, 34, 35, 36, 39, 40, 44, 45, 48, 50, 51, 52, 55, 56, 58, 60,
63, 65, 68, 72, 74, 75, 76, 80, 82, 84, 85, 87, 88, 90, 91, 92, 95, 96, 98, 99, and 100.

Unfortunately, it is still currently an open problem if there is another restriction, possibly stronger than
the Bruck-Ryser theorem, which can be placed on the order of a projective plane. As such, several ad-hoc
methods have been developed to tackle planes of each order separately, many of them computational in
nature to quickly eliminate cases generated by theory.

Due to the sheer size of the structure in question and the number of considerations for each plane, it
is often computationally intensive. There is also an inherent difficulty in translating the theory into cases
checkable by a computer, and in reducing the number of cases to be considered viable in terms of CPU time.

Despite this, it has been proven with computer assistance that a plane of order 10 does not exist.
This is taken from a joint publication in [5], that checked about 2 × 1014 cases, and took over 800 days on
a VAX-11/780 at the year of publication. The search was, in brief, to classify all the cases for a 111 × 111
valid incidence matrix to exist, which would directly correspond to the plane of order 10.

However, a computational proof do entail certain issues. For instance, performing a brute-force search,
rather than through relating proven ideas, sheds less light to the underpinnings of the theory. As pointed
out by the authors of the paper themselves, this should not be considered as a ”proof”, in the traditional
sense, that a plane of order 10 cannot exist. They even presented reasons for claiming that the probability
of the existence of an undiscovered plane of order 10 is very small, but not zero.

Software errors, particularly programming errors, were the most common. Several checks for correctness
to minimise errors were made, including having two different independent programs checking the same
configurations at different paces. They found no discrepancies in the results, leading to confidence of having
no programming errors whatsoever, but encouraged others to do independent verifications of their work.

Hardware errors were unavoidable due to the presence of non-determinism in computer hardware, such
as the random changing of bits in a computer word that removes an entire branch of cases during the search.
They predicted that such errors occur one in a thousand hours of computing, and even discovered a hardware
failure during one of the searches before restarting it.

After the proof of the non-existence of a finite projective plane of order 10, no full proofs of other orders
have been proposed, the first one merely conjectured to not exist being order 12.
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Chapter 4

Non-uniqueness of planes of order
nine

In the previous two chapters, discussions were mainly on the existence or non-existence of finite projective
planes of various orders, while several claims were made that uniqueness of such planes do not hold in general,
and the first plane of which this fails happens to be of order 9. This chapter will justify that there indeed
are at least three planes of order 9 that are non-isomorphic, but only a short discussion will be provided on
the fact there are exactly four of these.

4.1 Algebraic preliminaries

As a direct result of Theorem 2.2.1, since 9 is a prime power, it is known that a Desarguesian plane of order
9 exists, which will be denoted as follows.

Definition (Φ). The finite projective plane Φ is the Desarguesian plane of order 9.

This chapter hence amounts to justifying that there are non-Desarguesian planes of order 9.

4.1.1 Planar ternary rings

For the proof of this, much algebraic preliminaries would be needed to even describe the existence of these
planes. It was mentioned in Proposition 2.2.3 that finite Desarguesian planes can be constructed as homoge-
neous coordinates, but this is restrictive. For instance, attempting to generalise to modules over rings where
scalars do not have multiplicative inverses would not work. This section will introduce a different algebraic
method that allows the generalisation to work for arbitrary ring-like structures. To start, the following
definition of a family of algebraic structures, known as planar ternary rings, is crucial.

Definition (Planar ternary ring). A planar ternary ring (PTR) is an ordered quadruple (R, T, 0, 1), where
R is a set, with two distinguished and different elements 0, 1 ∈ R, and a ternary operation T : R×R×R→ R,
which satisfies these five axioms:

1. for all a, b ∈ R, we have T (a, 0, b) = T (0, a, b) = b,

2. for all a ∈ R, we have T (1, a, 0) = T (a, 1, 0) = a,

3. for all a, b, c, d ∈ R such that a 6= c, there is a unique x ∈ R such that T (x, a, b) = T (x, c, d),

4. for all a, b, c ∈ R, there is a unique x ∈ R, such that T (a, b, x) = c, and

5. for all a, b, c, d ∈ R such that a 6= c, there are unique x, y ∈ R such that T (a, x, y) = b and T (c, x, y) = d.

Define the addition operation + : R × R → R such that for all a, b ∈ R, we have a + b = T (a, 1, b), and
define the multiplication operation · : R × R → R such that for all a, b ∈ R, we have a · b = T (a, b, 0). A
PTR (R, T, 0, 1) is also said to be linear if for all a, b, c ∈ R, we have T (a, b, c) = ab+ c.
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Remark. It is clear that in linear PTRs, the ternary operation depends entirely on the two binary operations,
leaving it redundant. As such, they can be instead written as the ordered quintuple (R,+, ·, 0, 1).

To motivate the reason in using PTRs for finite projective planes, a relation to the familiar skew-fields
definition in a previous chapter is as follows.

Proposition 4.1.1. Let (R,+, ·, 0, 1) be a skew-field. Then (R,+, ·, 0, 1) is a linear PTR.

Proof. Fix a, b, c, d ∈ R. It is sufficient to check the five axioms of PTRs, defining the ternary operation as
T (a, b, c) = a · b+ c.

1. a · 0 + b = 0 · a+ b = b holds by the additive identity.

2. 1 · a+ 0 = a · 1 + 0 = a holds by the multiplicative identity.

3. Let a 6= c. Then x = (a− c)−1 · (d− b) is the unique solution to the equation x · a+ b = x · c+ d.

4. x = c− a · b is the unique solution to the equation a · b+ x = c.

5. Let a 6= c. Then x = (b−d) ·(a−c)−1 and y = b−a ·x are unique solutions to the equations a ·x+y = b
and c · x+ y = d.

4.1.2 Non-homogeneous coordinates

With this in mind, the method of constructing general projective planes using general PTRs in discussion,
known as non-homogeneous coordinates, is defined in the following proposition.

Proposition 4.1.2. Let (R, T, 0, 1) be a PTR and ∞ /∈ R be an additional symbol, and let:

1. P := {p(a,b) | a, b ∈ R} ∪ {pa | a ∈ R} ∪ {p∞},

2. L := {l(a,b) | a, b ∈ R} ∪ {la | a ∈ R} ∪ {l∞}, and

3. I := I1 ∪ I2 ∪ I3 ∪ I4 ∪ I5 ∪ I6, where

(a) I1 := {(p(x,y), l(m,k)) | p(x,y) ∈ P, l(m,k) ∈ L, T (m,x, y) = k},
(b) I2 := {(p(x,y), lk) | p(x,y) ∈ P, lk ∈ L, x = k},
(c) I3 := {(px, l(m,k)) | px ∈ P, l(m,k) ∈ L, x = m},
(d) I4 := {(px, l∞) | px ∈ P},
(e) I5 := {(p∞, lk) | lk ∈ L}, and

(f) I6 := {(p∞, l∞)}.

Then P(R) := (P,L, I) is a finite projective plane, coordinatised by the PTR (R, T, 0, 1).

Remark. The primary motivation for constructing finite projective planes in this way is that, given a finite
projective plane P ≡ (P,L, I), the four points p1, p2, p3, p4 ∈ P in the quadrangle can be chosen as p1 := p0,
p2 := p∞, p3 := p(0,0), and p4 := p(1,1). With the lines and the incidence relation defined appropriately, we
have that P naturally satisfies the axioms of PTRs. A more detailed explanation can be found in [12].

Proof. Proof directly taken from [12].
Fix a, b, c, d ∈ R. It is sufficient to check the three axioms of projective planes.

1. If a 6= c, then by axiom 3, for any given b, d ∈ R, there is a unique m ∈ R such that T (m, a, b) =
T (m, c, d). Then the points p(a,b) and p(c,d) are on the unique line l(m,T (m,a,b)).
Clearly, the two points p(a,b) and p(a,d) are on the line la. If both of these points were also on the line
l(m,k), then we would have T (m, a, b) = k = T (m, a, d), which contradicts axiom 4. Thus there is a
unique line joining any two distinct points such that neither is on l∞.
Let pm be any point not p∞ on l∞, and p(a,b) be any point also not on l∞. Any line through pm is
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either l∞ or is of the form l(m,k) for some k ∈ R, and the line l(m,k) passes through p(a,b) if and only if
T (m, a, b) = k. However, since T (m, a, b) is uniquely determined by m, a, and b, so that l(m,T (m,a,b))

is the unique line containing pm and p(a,b). Since any line not on l∞ which contains p∞ is of the form
lk for some k ∈ R, the unique line joining p∞ and p(a,b) is la. Finally, pm1

and pm2
clearly have l∞,

and no other line, in common.

2. It is sufficient to show that any two distinct lines have at least one point in common. Consider the
lines l(m1,k1) and l(m2,k2). If m1 6= m2, then, by axiom 5, there exists a unique ordered pair (a, b) such
that T (m1, a, b) = k1 and T (m2, a, b) = k2 so that the point p(a,b) is on both l(m1,k1) and l(m2,k2). If
m1 = m2, then pm1

is on both lines, hence any pair of distinct lines of the form l(m,k) have a common
point. Clearly, the line l(m,k) meets l∞ at pm, so, in order to show that this intersects any other line,
it is sufficient to only consider the intersection of l(m,k) with lh, where h ∈ R and h 6= m. However,
these two lines intersect in the point (h, h′) where h′ exists by axiom 4 and is given by T (x, h, h′) = k.
Since any two lines lm1

and lm2
intersect at p∞, we have that any two lines intersect in a unique point.

3. The points p0, p∞, p(0,0), and p(1,1) clearly forms a quadrangle.

In fact, with a slight change in perspective, non-homogeneous coordinates of a finite projective plane
can be derived from its homogeneous coordinates if it is possible to construct it in that way. A possible
transformation is as follows, as described in [30].

Example. Let P ≡ (P,L, I) be a finite Desarguesian plane over a skew-field F constructed with the notation
in Proposition 2.2.3, and S be the set of all symbols of P(R) in Proposition 4.1.2 written as elements of F .
With this notation, let the map φ : V ∗/F ∗ → S be such that for all [(x, y, z)T ] ∈ V ∗:

φ

xy
z

 =


(x
z ,

y
z ) z 6= 0

( y
x ) x 6= 0, z = 0

(∞) x = z = 0

.

Then applying φ to all equivalence classes [v] ∈ V ∗/F ∗ in all points p[v] ∈ P and all lines l[v] ∈ L indeed
gives a valid non-homogeneous coordinatisation of P.

As a concrete example of non-homogeneous coordinatisation, the Fano plane is provided as follows.

Example. The coordinatising skew-field of the Fano plane has the symbols (0, 0), (0, 1), (1, 0), (1, 1), (0),
(1), and (∞) in its points and lines, with the quadrangle being p0, p∞, p(0,0), p(1,1).

4.1.3 Properties of planar ternary rings

Any finite projective plane can now be solely defined by its coordinatising PTR together with the initial
choice of the quadrangle. As in other algebraic structures, the notion of isomorphism of PTRs is often useful,
defined as follows.

Definition (Isomorphism). Let P ≡ (R, T, 0, 1) and P ′ ≡ (R′, T ′, 0′, 1′) be two PTRs. An isomorphism
from P to P ′ is a bijection α : R→ R such that for all a, b, c ∈ R, we have α(T (a, b, c)) = T (α(a), α(b), α(c)).

Remark. It is trivial to verify that isomorphism of PTRs is an equivalence relation.

It is then clear that two finite projective planes are isomorphic if their coordinatising PTRs are isomorphic.
As such, to study the structure of a plane, it is sufficient to study the properties of its coordinatising PTR,
especially those of its two binary operations that define its ring-like structure. In particular, the definition
of a group-like structure is as follows.

Definition (Loop). A loop is an ordered triple (R, ·, 1), where R is a set, with a distinguished 1 ∈ Q, and
with a binary operation · : R×R→ R such that:

1. for all a ∈ R, we have 1 · a = a · 1 = a,

23



2. for all a, b ∈ R, there are unique x, y ∈ R such that a · x = b = y · a.

A loop is hence simply a group without requiring associativity. The loop structure of the two binary
operations of a PTR is illustrated in the following proposition.

Proposition 4.1.3. Let (R, T, 0, 1) be a PTR. Then:

1. (R,+, 0) is a loop, and

2. (R \ {0}, ·, 1) is a loop.

Proof. Check the two axioms of loops in both parts.

1. Clearly 0 is the additive identity. Fix a, b ∈ R. Then there is a unique x ∈ R such that a + x =
T (a, 1, x) = b. Similarly there is a unique y ∈ R such that y + a = T (y, 1, a) = T (y, 0, b) = b.

2. Clearly 1 is the multiplicative identity. Fix a, b ∈ R. Then there is a unique solution y ∈ R such that
y ·a = T (y, a, 0) = T (y, 0, b) = b. Similarly there is a unique x, z ∈ R such that a ·x+z = T (a, x, z) = b
and z = T (0, x, z) = 0. The latter implies that there is a unique solution to a · x = b.

4.1.4 Quasi-fields

These digressions are not for naught, as they lead to the different types of PTRs coordinatising non-
Desarguesian projective planes, namely quasi-fields, near-fields, and semi-fields. Most of these definitions
are adopted from [16], with that of a quasi-field as follows.

Definition (Quasi-field). A left quasi-field, also known as a Veblen-Wedderburn system, is an ordered
quintuple (R,+, ·, 0, 1), where R is a set, with two distinguished and different 0, 1 ∈ R, and with two binary
operations + : R × R → R and · : R × R → R, which satisfies the following weakening of the axioms of
skew-fields:

1. the ordered triple (R,+, 0) is a group,

2. the ordered triple (R \ {0}, ·, 1) is a loop,

3. for all a, b, c ∈ R, we have a · (b+ c) = a · b+ a · c (left distributivity),

4. for all a, b, c ∈ R such that a 6= b, there is a unique x ∈ R such that ax = bx+ c.

A right quasi-field is similarly defined. A quasi-field is said to be abelian if it is a field.

Clearly every skew-field is a left quasi-field. In fact, a quasi-field can alternatively be defined from a
PTR, as illustrated in the following proposition.

Proposition 4.1.4. A left quasi-field (R,+, ·, 0, 1) is a linear PTR such that the ordered triple (R,+, 0) is
a group (associativity of +), and for all a, b, c ∈ R, we have a · (b+ c) = a · b+ a · c (left distributivity).

Proof. Fix a, b, c, d ∈ R. It is sufficient to check the five axioms of PTRs, defining the ternary operation as
T (a, b, c) = a · b+ c.

1. a · 0 + b = 0 · a+ b = b holds by the additive identity.

2. 1 · a+ 0 = a · 1 + 0 = a holds by the multiplicative identity.

3. Let a 6= c, and x ∈ R be a solution to the equation x · a+ b = x · c+ d, so b− d = −x · a+ x · c. By the
left distributivity property, b− d = x · (−a+ c), which by the loop property gives a unique solution x.

4. By the abelian group property of quasi-fields, a · b+ x = c has the unique solution x = c− a · b.
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5. Let a 6= c, and x, y ∈ R be solutions to the equations a ·x+ y = b and c ·x+ y = d, so −a ·x+ b = y =
−c · x+ d. By the last axiom, a · x = cẋ+ (b− d), so there is a unique solution x. Thus y = −a · x+ b
is also unique.

Remark. A left quasi-field is actually defined as a cartesian group with left distributivity, which is in turn
defined as an associative linear PTR. A right quasi-field is similarly defined. Cartesian groups will not be
discussed here for simplicity.

4.1.5 Properties of quasi-fields

Several interesting properties can be derived directly from the axioms of quasi-fields. The following propo-
sition is rather fundamental, but is not stated as an axiom as it can be derived from the other axioms.

Proposition 4.1.5. Let (R,+, ·, 0, 1) be a left quasi-field. Then the group (R,+, 0) is abelian.

Proof. Proof adopted from [26].
Fix a, b ∈ R. If a = 0 or b = 0, then a + b = b + a holds trivially. Otherwise a 6= 0 and b 6= 0, then there
is a c ∈ R such that c · a = b + a − b. Suppose for a contradiction that c 6= 1. E Also suppose that there
are distinct x, y ∈ R such that −c · x + x = b = −c · y + y, so x − y = c · x − c · y. By left distributivity,
x− y = c · (x− y), which gives x = y. E Hence there is a unique x ∈ R such that −c · x+ x = b. However,
this also implies that, despite x 6= x+ a:

−c ·(x+a)+(x+a) = −c ·a−c ·x+x+a = −(b+a−b)−c ·x+(c ·x+b)+a = b−a−b−c ·x+c ·x+b+a = b,

contradicting the uniqueness of x. Thus c = 1, so a+ b = b+ a and the group (R,+, 0) is abelian.

A related structure is a quasi-field without one of the axioms, defined as follows.

Definition (Weak quasi-field). A left weak quasi-field is a quasi-field as defined above without axiom 4.
A right weak quasi-field is defined similarly.

It is clear that a quasi-field is a weak quasi-field. However, as the scope of discussion is again limited
to finite projective planes, only finite weak quasi-fields will be considered, leading directly to the following
proposition.

Proposition 4.1.6. Let (R,+, ·, 0, 1) be a finite left weak quasi-field. Then (R,+, ·, 0, 1) is a left quasi-field.

Proof. Fix a, b, c ∈ R such that a 6= b. E Suppose there are two distinct x, x′ ∈ R such that ax = bx+ c and
ax′ = bx′ + c. Subtracting gives ax − bx = ax′ − bx′, which can be rewritten as a(x − x′) = b(x − x′) by
commutativity of + and left distributivity. Right cancellation of x − x′ 6= 0 gives a = b. E Thus there is a
unique x ∈ R such that ax = bx+ c, so (R,+, ·, 0, 1) is a left quasi-field.

This shows that finite quasi-fields are equivalent to weak quasi-fields, as such can be used interchangeably
in finite contexts. This also implicitly means that axiom 4 in the above definition of a finite quasi-field can
actually be implied from the other three axioms. Now an important notion of any algebraic structure is its
kernel, defined for a general weak quasi-field as follows.

Definition (Kernel). The kernel K of a left weak quasi-field (R,+, ·, 0, 1) is the set of all elements c ∈ R,
such that for all a, b ∈ R:

1. a · (b · c) = (a · b) · c (associativity of ·), and

2. (a+ b) · c = a · c+ b · c (right distributivity).

The kernel of a right weak quasi-field is defined similarly.

Note that the above definition applies similarly to a general quasi-field. The kernel of a weak quasi-field
has an interesting enough structure, such that equipping it with the restricted binary operations of the
quasi-field would almost make it a field.
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Proposition 4.1.7. Let (R,+, ·, 0, 1) be a left weak quasi-field. Then the kernel K ⊂ R is such that
(K,+, ·, 0, 1) is a skew-field.

Proof. It is sufficient to check that (K,+, ·, 0, 1) is a ring and for any k ∈ K\{0}, there is a unique j ∈ K\{0}
such that j · k = k · j = 1.

1. It is easy to see that 0, 1 ∈ K. Associativity of + follows from the definition of a weak quasi-field and
commutativity of + follows from Proposition 4.1.5. For any j, k ∈ K, we have:

a · (b · (j − k)) = a · (b · j − b · k) = a · (b · j)− a · (b · k) = (a · b) · j − (a · b) · k = (a · b) · (j − k),

(a+ b) · (j − k) = (a+ b) · j − (a+ b) · k = a · j + b · j − a · k − b · k = a · (j − k) + b · (j − k).

Hence j−k ∈ K and (K,+, 0) is an abelian group. Finally, left distributivity follows from the definition
of a left weak quasi-field, while associativity of · and right distributivity follows from the definition of
its kernel. Thus (K,+, ·, 0, 1) is indeed a ring.

2. Now fix any k ∈ K \ {0}. The loop property of a weak quasi-field gives unique x, y ∈ R such that
k · x = 1 and y · k = 1. Then it holds that:

(k · (x− y)) · k = (k ·x− k · y) · k = (k ·x) · k− (k · y) · k = (k ·x) · k− k · (y · k) = 1 · k− k · 1 = k− k = 0.

Since k 6= 0, we have x− y = 0 and hence j := x = y is unique. Clearly j 6= 0, and:

(a · (b · j)) · k = a · ((b · j) · k) = a · (b · (j · k)) = a · b = (a · b) · (j · k) = ((a · b) · j) · k,

((a+ b) · j) · k = (a+ b) · (j · k) = a+ b = a · (j · k) + b · (j · k) = (a · j) · k+ (b · j) · k = (a · j + b · j) · k,

Thus right cancellation of k 6= 0 gives a · (b · j) = (a · b) · j and (a+ b) · j = a · j + b · j, so j ∈ K \ {0}.

In a different perspective, a weak quasi-field is simply a vector space over its kernel skew-field, with scalar
multiplication being the multiplication operation. Again, Theorem 2.2.2 implies that finite skew-fields are
finite fields and have prime power order, so finite quasi-fields as finite-dimensional vector spaces over finite
kernel skew-fields indeed have prime power order. This means that any undiscovered finite non-Desarguesian
planes of order not a prime power, if they exist, cannot be coordinatised with finite quasi-fields and hence
cannot be proven to not exist with this method.

4.1.6 Near-fields and semi-fields

Although only the theory of quasi-fields is required for the next section, some have an additional associativity
property that justify being called near-fields, defined as follows.

Definition (Near-field). A finite left near-field (R,+, ·, 0, 1) is a finite left quasi-field such that the ordered
triple (R \ {0}, ·, 1) is a group (associativity of ·). A finite right near-field is similarly defined.

Finally, the definition of a semi-field, often referred to in literature as a coordinatising PTR constructed
from a quasi-field in a different way, will be provided below appropriately.

Definition (Semi-field). A semi-field is a left quasi-field that is also a right quasi-field.

With these two definitions, a finite skew-field can be alternatively defined as a finite left near-field that
is also a finite right near-field, or as a finite semi-field with a multiplicative group. In summary, it is obvious
that the following chain of class inclusions for finite PTRs hold.
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Relationship between different types of finite PTRs

Remark. As any finite skew-field is a finite field by Theorem 2.2.2, commutativity is indeed redundant here.
Strictly speaking, the relation between near-fields and quasi-fields do not hold for infinite cases. The above
definition is in fact of a planar near-field, but is a simplification justified as all finite near-fields are planar.

4.2 Existence of non-Desarguesian planes

For this section, denote (x, y)T as (x, y) and omit ·, for ease of notation.
With properties and definitions of several types of PTRs defined in the previous section, the existence

of a non-Desarguesian plane of order 9 can be shown succinctly and constructively. The proof lies on the
intuition that finite Desarguesian planes coordinatised by an arbitrary PTR implies that the PTR is in fact
a skew-field. This is stated more precisely in the following proposition with the coordinatisation method by
algebraic structures discussed in the previous section.

Proposition 4.2.1. Let P(R) be a finite projective plane coordinatised by a finite near-field (R,+, ·, 0, 1),
and P(F ) be a finite projective plane coordinatised by a finite skew-field (F,+, ·, 0, 1). If P(R) ∼= P(F ), then
(R,+, ·, 0, 1) ∼= (F,+, ·, 0, 1).

Proof. Omitted, see [13].

Remark. The statement does not generally hold if one of the finite projective planes given above is not
coordinatised by a finite skew-field. That is, if two finite projective planes are isomorphic, their coordinatising
PTRs are not necessarily isomorphic.

4.2.1 Hall quasi-fields

It follows that in order to construct a non-Desarguesian projective plane, it is sufficient to construct a
left quasi-field that is not a skew-field. This can be done by showing that a given quasi-field is not right
distributive, or vice versa, so that it is not a semi-field. Alternatively, this can be done by showing that a
given left or right quasi-field is not associative in its multiplication operation, so that it is not a near-field.
The quasi-field constructed in the definition below, named after M Hall, fits the former description.

Definition (Hall quasi-field). Let f(x) := x2 − gx− h be an irreducible quadratic polynomial over a finite
field Fn ≡ (F,+, ·, 0, 1) of order n, such that g, h ∈ Fn. Now let G be a two-dimensional vector space
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(G,⊕, ·, (0, 0), 1) over Fn, where G = Fn × Fn. Then a Hall quasi-field H of order n2 is an ordered
quintuple (G,⊕,�, (0, 0), (1, 0)), where the multiplication operation � : G→ G is such that:

(a, b)� (c, d) =

{
(ac, ad) b = 0

(ac− b−1df(a), bc− ad+ gd) b 6= 0
.

H is said to be constructed by f(x) ∈ Fn[x]≤2.

Remark. The subtraction operation of Hall quasi-fields is denoted as 	.

It is not immediately clear that this is a quasi-field. To prove this, a useful lemma is as follows.

Lemma 4.2.2. Let H ≡ (G,⊕,�, (0, 0), (1, 0)) be a Hall quasi-field constructed by f(x) ≡ x2 − gx − h ∈
Fn[x]≤2. Then for all (a, b), (c, d), (e, f) ∈ G:

1. if b 6= 0, then f((a, b)) = (0, 0),

2. if b = 0, then (a, b)� (c, d) = (c, d)� (a, b),

3. if f = 0, then (a, b)� ((c, d)� (e, f)) = ((a, b)� (c, d))� (e, f), and

4. if f = 0, then ((a, b)⊕ (c, d))� (e, f) = (a, b)� (e, f)⊕ (c, d)� (e, f).

Proof. The last two parts will be omitted for the sake of further discussion, as they are lengthy but can be
derived by cases from the construction above. Check only the first two parts.

1. Fix (a, b) ∈ G such that b 6= 0. Then:

f(a, b) = (a, b)� (a, b)	 g(a, b)	 h(1, 0)

= (aa− b−1bf(a), ba− ab+ gb)	 (ga, gb)	 (h, 0)

= (aa− b−1b(a2 − ga− h)− ga− h, ab− ab+ gb− gb− 0) = (0, 0).

2. Fix (a, 0), (c, d) ∈ G. Then:

(c, d)� (a, 0) = (ca− d−10f(c), da− c0 + g0) = (ca, da) = (ac, ad) = (a, 0)� (c, d).

The last two parts of the lemma are exactly the two conditions for being a kernel of a left weak quasi-field.
This means that if a Hall quasi-field is a left weak quasi-field, all elements of the form (a, 0), are in the kernel.
Now this is indeed the case, as illustrated in the following proposition.

Proposition 4.2.3. Let H be a Hall quasi-field. Then H is a left quasi-field.

Proof. Proof adopted from [12].
Let H ≡ (G,+, ·, (0, 0), (1, 0)) be a Hall quasi-field. It is sufficient to check the three axioms of left weak
quasi-fields.

1. The addition operation ⊕ : G×G→ G in the underlying vector space G forms an abelian group with
the elements of G.

2. Fix (a, b), (c, d) ∈ G \ {(0, 0)}. It is sufficient to check the two axioms of loops.
Clearly the identity (1, 0) is such that (1, 0)� (a, b) = (a, b)� (1, 0) = (a, b).
Assume that there is a (x, y) ∈ G \ {(0, 0)} such that (a, b) � (x, y) = (c, d). If b = 0, then a 6= 0,
so solving (ax, ay) = (c, d) gives a unique solution (x, y) = (a−1c, a−1d). Otherwise if b 6= 0, then
(ax− b−1yf(a), bx− ay + gy) = (c, d), which can be rewritten in a matrix form as:(

a −b−1f(a)
b −a+ g

)(
x
y

)
=

(
c
d

)
.
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E Suppose the determinant a(−a+ g)− b(−b−1f(a)) = −h = 0, then f(x) = x2− gx = (x− g)x, which
is reducible. E Thus the determinant is non-zero and there is a unique solution (x, y).
Assume that there is a (x′, y′) ∈ G \ {(0, 0)} such that (x′, y′) � (a, b) = (c, d) and that y′ = 0 is a
solution. If b = 0, then a 6= 0, so solving (x′a, x′b) = (c, d) gives a unique solution x′ = ca−1 if and only
if d = 0. If instead a = 0, then b 6= 0, so solving (x′a, x′b) = (c, d) gives a unique solution x′ = db−1 if
and only if c = 0. Otherwise if b 6= 0 and a 6= 0, then solving (x′a, x′b) = (c, d) gives a unique solution
if and only if x′ = ca−1 = db−1. Thus it remains to show that if either a = c = 0, b = d = 0, or
ca−1 = db−1, then there are no solutions for y′ 6= 0.
Now assume instead that y′ 6= 0 is a solution, so (x′a− y′−1bf(x′), y′a− x′b+ gb) = (c, d), which can
be written as (y′x′a− bx′2 + bgx′+ bh, x′y′a−x′2b+x′gb) = (y′c, x′d). This subtracts to give the linear
equation bh = y′c − x′d, which, with y′a − x′b + gb = d, gives the same solutions as the latter with
y′x′a− bx′2 + bgx′ + bh = c. This can be written in a matrix form as:(

a −b
c −d

)(
y′

x′

)
=

(
d− gb
bh

)
.

If b = 0, then a 6= 0, so solving this gives a solution (x′, y′) = (ca−1, da−1), which gives y = 0 if and
only if d = 0. If b 6= 0, then multiplying db−1 to y′a− x′b+ gb = d to give y′adb−1 − dx′ + dg = d2b−1

and combining with bh = y′c − x′d gives the equation y′adb−1 − y′c = d2b−1 − dg − bh. Finally, this
can be rewritten in a compact form as y′(ad− bc) = b2f(db−1).
E Suppose that either a = c = 0, b = d = 0, or ca−1 = db−1, so that ad− bc = 0. Then y′(ad− bc) = 0,
but b2f(db−1) 6= 0. E Thus there are no solutions for y′ 6= 0 in this case. Otherwise, we have ad−bc 6= 0,
so y′ = (b2f(db−1))(ad− bc)−1 6= 0 is a unique solution.

3. The multiplication operation � : G × G → G is evidently a left linear transformation, making it left
distributive.

Thus H is a left weak quasi-field. By Lemma 4.2.2, H is simultaneously a two-dimensional module over its
finite kernel skew-field, and hence is finite. By Proposition 4.1.6, H is a left quasi-field.

Now it is sufficient to show that for a given finite field of order n ∈ N, if a Hall quasi-field of order n2

constructed over it is not a semi-field, it would coordinatise a finite non-Desarguesian plane. However, it
was mentioned in a previous chapter that the finite projective plane of order 4 is unique up to isomorphism
and is in fact Desarguesian. This is not a contradiction, as specified in the following proposition.

Proposition 4.2.4. Let H be a Hall quasi-field of order 4. Then H is a field.

Proof. It is sufficient to show that H is right distributive, which is a straightforward verification of cases.

Thus the non-Desarguesian argument does not hold for the Hall quasi-field of order 4. In fact, the
converse of the above proposition also holds true, ultimately proving the existence of a non-Desarguesian
plane of order 9, as illustrated below.

Proposition 4.2.5. Let H be a Hall quasi-field of order greater than 4. Then H is not a semi-field.

Proof. Let H ≡ (G,+, ·, (0, 0), (1, 0)) be a right distributive Hall quasi-field constructed by f(x) ≡ x2− gx−
h ∈ Fn[x]≤2. It is sufficient to show that n = 2. Since 0, 1 ∈ Fn, we have (0, 1), (1, 0) ∈ G, so that:

(−f(0), g − 1) = (1, 1)� (0, 1) = ((1, 0)⊕ (0, 1))� (0, 1) = (1, 0)� (0, 1)⊕ (0, 1)� (0, 1) = (−f(0), g + 1).

Thus 1 = −1, which holds only if n = 2.

This directly implies that there is an entire class of countably infinite finite projective planes, each
coordinatised with a Hall quasi-field. Due to its importance, a name due to Hall was given as follows.

Definition (Hall plane). A Hall plane is a finite non-Desarguesian plane coordinatised by a Hall quasi-field.

Remark. By construction, there are Hall planes of order n = p2q for q ∈ N and prime p ∈ N. However,
since Hall planes are generally defined to be non-Desarguesian, it is customary to exclude the plane of order
4 = 22 in the definition, requiring n > 4.
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Finally, the titular plane will be denoted as follows.

Definition (Ω). The finite projective plane Ω is the Hall plane of order 9.

Remark. It is easy to see that Ω is not self-dual as it is coordinatised by a left quasi-field that is not a right
quasi-field.

An interesting note is that there are exactly four non-isomorphic non-abelian quasi-fields, all of which
coordinatise Ω. Three of these are Hall quasi-fields constructed by three different initial irreducible quadratic
polynomials, namely f(x) = x2 + 1, f(x) = x2 +x− 1, and f(x) = x2−x− 1, while the fourth by a different
method. In fact, the first of these generates a near-field, as illustrated in the following stronger proposition.

Proposition 4.2.6. Let H be a Hall quasi-field of order n ∈ N constructed over the irreducible quadratic
polynomial f(x) ∈ Fn[x]≤2. Then H is a near-field if and only if n = 2 or n = 3, and f(x) = x2 + 1.

Proof. Proof adopted from [12].
Let H ≡ (G,⊕,�, (0, 0), (1, 0)) be a Hall quasi-field. It is sufficient to show the associativity property in
both directions.

1. Let H be associative and constructed by f(x) ≡ x2 − gx− h ∈ Fn[x]≤2, and fix (a, 0) ∈ G \ {(0, 0)}. It
holds by associativity that:

(ha−1, g) = (0, a)� (0, 1) = (0, 1)� (a, 0)� (0, 1) = (0, 1)� (0, a) = (ha, ga).

Hence ha−1 = ha and g = ga. Now due to the irreducibility of f , we have h 6= 0, so that a2 = 1.
The only fields with this property are F2 and F3. In F2, the only irreducible quadratic polynomial is
f(x) = x2 + 1. In F3, since a2 = 1 also holds for a = −1, we have h = 0, which also narrows down the
only irreducible quadratic polynomial to f(x) = x2 + 1.

2. Conversely, the Hall quasi-field of order 4 is a field, and as such is associative. For the Hall quasi-field of
order 9, let H be constructed by f(x) ≡ x2 + 1 ∈ F3[x]≤2. Since b−1 = −b for any b 6= 0, multiplication
is simply:

(a, b)� (c, d) =

{
(ac, ad) b = 0

(ac− bd(a2 + 1), bc− ad) b 6= 0
.

A simple verification shows that this indeed is associative.

4.2.2 Other non-Desarguesian planes

Due to Ω not being self-dual, it is easy to coordinatise a third non-Desarguesian plane. This is done by
applying plane duality, giving the dual plane with the same order. Thus, by a symmetrical construction of
a dual Hall quasi-field, the definition of its dual plane is as follows.

Definition (ΩD). The finite projective plane ΩD is the dual plane of Ω.

As such, it is clear that there are at least three distinctively non-isomorphic finite projective planes of
order 9. In the original paper by O Veblen and J H Maclagan-Wedderburn in [29], it was discovered that
there is in fact a fourth plane of order 9, which was later generalised into another family of planes by D R
Hughes. This fourth plane, named after him, will not be discussed here, but it shall be denoted as follows.

Definition (Ψ). The Hughes plane Ψ is the fourth finite projective plane of order 9.

Remark. The Hughes plane Ψ is clearly self-dual, as otherwise a fifth plane would exist.

Unfortunately, proving that these are the only four finite projective planes of order 9 is far more difficult.
A computer-aided search, like that of the planes of order 10, was conducted in [4], which ended in a negative.
As such, it is now well-known that there are only exactly four non-isomorphic finite projective planes of
order 9, namely Φ, Ω, ΩD, and Ψ. This is the first order of a plane for which a significant volume of
additional theory linking algebra and geometry is inevitably introduced, leading to further insight to the full
understanding of finite projective planes. Ultimately, the theory of finite projective planes is still far from
complete.
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