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1 Introduction

1 Introduction

1.1 Company profile

Adjoint UK Ltd. [1] is a private independent software company in the financial technology
sector based in central London. Founded in 2016 by Stephen Diehl, Havell Rodrigues, and
Darren Tseng in Boston, it has since expanded to several cities across three countries.

Adjoint aims to build modern software solutions for intercompany financial workflow au-
tomation and virtual account management, to simplify and control enterprise processes to give
global cash transparency. Its main products and technologies include Treasury [2], an intuitive
yet powerful real-time payment and settlement platform for corporate treasury, and Uplink [3],
a next-generation distributed ledger database for secure multiparty computation written in a
carefully designed runtime FCL [4], which is in turn written in the functional language Haskell.

Adjoint’s technologies provide a strong transaction privacy for all participating and public
parties, while allowing any party to receive reliable answers to its queries [5]. To ensure this
security, several cryptographic systems are developed and deployed internally over the years to
suit specific requirements of each solution. Some of these have been made open source and
have accepted community contributions, including a Haskell library on Bulletproofs [6], short
non-interactive zero-knowledge proof systems that require no trusted setup.

1.2 Organisation roles

The main development team in Adjoint consists of the product team and the core team, the
former of which focuses on the front-end development of directly marketable products like
Treasury, while the latter focuses on the workings behind the FCL language and the cryptographic
roadmap. In particular, the core team aims to develop and maintain the syntax, semantics,
usability, and performance of the FCL language, as well as a multitude of primitives and protocols
that together constitute the cryptographic roadmap.

My role in Adjoint is to develop and maintain the existing cryptography stack as a cryptog-
raphy engineer in the core team. My job description involves developing secure communication
protocols using zero-knowledge proofs, as well as directing and overseeing the cryptographic
roadmap, both of which involve tight collaboration with a colleague. Most immediate design
decisions are made as a five-man team, but long-term software development ideas are carefully
thought through, through frequent communication with the chief technology officer (CTO).
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2 Projects

Adjoint’s cryptographic roadmap is a tree of several modular libraries, some of which are publicly
available as repositories in its GitHub landing page. Each of these serves as an implementation for
a particular cryptographic primitive, such as hash functions and bilinear pairings, or a particular
cryptographic protocol, such as key exchanges and zero-knowledge proofs.

While most cryptosystems are developed in low-level languages like C for optimal computa-
tion speeds, Adjoint aims to produce highly sound and comprehensible code, using the functional
Haskell as its main development language. Although this may compromise performance, most
protocols have computation times in the millisecond range and are relatively unnoticeable.

In the following sections, I will detail the various libraries I have developed or contributed
over the summer, in a roughly chronological order unless specified otherwise.

2.1 The library for the FCL language

Before delving into cryptography, my first task was to explore the FCL language and suggest
possible improvements. I was lead to the problem that reachability checking of certain graph-
theoretic structures in the language, known as Petri nets, had a time complexity factorial over
the number of nodes. I did some domain research afterwards and came up with several solutions.

Initially, I tried a linear programming approach based on the ideas in several papers [13],
but quickly realised its domain-specific limitations, such as being unable to check other equally
important graph-theoretic conditions in the FCL Petri net construction and produce user-friendly
errors upon failure. The other solution I tried was a graph unfolding approach through McMil-
lan’s algorithm [14], which does not have this limitation but was somewhat elaborate in its
construction, and as such was only partially implemented by the end of the week.

A colleague continued from where I stopped, working along the same lines to improve the
FCL language, and developed the ideas further as part of a much larger project. As such, I was
able to frequently discuss design decisions throughout the project over twelve weeks, with the
final product being a highly flexible prototype that avoided reachability checking completely.
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2.2 The library for pairing-based cryptographic protocols

My primary task was to develop and maintain the pairing-based elliptic-curve cryptography
(PBECC) roadmap. This included bilinear pairings and arithmetic circuits as primitives, which
were used to implement various protocols based on the modern concept of zero-knowledge
succinct non-interactive arguments of knowledge (zk-SNARKs). These are protocols that allow
a party to prove to another, succinctly and without any interaction, that they possess the
knowledge of certain information, without conveying any other information apart from this fact.

Upon quickly familiarising myself with the relevant theory and the existing cryptographic
stack, I was tasked to implement a protocol based on an instrumental 2016 paper by Jen Groth
[15], having the existing Sonic protocol [7] implementation as a background example. The
dependency graph of the PBECC stack would subsequently look like the following.

circuits
pairing

BN254 curve operations
BN254 field arithmetic

bulletproofs
SECP256K1 curve operations
SECP256K1 field arithmetic

groth sonic

Here SECP256K1 and BN254 are well-known elliptic curves, whose curve operations and field
arithmetic had to be implemented internally or externally in their respective libraries.

While the exact details of the implementation will be omitted here for brevity, the protocol is
a set of algorithms, taking quadratic arithmetic programs (QAPs) [16] as inputs, and returning
the relevant information without leakage. For instance, its verify algorithm takes, as input,

• a variable list of field elements a0, . . . , al obtained from arithmetic circuits,

• a fixed list of group elements αg, βh, γh, . . . computed by its setup algorithm, and

• a proof consisting of three group elements Ag,Bh,Cg computed by its prove algorithm.

Here g and h are generators of certain elliptic curves paired by a suitable function 〈−,−〉, while
the remaining computed constants are unknown elements of a Galois field, assuming the hardness
of the discrete logarithm problem. The verification algorithm then returns true whenever

〈Ag,Bh〉 = 〈αg, βh〉 · 〈
∑l

i=0ai
βui(x)+αvi(x)+wi(x)

γ g, γh〉 · 〈Cg, δh〉.

These were admittedly far more laborious to write than it was conceptually difficult, as it
only took two days to design the relevant data structures and produce a prototype with unit
tests. Rather, the main issue was an elegant integration with existing QAPs, which had readily
available QuickCheck tests and Criterion benchmarks, while my implementation made use of
slightly different data structures. Unfortunately, there were no easy conversions between the
two representations, so work was agreeably paused until further insight is shed.

It was only in my final week that I sought assistance from a colleague who was jointly tasked
to implement this protocol over the summer. After much discussion, we managed to refactor
the current implementation sufficiently to use the existing representation of QAPs, producing a
workable prototype. Subsequently, we also ported the tests and benchmarks over, as well as the
various improvements we made to primitive libraries over the past three months in the form of
significant restructuring of the PBECC stack, to be detailed in the following sections.
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2.3 An efficient library for Galois field arithmetic

After the preliminary implementation of groth in the first month, there was evidently at least
one unsatisfactory component to the overall structure of the PBECC stack, namely that the
protocols dependent on pairing use the internal BN254 elliptic curve, which only slightly differs
in parameters from the SECP256K1 elliptic curve in bulletproofs taken from an external
library. This presents a slight duplication of algorithm code for group operations, which is
acceptable, but it also induces a massive duplication of Galois field arithmetic code.

For instance, a single elliptic curve requires the arithmetic of at least two Galois fields. One
of these would define the elliptic curve equation, and the other would be a Galois field of prime
order used as scalars for multiplication, since the main subgroup of an elliptic curve has prime
order to ensure security for cryptographic purposes. On the other hand, the Galois fields used
in pairing-friendly elliptic curves are often made of three towers of simple extensions, requiring
three further definitions for their arithmetic, and this was the case in pairing, as shown below.

bilinear pairings 〈−,−〉
elliptic curves G1 G2 GT

Galois fields Fr Fq Fq2 Fq6 Fq12

While this was not time-critical, I was subsequently tasked to implement group operations
on Edwards curves, a family of elliptic curves that admit a complete and stongly unified addi-
tion formula, simplifying many algorithms and protecting against side-channel timing attacks.
Specifically, the parameters of interest were that of the newly discovered Jubjub curve [17]
used in modern zk-SNARK constructions, whose arithmetic was unavailable in pairing or any
external libraries. It was clear that massive code duplication is unavoidable at the current state.

I proposed a separation of concerns by developing an internal library dedicated to Galois field
arithmetic, with firm foundations on results in basic algebra. This would serve as a mathematical
abstraction over the Galois fields defined for existing SECP256K1 and BN254 curves, greatly
reducing unnecessary code duplication in the bilinear and increasing overall robustness of the
PBECC stack. This would also hasten the implementation of any future protocol requiring
Galois field arithmetic, which are abundant by the finitary nature of cryptography.

Upon agreement with the CTO, I designed a class GaloisField k for general Galois
fields, constrained by the usual constraints as well as Fractional. This would possess type
class functions such as recovering its non-zero characteristic with char :: k -> Natural,
recovering its embedding degree with deg :: k -> Natural, and computing Frobenius en-
domorphisms efficiently with frob :: k -> k. Whilst char and deg could have been of type
Natural, adding k would remove type parameter ambiguity.

I added a type for Galois fields of prime order, which had a unique prime characteristic that
is encoded in the type-level with the Nat kind and not checked for primality.

newtype Prime (p :: Nat) = P Natural

The usual functions on Fractional were implemented with usual modular arithmetic, although
there were much room for optimisations, such as using rem rather than mod for cheaper
calls, and using highly optimised functions from GMP.Internals like powModNatural and
recipModNatural. While the notion of a Prime field has been developed in several Hack-
age libraries, I decided to reimplement it due to its triviality, but there is an ongoing discussion
from open source contributors to extract it as an external library. An example usage is as follows.
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>>> :set -XDataKinds

>>> type F5 = Prime 5

>>> 2 / 3 :: F5

P 4

I also added a type Extension for Galois fields defined inductively over their Prime sub-
fields, which depended on the base Galois field as well as a parameter representing the irreducible
monic polynomial defining the extension that was not checked for irreducibility.

newtype Extension p k = E (VPoly k)

Initially, the polynomial was represented as a list with no trailing zeroes, so the field elements
were also represented as similar lists with coefficients in the base field, but of strictly shorter
length. The usual functions on Fractional were implemented with modular arithmetic on
polynomials, with division requiring the extended Euclidean algorithm. Again, much time was
spent in several major optimisations, including removing expensive calls to polynomial modular
reduction in additions, and avoiding the need to remove trailing zeroes in multiplications as
all fields are integral domains. However, this was later refactored in favour of the Vector
library for O(1) array access, and was eventually dependent on the external Semirings [11]
and Poly [12] libraries that were co-designed for optimised vector-based polynomial algorithms.
Unfortunately, as there were no easily usable type-level lists or polynomials, these Extension

fields require a predefined phantom data type with an IrreducibleMonic instance, which
encodes the polynomial in a type class function poly :: Extension p k -> VPoly k. I
tried to circumvent this inelegance by adding several convenient pattern synonyms, including X

to represent the polynomial variable, and U to represent X but considered as an Extension field
element. An example usage is as follows.

>>> :set -XDataKinds

>>> :set -XFlexibleInstances

>>> :set -XMultiParamTypeClasses

>>> type F2 = Prime 2

>>> data X2_X_1

>>> instance IrreducibleMonic X2_X_1 F2 where poly = const $ X2 + X + 1

>>> type F4 = Extension X2_X_1 F2

>>> 1 / U :: F4

E (P 1 * X + P 1)

By a result in basic algebra, these are all possible Galois fields. All existing cryptographic
protocols merely use Prime fields and Extension fields of huge characteristic and small embed-
ding degrees, which were blazingly fast, so I was initially satisfied with the current implemen-
tation. I was later told to consider the existence of cryptosystems that use Extension fields
with characteristic two, yet have embedding degrees of at least a hundred digits. After further
benchmarking, I realised that performance drastically decreased with increasing embedding de-
grees, and that these were impossibly slow especially in the original list-based implementation.
Hence I devised a temporary solution capturing binary Extension fields, and added a new type.

newtype Binary (p :: Nat) = B Natural

Here polynomials and field elements would have coefficients 0 or 1, and are encoded 2-adically
as natural numbers. Although it is entirely possible to use Extension fields to implement
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these, abusing bitwise operations such as xor for (+) in the usual functions on Fractional

makes arithmetic thousands of times faster. While this solution is rather ad-hoc, there is an
ongoing discussion from open source contributors to use an external bit vector library. The
above example on Extension fields can now be rephrased as follows.

>>> :set -XDataKinds

>>> type F4 = Binary 7

>>> 1 / 2 :: F4

B 3

With these three main instances of Galois fields, the remaining development time was spent
on adding new functions and further optimisations. For instance, taking Extension field square
roots with sr :: k -> Maybe k took some time to implement due to the sophistication of
the Tonelli-Shanks algorithm. Adding scalar multiplication with (*^) :: k -> l -> l turned
out to be rather tricky, as there needs to be an accessible natural embedding function between
any two Galois fields in a tower of Extension fields. As such, I resorted to consider graph
traversals in the type-level to define partial orderings of Galois fields. Both of these along with
other features were implemented with varying degrees of success.

There were many attempts to optimise code by remove computations using results in basic
algebra. For instance, Fermat’s little theorem reduced the Frobenius endomorphism for Prime
fields into the identity map, while immensely simplifying the computation for quadratic and
cubic Extension fields of certain forms. On the other hand, motivated by the 2-adic encoding
of binary polynomials, I experimented with a p-adic polynomial encoding suitable for general
Extension fields, but it was noticeably slower after benchmarking and was left as a stale branch.
Several compiler optimisations were also made, the most prevalent of these include inlining and
specialisation, although this also introduced longer compile times.

After a total period of four weeks, the end result was a rather elegant and optimised library,
now published on Hackage as galois-field [8], equipped with sufficiently detailed Haddock
documentation. As this algebraic structure was new in the Hackage community, I also hoped to
benefit the community and in return gain informed feedback. Shortly afterwards, it was merely a
journey of refactoring code in other libraries to depend on galois-field, giving a new PBECC
stack layout with far fewer code duplications, which looked like the following.

galois-field

general field arithmetic

jubjub

Jubjub curve operations
circuits

pairing

BN254 curve operations

bulletproofs

SECP256K1 curve operations
groth sonic

With the exception of minor discussions on design decisions, I was the primary developer of
galois-field and the primary contributor to relevant functions in semirings and poly.
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2.4 A universal library for elliptic curve operations

Upon developing galois-field to a sufficiently flexible state, operations on the Jubjub curve
were implemented in a single compact module under its own repository, to be used in a future
protocol. Despite being an obvious next step, refactoring elliptic curve operations from jubjub

and pairing was again not time-critical due to very minimal code duplication.
The realisation came soon after that the protocols under groth and sonic were designed

over different elliptic curves in their respective papers. While sonic was meant to operate under
a pairing algorithm designed for the BLS12-381 curve [18], its implementation was missing from
the stack, yet the protocol passed its functional tests under the pairing algorithm designed for
sonic. This was borderline unsatisfactory, as unforeseen bugs may arise unexpectedly due to a
potential lack of test coverage. Implementing BLS12-381 became the next course of action.

I proposed to transform the existing jubjub library into a universal library abstracting over all
known elliptic curves used in Haskell cryptosystems. Due to the greater sophistication of elliptic
curves, this would instead act as a database of elliptic curves domain parameters, in contrast to
the functional library of Galois fields. This would overwrite existing internal implementations,
so as to fully refactor primitives in the PBECC stack in the theme of separating concerns, and
would also serve as a catalogue for future usages and references.

Upon agreement with the CTO, I started designing a hierarchy of type classes to emulate
elliptic curves and their group of points, prioritising mathematical correctness and future exten-
sibility over API cleanliness, as documentation would be sufficiently provided. An ideal hierarchy
would encapsulate the various forms of elliptic curves, such as the usual Weierstrass form and
the form given by Edwards curves, as well as the variability of the defining fields required in
bilinear pairing computations. The initial design went along the following lines.

EllipticCurve

BinaryCurve

SECT113R1/F2m

SECT113R2/F2m

SECT571K1/F2m

SECT571R1/F2m

EdwardsCurve

Ed25519/Fp

Ed448/Fp

HighFive/Fp

Jubjub/Fp

MontgomeryCurve

Curve25519/Fp

Curve448/Fp

M221/Fp

M511/Fp

WeierstrassCurve

ANSSIFRP256V1/Fp

BLS12-381/Fp

BN254/Fp

SECP256K1/Fp

Here the classes involved would have two type parameters, one acting as a phantom parameter
for the individual elliptic curve and the other being the Galois field defining the elliptic curve. For
instance, the Jubjub curve would be represented with EdwardsCurve Jubjub Fp, an instance
of the class EdwardsCurve e k, which is in turn a subclass of the general class.

class GaloisField k => EllipticCurve e k

Each of these classes would also have an associated data family representing the group of points,
which would vary depending on the form of the elliptic curve.

data family Point e k
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For instance, while usual elliptic curves have a distinguished point at infinity O in addition to
their affine points A k k, the complete addition formula of Edwards curves remove the need
for O, simplifying the control flow in point addition. A Group constraint was placed in the the
definition of EllipticCurve e k to enforce the constraint in subclasses automatically.

Unfortunately, while simplistic in design, its implementation proved to be rather tricky in
Haskell. In particular, the presence of gimmicks in the instance resolution system in Haskell,
such as constraint erasure, made it difficult to properly mimic subclasses from object-oriented
programming, while avoiding dangerous language extensions like OverlappingInstances and
AllowAmbiguousTypes. For instance, since any EdwardsCurve E(K) is of the form

E(K) = {(x, y) ∈ K2 | Ax2 + y2 = 1 +Dx2y2}, A,D ∈ K,

it suffices to provide the K-rational parameters A and D to specify the complete addition formula
in EllipticCurve, yet it is fundamentally impossible to provide a default type class method,
namely add :: Point e k -> Point e k -> Point e k, before supplying a complete set
of information, namely the domain parameters specific to individual elliptic curves.

The heart of this problem lies in the inability to simultaneously define a constrained class

EllipticCurve e k => EdwardsCurve e k, where the domain parameters would be taken
in, as well as a default instance EdwardsCurve e k => EllipticCurve e k, where the ad-
dition formulas would be supplied. An obvious workaround to this issue could be to instead wrap
the original phantom parameter in a newtype EdwardsCurve e, but this was quickly dismissed
due to the troublesome multi-layered API it presents. It was only later when I realised that adding
a new type parameter to EllipticCurve e k, which would represent the form of the elliptic
curve, would solve this problem by allowing for both class EllipticCurve ’Edwards e k =>

EdwardsCurve e k and instance EdwardsCurve e k => EllipticCurve ’Edwards e k

to be defined, albeit being slightly cumbersome. Subsequently, a new kind Form, with phantom
constructors Binary, Edwards, Montgomery, and Weierstrass, representing the four relevant
forms of elliptic curves, was added to give the following new class definition.

class GaloisField k

=> EllipticCurve (f :: Form) e k where

data family Point f e k :: *

With a newfound realisation for additional type parameters, at least two notable feature ad-
ditions were then made accessible. The first of these allowed for a transformation of coordinate
systems, from the default Affine coordinates to Projective and Jacobian coordinates, all en-
coded as phantom constructors under a new kind Coordinates. While making the entire library
more flexible, new coordinate systems also allowed for experimental performance comparisons.
For instance, I discovered that Projective coordinates, which have a longer multiplication for-
mula but no divisions, were significantly faster for an EdwardsCurve, but Affine coordinates
were sufficient for all other elliptic curves. The class definition then became the following.

class GaloisField k

=> EllipticCurve (f :: Form) (c :: Coordinates) e k where

data family Point f c e k :: *

The second addition was more technical and allowed for point multiplication to depend on
the scalar prime field of the elliptic curve, the Galois field of order equal to the subgroup order.
This subgroup order would then be safely encoded in the type level, allowing for huge point
multiplications to be bounded above. The class definition then became the following.
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class (GaloisField k, PrimeField n)

=> EllipticCurve (f :: Form) (c :: Coordinates) e k n where

data family Point f c e k n :: *

It remained to produce concrete elliptic curve implementations under this robust class design,
with parameters collected from existing cryptosystems available across many online databases.
These would include the elliptic curves used in internal libraries, namely BLS12-381, BN254,
SECP256K1, and Jubjub, as well as the recommended elliptic curves by NIST [19] and Safe-
Curves [20]. Due to a serious lack of canonical references and test vectors, their domain pa-
rameters were highly susceptible to typographic errors in online drafts. Fortunately, these were
detected automatically by adding curve-invariant tests based around the discriminant and the
Hasse-Minkowski theorem. In addition to these tests, the axioms of an abelian group were
also verified given random points on a fixed elliptic curve. However, obtaining the notion of
randomness required taking modular square roots in its defining field, say in the computation of
y =
√
x3 +Ax+B given a random field element x, which was only implemented later. This

arduous process of collecting data and verifying correctness took at least two weeks.
During development, due to the sheer number of elliptic curve modules, I also added a simple

Haskell source code generator, which originally served as a gadget to hasten data collection and
automate testing. This was later developed sufficiently as a standalone project in the same
repository to allow for effortless long-term maintenance and possibly future contributions.

After a total period of five weeks, the end result was a large library of eighty elliptic curves
used in common cryptosystems, now published on Hackage as elliptic-curve [9]. This was
again equipped with sufficiently detailed documentation to add new forms or coordinates of
elliptic curves, making the library easily extensible by public contributions. The elliptic curves in
existing internal libraries were subsequently replaced with a dependency on elliptic-curve,
giving the following new PBECC stack layout.

galois-field

general field arithmetic

circuits

elliptic-curve

general curve operations

pairing

bulletproofs
groth

BN254 pairing algorithms

sonic

BLS12-381 pairing algorithms

I was the primary developer of elliptic-curve, but I had many consultations with a
colleague on the general type system of Haskell throughout the initial class design.
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2.5 A polymorphic library for bilinear pairing algorithms

The development of BLS12-381 in elliptic-curve was ultimately a bridge for a bilinear
pairing algorithm suitable for the sonic protocol. However, after spending a week internalising
the complex algorithm by consulting online resources, while refactoring several now redundant
functions such as complex conjugation and Frobenius endomorphisms, I realised that the existing
algorithm in pairing was tailored too specifically for BN254. In particular, branching out to
account for a new elliptic curve was not directly possible.

I proposed a clean rewrite of the existing optimal ate pairing algorithm [21] to be polymorphic
over BLS12-381 and BN254, which would provide the expected bilinear pairing algorithm for the
sonic protocol, although the final result came to be quite different. As the existing code was
based on an external library written in C and had a procedural style in its execution, I suggested
for a rewrite in a declarative style more comprehensible in Haskell, which could be refactored
more easily if the need ever arises in the future.

Upon agreement with the CTO, my first course of action was to write a generic class to
contain the type class method for bilinear pairings of general cryptographic groups.

class (Group (G1 e), Group (G2 e), Group (GT e))

=> Pairing e where

type G1 e = (g1 :: *) | g1 -> e

type G2 e = (g2 :: *) | g2 -> e

type GT e = (gt :: *) | gt -> e

pairing :: G1 e -> G2 e -> GT e

Here the single phantom parameter would encode the two choices of elliptic curves, namely
BLS12-381 and BN254. The three associated types would denote the left, right, and target
groups respectively, with explicit injective annotations to unambiguously define pairing, a
function replacing the existing reducedPairing :: G1 BN254 -> G2 BN254 -> GT BN254.
There were several drastic changes to this class definition over the following weeks to account
for compatibility, but I eventually returned to this initial design.

The majority of the remaining time was spent on implementing the actual algorithm, which
was supplemented with pre-written QuickCheck tests and Criterion benchmarks to ensure con-
stant improvement over the old algorithm. As per the case for general elliptic curves, there
were no canonical references available online on the exact pairing parameters, so debugging
the minuscule errors that accumulated over the lengthy algorithm took a very long time. In
particular, the tricky lineFunction :: G2 e -> G2 e -> G1 e -> GT e -> GT e, which
was fundamental to the algorithm, had an unexpected type definition and was very difficult to
implement, taking up to two weeks to fully debug with external test vectors.

While the exact details of the implementation will be omitted here for brevity, the algorithm
itself could be split into two distinct parts, namely a Miller algorithm and a final exponentiation.
The former involves a lengthy loop of point additions and line functions, but the loop itself
could be significantly shortened depending on the decomposition of an curve-dependent integer
into signed binary digits. The latter is a simple exponentiation operation in a large Galois field
that took up the majority of the computation time, but this could again be decomposed into
several much smaller exponentiations. While the old implementation did not allow for both of
these optimisations, the new abstraction made it almost trivial to do them. At the presence of
fair benchmarks, there was a significant speedup by a factor of two to three compared to the
original algorithm, which already had a noticeable computation time in the millsecond range.
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Surprisingly, due to this clean abstraction, the library could be made polymorphic over even
more elliptic curves. In particular, both BLS12-381 and BN254 exhibit a four-tower extension
field system, a property very common amongst pairing-friendly elliptic curves. The newly ab-
stracted optimal ate pairing algorithm could then be made polymorphic over all of these elliptic
curve families, and a five more elliptic curves were added to establish this proof of concept,
although it is easy to add more when the need arises.

Furthermore, there was already an existing hashing algorithm in pairing based on the simple
Shallue-von de Woestijne encoding [22], which was completely separate from the main pairing
functionality. This was originally added by a public contributor and worked only for BN254, so I
simply rewrote it, with existing functions from galois-field in mind, to allow polymorphism
over the remaining elliptic curves. Again, in a delightful surprise, the newly abstracted algorithm
was hundreds of times faster than the old algorithm.

After a total period of four weeks, the end result was a polymorphic pairing class over
seven proof-of-concept elliptic curves, now published in a new version on Hackage as pairing

[10]. As there was already existing documentation in the landing page, I added some further
documentation to explain several optimisation decisions I made throughout the algorithm, as well
as some potential optimisations I did not add due to lack of time. Finally, a minor refactoring
of sonic to depend on the BLS12-381 pairing gave the following PBECC stack layout.

galois-field

general field arithmetic

circuits

elliptic-curve

general curve operations

pairing

general pairing algorithms

bulletproofs groth sonic

With the exception of frequent Haskell consultations, I was again the primary developer of
the new pairing library, but I was assisted by a colleague during some of its initial changes
to account for galois-field and elliptic-curve. This project served as a closure to the
primitive-level restructuring of the PBECC stack, but it is only my wish to maintain it further.
For instance, the next step would be to make pairing polymorphic over all pairing-friendly
elliptic curve families, rather than merely those with a four-tower extension field system.
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3 Conclusion

I thoroughly enjoyed my experience throughout my industrial placement in Adjoint over the
course of seventeen weeks, and hope to return as a full-time employee upon graduation.

3.1 Courses relevance

Working towards a degree in Mathematics and Computer Science in Imperial certainly made
this enjoyment possible. At the most basic level, the various skills I picked up in numerous labo-
ratory exercises and projects, including communicative collaboration, productivity management,
and general software engineering practices, made it possible to deliver prototypical libraries in
allocated time periods. Having several lectures on presentation skills and professional ethics also
allowed me to convey my thoughts rationally in several talks I gave in my final weeks.

At a more technical level, there were several courses in the Department of Computing where,
without having a firm foundation in these, such an experience would be highly unlikely. The
most crucial of these is the first year Haskell course, where I was first exposed to the basics of
the language. This was further supplemented with the advanced programming lectures, where
I was first exposed to more fundamental concepts like type-level programming. The fascination
I had in the first year led me to study Haskell at a deeper level in later years. With a sufficient
proficiency in Haskell, I was then able to write code of demonstrable quality right away, as well
as rapidly understanding further technicalities in the type system along the way.

In contrast, the courses in the Department of Mathematics played a far bigger role in allowing
me to constantly produce deliverables in the form of mathematical libraries. These include the
various algebra and number theory courses over four years, particularly the fourth year elliptic
curves and algebraic geometry courses. This was further complemented with my second year
summer research project on the arithmetic of elliptic curves, where I also learnt to pick up
important pieces of information in technical papers outside my domain of knowledge. Having a
firm foundation in basic algebra and number theory allowed me to process my thoughts abstractly
and write mathematically accurate code confidently without referring to any resources.

3.2 Useful skills

On the other hand, I would have been much more productive in the early stages of my projects
if I had prior exposure in contributing to medium-sized open source repositories in Haskell. For
instance, it took unnecessarily long to internalise the existing implementations of bilinear pairings
and arithmetic circuits, which could be avoided with further experience in Haskell. A better
familiarity with common libraries, such as QuickCheck and Criterion, would have been wonderful,
especially in the development of functional libraries like galois-field where performance is
crucial. For instance, this would have prevented inaccurate performance benchmarks using whnf

rather than nf for normal form evaluation in a cheap computation.
It would have also been more convenient to have a higher proficiency in type-level Haskell

from the get go. For instance, there were certain tricks or quirks I was completely unaware
of, such as using type equalities to avoid ambiguity, or the weird behaviour of the instance
resolution system that I thought was bugged. Some of these forced me to come up with
inelegant workarounds that were eventually replaced. It is unfortunate that Haskell is greatly
downplayed in my degree, but having a firm foundation in mathematical abstraction made it
easy to absorb new concepts introduced to me. Moreover, I had a wonderful colleague who I
consulted frequently with throughout my journey in Haskell.
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3 Conclusion 3.3 Personal benefits

Furthermore, it would have been beneficial to better understand the underpinnings of con-
temporary cryptography from the get go. Although the mathematics behind PBECC was easy,
I was not aware of the existence of such applications and had no chance of studying them
prior to the industrial placement, which delayed my implementation of cryptographic protocols
like groth. As such, despite implementing an initial prototype in the first weeks, I did not
understand its use cases until it was actually deployed as part of a larger system.

3.3 Personal benefits

On the other hand, the seventeen weeks of hard work was fortunately worth the weight. As this
was my first external paid internship, I was exposed to the various ups and downs of modern
industry. This was an entirely different experience in contrast to the academic world I longed to
stay in, which changed my perspective of the industrial world, mostly in a good way.

At a more technical level, I recognised the applicability of my knowledge and the extent of
my limitations, and was driven to further understand Haskell and cryptography. After developing
several libraries, I also realised the importance of dependency management and version control,
especially when two libraries inexplicably depend on one another.

Furthermore, I internalised the various concepts introduced to me over the industrial place-
ment. In particular, these included the theory of Petri nets and graph unfolding algorithms
in my short research on fcl, as well as the theory behind quadratic arithmetic programs and
zero-knowledge proofs required in the understanding of groth.

3.4 Ethical considerations

My wonderful experience was also complemented with great professional conduct from my col-
leagues. Despite coming from various cultural backgrounds, a great deal of mutual respect is
displayed during all of our interactions, be it during work or outside of work, and there were
never any obligation to reveal personal issues that may violate privacy of an individual.

In my first weeks, I was given ample time to understand the relevant theory in the domain as
well as the code in existing repositories, without a feeling of incompetence. In the later weeks,
I have always received technical and moral support throughout the development of the various
libraries, which allowed me to finish my tasks readily but enjoyably.

Most of the existing repositories were equipped with documentation that had clear acknowl-
edgements to external references, be it in the readme or as inline comments. This would give
credit to all contributors of knowledge, but there were instances where code contributors were
not given enough credit, especially when a large pool of commits was squashed before merging.
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