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Abstract

Given an elliptic curve E over Q of analytic rank zero, its L-function can be twisted by an even
primitive Dirichlet character χ of order q, and in many cases its associated central modified L-value
L(E,χ) is known to be integral. This paper derives some arithmetic consequences from a congruence
between L(E, 1) and L(E,χ) arising from this integrality, with an emphasis on cubic characters χ.
These include q-adic valuations of the denominator of L(E, 1), determination of L(E,χ) in terms of
Birch–Swinnerton-Dyer invariants, and asymptotic densities of L(E,χ) modulo q by varying χ.
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1 Introduction

The Hasse–Weil L-function L(E, s) of an elliptic curve E over Q can be twisted by a primitive Dirichlet
character χ to get a twisted L-function L(E,χ, s). The algebraic and analytic properties of these L-functions
are studied extensively in the literature, and they are the subject of many problems in the arithmetic of
elliptic curves. When E is base changed to a cyclotomic extension K of Q, Artin’s formalism for L-functions
says that L(E/K, s) decomposes into a product of L(E,χ, s) over all Dirichlet characters χ that factor
through K, so the behaviour of L(E/K, s) is completely governed by L(E,χ, s).

The special value of L(E,χ, s) at s = 1 can be normalised by periods to get an modified twisted L-
value L(E,χ) (see Section 2). Classically, the Birch–Swinnerton-Dyer conjecture relates L(E, 1) to certain
algebraic invariants that encode important global arithmetic information of E. In contrast, there seems to
be a barrier in formulating the analogous refined conjecture for L(E,χ) when χ is non-trivial, with concrete
examples of arithmetically identical elliptic curves with twisted L-values that differ by a unit [DEW21,
Section 4]. Having such a formula would present non-trivial consequences for the arithmetic of E/K, such
as predictions for the non-triviality of Tate–Shafarevich groups and the existence of points of infinite order,
which seem to be intractable with classical techniques for Selmer groups [DEW21, Section 3].

1



Prominent existing techniques to study the ℓ-primary parts of Selmer groups, such as via the main
conjecture of Iwasawa theory, only gives a description of the ideal I generated by L(E,χ), rather than its
actual value. For instance, in a recent paper to understand a refinement of the classical Birch–Swinnerton-
Dyer conjecture, Burns–Castillo determined I in terms of arithmetic invariants of E in certain relative K-
groups [BC21, Proposition 7.3]. More concretely, Dokchitser–Evans–Wiersema expressed its norm in terms
of the positive square roots of the Birch–Swinnerton-Dyer quotients BSD(E) and BSD(E/K) (see Section
2), where K is the number field cut out by χ [DEW21, Theorem 38].

This paper completely determines the actual value of L(E,χ) for cubic Dirichlet characters of prime
conductor, under fairly generic assumptions on the Manin constants c0(E) and c1(E). The following result
is proven in Section 5, where the phenomena observed by Dokchitser–Evans–Wiersema is also explained.

Theorem 1.1 (Corollary 5.2). Let E be an elliptic curve over Q of conductor N such that L(E, 1) ̸= 0,
and let χ be a cubic Dirichlet character of odd prime conductor p ∤ N such that 3 ∤ c0(E) BSD(E)#E

(
Fp

)
.

Assume that c1(E) = 1 and the Birch–Swinnerton-Dyer conjecture holds over number fields. Then

L(E,χ) = u · χ(N)

√
BSD(E/K)

BSD(E)
,

where the sign u = ±1 is such that

u ≡ −#E
(
Fp

)√ BSD(E)
3

BSD(E/K)
mod 3.

On the analytic side, in their paper on an analogue of the Brauer–Siegel theorem for elliptic curves over
cyclic extensions, Kisilevsky–Nam observed some patterns in the asymptotic distribution of L(E,χ) [KN22,
Section 7]. They considered six elliptic curves E and five positive integers q, and numerically computed the
norms of L(E,χ) for primitive Dirichlet characters χ of conductor p and order q, where(E, q) ranges over the
thirty pairs and p ranges over millions of positive integers. For each pair (E, q), they added a normalisation
factor to L(E,χ) to obtain a real value L+(E,χ), and empirically determined the greatest common divisor
gcdE,q of the norms of L+(E,χ) by varying over all p. Upon dividing these norms by gcdE,q to get an integer

L̃+(E,χ), they observed that these integers have unexpected biases when reduced modulo q.
This paper completely predicts these biases for cubic Dirichlet characters of prime conductor, again under

fairly generic assumptions, for three of the six elliptic curves they considered. The following result is proven
in Section 7 under slightly relaxed assumptions, where the normalisation for L+(E,χ) is also defined.

Theorem 1.2 (Proposition 7.5). Let E be an elliptic curve over Q of conductor N and discriminant ∆ =
±Nn for some 3 ∤ n with no rational 3-isogeny, such that 3 ∤ c0(E) and 3 ∤ gcdE,3, and let χ be a cubic
Dirichlet character of odd prime conductor p ∤ N . Then

L̃+(E,χ) ≡


0 mod 3 if #E

(
Fp

)
≡ 0 mod 3

2 mod 3 if #E
(
Fp

)
≡ 1 mod 3 and p splits completely in the 3-division field of E

1 mod 3 otherwise

.

To put things in better perspective, these biases can be quantified asymptotically by considering the
natural densities of L(E,χ) when reduced modulo q. More precisely, letX<n

E,q be the set of Dirichlet characters
of order q and odd prime conductor less than n that does not divide the conductor of E. Now define the
residual densities δE,q of L(E,χ) to be the natural densities of L(E,χ) modulo

(
1− ζq

)
, or in other words

δE,q(λ) := lim
n→∞

#
{
χ ∈ X<n

E,q

∣∣∣ L(E,χ) ≡ λ mod
(
1− ζq

)}
#X<n

E,q

, λ ∈ Fq.

It turns out that such a limit always exists, and its value for any λ ∈ Fq only depends on BSD(E), the
torsion subgroup tor(E), and the mod-9 Galois image im

(
ρE,9

)
. The following result classifies the possible

ordered triples
(
δE,3(0) , δE,3(1) , δE,3(2)

)
of residual densities for cubic Dirichlet characters.
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Theorem 1.3 (Theorem 6.4). Let E be an elliptic curve over Q such that 3 ∤ c0(E) and L(E, 1) ̸= 0.
Assume that the Birch–Swinnerton-Dyer conjecture holds. Then the ordered triple

(
δE,3(0) , δE,3(1) , δE,3(2)

)
only depends on BSD(E) and on im

(
ρE,9

)
, and can only be one of

(1, 0, 0) ,
(
3
8 ,

3
8 ,

1
4

)
,
(
3
8 ,

1
4 ,

3
8

)
,
(
1
2 ,

1
2 , 0
)
,
(
1
2 , 0,

1
2

)
,
(
1
8 ,

3
4 ,

1
8

)
,(

1
8 ,

1
8 ,

3
4

)
,
(
1
4 ,

1
2 ,

1
4

)
,
(
1
4 ,

1
4 ,

1
2

)
,
(
5
9 ,

2
9 ,

2
9

)
,
(
1
3 ,

2
3 , 0
)
,
(
1
3 , 0,

2
3

)
.

In particular, the ordered triple
(
δE,3(0) , δE,3(1) , δE,3(2)

)
can be precisely determined as follows.

� If ord3
(
BSD(E)

)
= 0 and 3 ∤ #tor(E), then the ordered triple is given by Table 1 in Section A.

� If ord3
(
BSD(E)

)
= −1, then the ordered triple is given by Table 2 in Section A.

� Otherwise, δE,3(0) = 1 and δE,3(1) = δE,3(2) = 0.

Note that the aforementioned normalisation factors for twisted L-values are not present here, so the
resulting ordered triples of residual densities will be different from that of Kisilevsky–Nam. Section 6 proves
this result and outlines the general procedure for higher order characters.

This classification builds upon the fact that ord3
(
BSD(E)

)
≥ −1, which might be interesting as a

standalone result. In a seminal paper quantifying the cancellations between tor(E) and the Tamagawa
product Tam(E), Lorenzini proved that if ℓ | #tor(E) for some prime ℓ > 3, then ℓ | Tam(E) with
finitely many explicit exceptions [Lor11, Proposition 1.1]. In particular, when E has analytic rank zero,

the denominator # tor(E)
2
of the rational number BSD(E) necessarily shares a factor with Tam(E) in its

numerator, so ordℓ
(
BSD(E)

)
≥ −1 for any prime ℓ > 3. On the other hand, he noted that there are explicit

families with # tor(E) = 3 without any cancellation [Lor11, Lemma 2.26], another family of which was
given by Barrios–Roy [BR22, Corollary 5.1]. Subsequently, Melistas showed that these cancellations may
instead occur between tor(E) and the Tate–Shafarevich group X(E) in the numerator of BSD(E), and hence
ord3

(
BSD(E)

)
≥ −1, except possibly for certain reduction types [Mel23, Theorem 1.4]. He then observed

that there are again explicit exceptions, and in all these exceptions c0(E) = 3 [Mel23, Example 3.8], but did
not explain this coincidence. The following result gives a lower bound for the odd part of the denominator
of Birch–Swinnerton-Dyer quotients for elliptic curves with analytic rank zero.

Theorem 1.4 (Theorem 4.4). Let E be an elliptic curve over Q such that L(E, 1) ̸= 0, and let ℓ ∤ c0(E)
be an odd prime. Assume that the Birch–Swinnerton-Dyer conjecture holds. If ℓ | #tor(E), then ℓ |
Tam(E)#X(E). In particular, ordℓ

(
BSD(E)

)
≥ −1.

Section 4 states this result in terms of L(E, 1) and proves it in slightly larger generality. It is worth
noting that this is related to the Gross–Zagier conjecture for # tor(E) = 3 proven by Byeon–Kim–Yhee
[BKY19, Theorem 1.2], but their divisibility result holds over imaginary quadratic fields with a Heegner
point of infinite order. In particular, the local computations here are a subset of their local Tamagawa
number computations, but the global divisibility argument here uses the integrality of L(E, 1) instead.

The methods in this paper rely on the fact that L(E,χ) ∈ Z[ζq] for non-trivial primitive Dirichlet
characters χ of order q, which was proven by Wiersema–Wuthrich under some mild hypotheses by expressing
L(E,χ) in terms of Manin’s modular symbols [WW22, Theorem 2]. Parts of their argument can be adapted
to obtain an explicit congruence between L(E,χ) and L(E, 1) modulo the prime

(
1− ζq

)
in Z[ζq] above q.

After establishing notational conventions in Section 2, some background on Manin’s modular symbols will
be provided in Section 3 to obtain this congruence. The remaining sections will be devoted to proving the
four aforementioned results, with an appendix consisting of a list of mod-3 and 3-adic Galois images.
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2 Background and conventions

This section establishes some relevant background on Galois representations and L-functions of elliptic curves,
as well as some notational conventions that might be deemed less standard in the literature.

For a primitive n-th root of unity ζn, the ring of integers of the cyclotomic field Q(ζn) will be denoted
Z[ζn], and denote the associated norm map by Nmn : Q(ζn) → Q. The ring of integers of its maximal totally
real subfield Q(ζn)

+
will be denoted Z[ζn]+, and denote the associated norm map by Nm+

n : Q(ζn)
+ → Q.

The isomorphism
(
Z/nZ

)× ∼−→ Gal
(
Q(ζn) /Q

)
from class field theory will be given by a 7→(ζn 7→ ζan), which

identifies Dirichlet characters of modulus n with Artin representations that factor through Q(ζn).
Denote the special linear group, the general linear group, and the projective linear group respectively by

SL(n) := SL2

(
Z/nZ

)
, GL(n) := GL2

(
Z/nZ

)
, PGL(n) := PGL2

(
Z/nZ

)
.

For a matrix M in such a matrix group, its trace will be denoted tr(M) and its determinant will be denoted
det(M). For a prime ℓ, the following table groups the conjugacy classes of SL(ℓ) by trace [Bon11, Table 1.1
and Exercise 1.4], which will be useful for Theorem 4.4 and Proposition 6.1.

Representative Number of classes Order Cardinality Trace(
1 z
0 1

)
,

z ∈ Fℓ

one for each symbol
(
z
ℓ

)
,

for a total of 3 classes
ℓ|(

z
ℓ )|

(
ℓ2−1
2

)|( z
ℓ )|

2(
−1 z
0 −1

)
,

z ∈ Fℓ

one for each symbol
(
z
ℓ

)
,

for a total of 3 classes
2q|(

z
ℓ )|

(
ℓ2−1
2

)|( z
ℓ )|

ℓ− 2(
x 0
0 x−1

)
,

x ∈ F×
ℓ \{±1}

one for each pair
{
x, x−1

}
,

for a total of ℓ−3
2 classes

order of x ℓ(ℓ+ 1) x+ x−1

(
1
2

(
ξ + ξℓ

)
ζ
2

(
ξ − ξℓ

)
1
2ζ

(
ξ − ξℓ

)
1
2

(
ξ + ξℓ

)) ,
ξ ∈
(
F×
ℓ2/F

×
ℓ

)
\{±1}

one for each pair
{
ξ, ξ−1

}
,

for a total of ℓ−1
2 classes

order of ξ ℓ(ℓ− 1) ξ + ξℓ

Here, ζ is a fixed element of F×
ℓ2 satisfying ζ + ζℓ = 0, and

(
z
ℓ

)
is the Legendre symbol modulo ℓ given by

(
z

ℓ

)
:=


1 if z is a quadratic residue modulo ℓ

0 if ℓ | z
−1 if z is a quadratic nonresidue modulo ℓ

.

Throughout, an elliptic curve will always refer to an elliptic curve E over Q of conductor N , and
any explicit example of an elliptic curve will be given by its Cremona label [Cre92, Table 1]. For a prime
ℓ, the Zℓ-representation associated to the ℓ-adic Tate module of E is denoted ρE,ℓ, and its ℓ-adic Galois
image im

(
ρE,ℓ

)
will be given by its Rouse–Sutherland–Zureick-Brown label as a subgroup of GL2(Zℓ) up

to conjugacy [RSZB22, Section 2.4]. For any n ∈ N, the projection of ρE,ℓ onto GL(ℓn) is denoted ρE,ℓn ,
and its mod-ℓn Galois image im

(
ρE,ℓn

)
will be given by its Sutherland label as a subgroup of GL(ℓn) up to

conjugacy [Sut16, Section 6.4]. Note that if Frv is an arithmetic Frobenius at a prime v ̸= ℓ, then

tr
(
ρE,ℓ(Frv)

)
= av(E) := 1 + v −#E(Fv) .

Let ωE denote a global invariant differential on a minimal Weierstrass equation of E. Let X0(N) denote
the modular curve associated to the congruence subgroup Γ0(N), and let S2(N) denote the space of weight
two cusp forms of level Γ0(N). By the modularity theorem, there is a surjective morphism ϕE : X0(N) ↠ E
of minimal degree and an eigenform fE ∈ S2(N) with Fourier coefficients av(E) for each prime v ∤ N . These
define two differentials on X0(N), namely 2πifE(z) dz and the pullback ϕ∗EωE , which are related by

ϕ∗EωE = ±c0(E) 2πifE(z) dz,

where c0(E) is a positive integer called the Manin constant [Edi91, Proposition 2].
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When E is Γ0(N)-optimal in its isogeny class, it is conjectured that c0(E) = 1, and this was recently
proven for semistable E [Č18, Theorem 1.2], but it is certainly possible that c0(E) ̸= 1 in general. Nev-
ertheless, every modular parameterisation by X0(N) factors through a modular parameterisation by the
modular curve X1(N) associated to the congruence subgroup Γ1(N) [Ste89, Theorem 1.9], and an analogous
construction using X1(N) yields the Manin constant c1(E) with the following conjecture.

Conjecture 2.1 (Stevens). Let E be an elliptic curve. Then c1(E) = 1.

The L-function L(E, s) of E is defined to be the Euler product of Lv

(
ρ∨E,ℓ, v

−s
)−1

over all primes v,
where ρ∨E,ℓ is the dual of the complex representation associated to ρE,ℓ for some prime number ℓ ̸= v. Here,

for a complex representation ρ, the local Euler factors are given by Lv(ρ, T ) := det
(
1− T · Fr−1

v | ρIv
)
, where

ρIv is the subrepresentation of ρ fixed by the inertia subgroup Iv at v. The modularity theorem says that
L(E, s) is the Hecke L-function of fE , so its order of vanishing at s = 1 is well-defined.

The Birch–Swinnerton-Dyer conjecture predicts this order of vanishing and its leading term in terms of
arithmetic invariants as follows. Let tor(E) and rk(E) denote the torsion subgroup and the rank of the
Mordell–Weil group E(Q) respectively. Let Ω(E) denote the real period given by

∫
E(R) ωE , with orientation

chosen such that Ω(E) > 0. Let Tam(E) denote the Tamagawa product of local Tamagawa numbers
Tamv(E) at each prime v. Let Reg(E) denote the elliptic regulator defined in terms of the Néron–Tate
pairing⟨P,Q⟩ = 1

2hE(P +Q)− 1
2hE(P )−

1
2hE(Q), where hE is the canonical height on E. Finally, let X(E)

denote the Tate–Shafarevich group, which is implicitly assumed to be finite in this paper.

Conjecture 2.2 (Birch–Swinnerton-Dyer). Let E be an elliptic curve. Then the order of vanishing r of
L(E, s) at s = 1 is equal to rk(E), and its leading term satisfies

lim
s→1

L(E, s)

(s− 1)
r · 1

Ω(E)
=

Tam(E) ·#X(E) · Reg(E)

# tor(E)
2 .

Here, the left hand side is the modified L-value of E, which will be denoted L(E), and the right hand
side is the Birch–Swinnerton-Dyer quotient of E, which will be denoted BSD(E). By the combined works of
Gross–Zagier [GZ86, Theorem 7.3] and Kolyvagin [Kol88, Corollary 2], it is known that L(E, 1) ̸= 0 implies
that rk(E) = 0 and X(E) is finite. In this setting, BSD(E) is clearly rational since Reg(E) = 1, and
Proposition 3.3 shows that L(E) is also rational. If ordℓ : Q → Z∪{∞} denotes the ℓ-adic valuation for some
prime ℓ, the conjecture that ordℓ

(
L(E)

)
= ordℓ

(
BSD(E)

)
is called the ℓ-part of the Birch–Swinnerton-Dyer

conjecture. For the base change E/K of E to an extension K of Q, the analogous quantities L(E/K) and
BSD(E/K) can be defined as in the paper by Dokchitser–Evans–Wiersema [DEW21, Section 1.5].

Throughout, a character will always refer to a non-trivial even primitive Dirichlet character χ of prime
conductor p ∤ N and order q > 1, which automatically means that χ(−1) = 1 and p ≡ 1 mod q. The

L-function L(E,χ, s) of E twisted by χ is defined to be the Euler product of Lv

(
ρ∨E,ℓ ⊗ χ, v−s

)−1
over all

primes v, so that in particular L(E, 1) = L(E). The modularity theorem says that L(E,χ, s) is the Hecke
L-function of a weight two cusp form of level Γ0(N) twisted by χ [Shi71, Theorem 3.66], so its order of
vanishing r at s = 1 is again well-defined. When L(E,χ, 1) ̸= 0, Kato showed that rk(E) = rk(E/K) and
X(E/K) is finite [Kat04, Corollary 14.3]. The analogous modified twisted L-value is given by

L(E,χ) := lim
s→1

L(E,χ, s)

(s− 1)
r · p

τ(χ) Ω(E)
,

where τ(χ) is the Gauss sum of χ.

Remark 2.3. The definitions of L-values and Birch–Swinnerton-Dyer invariants in this section agree with
those in Wiersema–Wuthrich [WW22, Section 7] and those in Dokchitser–Evans–Wiersema [DEW21, Section
1.5] whenever L(E,χ, 1) ̸= 0, except for one notable difference for twisted L-functions due to the choice of nor-
malisation in class field theory. In this paper, the Dirichlet series of L(E,χ, s) is

∑∞
n=1 χ(n) an(E)n−s, and

L(E,χ) is defined in terms of L(E,χ, s). Wiersema–Wuthrich gives two definitions for twisted L-functions,
namely an automorphic one that agrees with L(E,χ, s), and a motivic one that coincides with L(E,χ, s)
instead of L(E,χ, s). However, their modified twisted L-value is defined using the motivic definition, so it
coincides with L(E,χ) instead of L(E,χ). Dokchitser–Evans–Wiersema follows the motivic convention, so
their twisted L-functions and modified twisted L-values coincide with L(E,χ, s) and L(E,χ) respectively.
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3 Modular symbols

This section recalls some classical facts on modular symbols. Most of the arguments here are well-known
since the time of Manin [Man72], with a few recent integrality results by Wiersema–Wuthrich [WW22],
but they are provided here for reference. Nevertheless, the main tool is the congruence in Corollary 3.7.
Note that similar congruences were explored by Fearnley–Kisilevsky–Kuwata [FKK12, Theorem 3.5], and is
essentially equivalent to the equivariant Tamagawa number conjecture as shown by Bley [Ble13, Section 2].

Let N ∈ N. The congruence subgroup Γ0(N) acts on the extended upper half plane H by fractional linear
transformations, and a smooth path between two points in the same Γ0(N)-orbit projects onto a closed path
in the quotient X0(N) = H/Γ0(N), which defines an integral homology class γ ∈ H1

(
X0(N) ,Z

)
. This is

independent of the smooth path chosen because H is simply connected, and any integral homology class
γ ∈ H1

(
X0(N) ,Z

)
arises in such a way. On the other hand, any cusp form f ∈ S2(N) induces a differential

2πif(z) dz on X0(N), and integrating this over the closed path γ gives a complex number
∫
γ
2πif(z) dz called

a modular symbol. A general definition for paths with arbitrary endpoints is given by Manin [Man72,
Section 1.2], but for the purposes of this paper, it suffices to consider the modular symbol associated to the
path from 0 to cusps c ∈ Q ∪{∞}. When the denominator of c ∈ Q is coprime to N , the image of any
smooth path between 0 and c is closed [Man72, Proposition 2.2], so it makes sense to write

µf (c) :=

∫ c

0

2πif(z) dz ∈ C.

The key example for f will be the normalised cuspidal eigenform fE ∈ S2(N) associated to an elliptic curve
E of conductor N . In this case, it turns out that L(E), as well as L(E,χ) for any character χ of conductor
coprime to N , can be written as sums of µE(c) := µfE (c) for some c ∈ Q. Furthermore, the terms in these
sums can be paired up in a way that guarantees integrality, using the following trick.

Lemma 3.1. Let c ∈ Q with denominator coprime to N ∈ N, and let f ∈ S2(N). Then

µf (c) + µf (1− c) = 2ℜ
(
µf (c)

)
.

In particular, if E is an elliptic curve, then µE(c) + µE(1− c) is an integer multiple of c0(E)
−1

Ω(E).

Proof. This is similar to the proof in Wiersema–Wuthrich [WW22, Lemma 4], but the argument is repeated
here for reference. Note that µf (1− c) − µf (−c) is the integral of 2πif(z) along the smooth path between
−c and

(
1 1
0 1

)
·(−c), which is zero [Man72, Proposition 1.4], so µf (1− c) = µf (−c). The change of variables

z 7→ −z then transforms µf (−c) into µf (c), so the first statement follows. Now by definition, c0(E)µE(c)
lies in the lattice of modular symbols generated by smooth paths in H1

(
E(C) ,Z

)
, whose real parts lie in

1
2Ω(E) · Z. The second statement then follows from the first statement.

Remark 3.2. When the denominator of c ∈ Q is coprime to N , these modular symbols µE(c) coincide
precisely with the modular symbols µ(c) defined in Wiersema–Wuthrich [WW22, Section 2].

For this exact reason, the modular symbols µE(c) can be normalised to be integers. More precisely, for
an elliptic curve E of conductor N with normalised cuspidal eigenform fE ∈ S2(N), define

µ+
E(c) :=

c0(E)

Ω(E)

(
µE(c) + µE(1− c)

)
∈ Z.

The integrality of L(E) is now a formal consequence of the Hecke action on the space of modular symbols.

Proposition 3.3. Let E be an elliptic curve of conductor N not divisible by an odd prime v. Then

c0(E)L(E)#E(Fv) =

⌊
v−1
2

⌋∑
a=1

µ+
E

(
a
v

)
.

In particular, both sides lie in Z.

Proof. The first statement is precisely the Hecke action [Man72, Theorem 4.2] up to a factor of c0(E)
−1

Ω(E).
Integrality then follows immediately from Lemma 3.1 and the first statement.
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Remark 3.4. The assumption that v ∤ N is crucial. Removing this may cause integrality to fail, such as
for the elliptic curve 11a1 where c0(E) = 1 and L(E) = 1

5 , but a11(E) = 1 and σ1(11) = 12.

The same argument can be adapted for the integrality of L(E,χ) using Birch’s formula.

Proposition 3.5. Let E be an elliptic curve of conductor N , and let χ be a character of odd prime conductor
p ∤ N and order q. Then

c0(E)L(E,χ) =

⌊
p−1
2

⌋∑
a=1

χ(a)µ+
E

(
a
p

)
.

In particular, both sides lie in Z[ζq]. Furthermore, if c1(E) = 1, then L(E,χ) ∈ Z[ζq].

Proof. This is identical to the proof in Wiersema–Wuthrich [WW22, Proposition 7], noting that the auto-
morphic and motivic definitions of L(E,χ) agree under the assumption that p ∤ N [WW22, Lemma 18].
Integrality then follows immediately from Lemma 3.1 and the first statement. The final statement is an
analogous argument with c1(E) also given in Wiersema–Wuthrich [WW22, Proposition 8].

Remark 3.6. The assumption that p ∤ N can be weakened slightly to p2 ∤ N for the first two statements
[WW22, Proposition 7]. Removing this may cause integrality to fail, such as for the elliptic curve 50b1
satisfying c0(E) = 1 and the unique quadratic character of conductor 5, where L(E,χ) = 1

3 .

Observe that the right hand sides of Proposition 3.3 and Proposition 3.5 are highly similar. More precisely,
since χ(a) ≡ 1 mod

(
1− ζq

)
except when ℓ | a, the right hand sides are congruent modulo

(
1− ζq

)
.

Corollary 3.7. Let E be an elliptic curve of conductor N , and let χ be a character of odd prime conductor
p ∤ N and order q. Then

c0(E)L(E,χ) ≡ −c0(E)L(E)#E
(
Fp

)
mod

(
1− ζq

)
,

Furthermore, if q ∤ c0(E), then

L(E,χ) ≡ −L(E)#E
(
Fp

)
mod

(
1− ζq

)
,

where the denominators of both sides are inverted modulo
(
1− ζq

)
.

Remark 3.8. Without having c0(E), both integrality results and the congruence easily fail in trivial ways,
but q ∤ c0(E) is a relatively mild assumption, since c0(E) ̸= 1 seems to be relatively rare.

Remark 3.9. Modified twisted L-values L(E,χ) satisfy Deligne’s period conjecture [BD07, Theorem 2.7],
so in particular they are Galois equivariant, in the sense that L(E, σ ◦ χ) = σ

(
L(E,χ)

)
for any σ ∈

Gal
(
Q
(
ζq
)
/Q
)
. With this property, L(E) can be expressed in terms of the sum of L(E,χ) for all char-

acters χ of a given conductor and order. For instance, when χ is a cubic character of conductor p,

1 + χ(a) + χ(a) =


1 if a is not a unit in Fp

3 if a is the cube of a unit in Fp

0 otherwise

,

so the identities in Proposition 3.3 and Proposition 3.5 combine to yield

c0(E)L(E,χ) + c0(E)L(E,χ) + c0(E)L(E)#E
(
Fp

)
= 3

∑
a

µ+
E

(
a
p

)
,

where the sum runs over the cubic residues a in Fp such that 1 ≤ a ≤
⌊
p−1
2

⌋
. By Galois equivariance, the

first two terms combine to 2c0(E)ℜ
(
L(E,χ)

)
, so this expresses ℜ

(
L(E,χ)

)
in terms of L(E) up to a few

error terms consisting of modular symbols. By reducing modulo 3, this recovers the congruence in Corollary
3.7, but also shows that the congruence would not a priori hold modulo 9, unless the extraneous modular
symbols µ+

E

(
a
p

)
for each cubic residue a in F3 sum to a multiple of 3.

7



4 Denominators of L-values

This section proves a few results on the ℓ-adic valuations of denominators of modified L-values, where ℓ is
an odd prime, which may be of independent interest. Since c0(E)L(E)#E(Fv) ∈ Z, the ℓ-adic valuation of
c0(E)L(E) ∈ Q can be bounded from below by the ℓ-adic valuation of #E(Fv), which is in turn controlled
by tor(E) in the denominator of BSD(E). When ℓ ̸= 3, under the ℓ-part of the Birch–Swinnerton-Dyer
conjecture, such a lower bound follows from Lorenzini’s result that ordℓ

(
#tor(E)

)
≤ ordℓ

(
Tam(E)

)
with

finitely many exceptions [Lor11, Proposition 1.1], but the case ℓ = 3 requires more work.

Lemma 4.1. Let E be an elliptic curve without complex multiplication such that E(Q) has a point of order
3 but 3 ∤ Tam(E). Then im

(
ρE,3

)
is the full Borel subgroup.

Proof. By the assumption that E has a point of order 3, E is isomorphic either to y2 + cy = x3 for some
cube-free c ∈ N, which has complex multiplication by Z[ζ3], or to

E1,±b/a : y2 + xy ± b

a
y = x3,

for some coprime a, b ∈ N [BR22, Proposition 2.4]. If 3 ∤ ordv(a) for some prime v, then 3 | Tamv

(
E1,±b/a

)
[BR22, Theorem 3.5]. This contradicts the assumption that 3 ∤ Tam(E), so a = d3 for some d ∈ N coprime
to b. The change of variables (x, y) 7→

(
x/d2, y/d3

)
yields an isomorphism from E1,±b/a to

Ed,±b : y
2 + dxy ± by = x3,

which has discriminant ∆ = ±b3
(
d3 − 27b

)
. Now let v | b, so that v | ∆ and ordv

(
d3 − 27b

)
= 0 by

coprimality. By step 2 of Tate’s algorithm, since T 2 + dT splits in Fv, Ed,±b has Kodaira symbol Iordv(∆)

and has split mutiplicative reduction at v, so Tamv

(
Ed,±b

)
= ordv(∆) = 3 ordv(b). This forces b = 1 by the

assumption that 3 ∤ Tam(E), so the j-invariant of Ed,±b = Ed,±1 is given by

d3
(
d3 ∓ 24

)3
±d3 − 27

= 27

(
27

±d3−27 + 1
)(

27
±d3−27 + 9

)3
(

27
±d3−27

)3 ,

which implies that im
(
ρE,3

)
is the Borel subgroup 3B.1.1 [Zyw15, Theorem 1.2].

Assuming the 3-part of the Birch–Swinnerton-Dyer conjecture, a divisibility result for BSD(E) can be
derived from the integrality of c0(E)L(E)#E(Fv), via a case-by-case analysis on im

(
ρE,3

)
.

Proposition 4.2. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0 and tor(E) ∼= Z/3Z.
Assume that ord3

(
L(E)

)
≤ ord3

(
BSD(E)

)
. Then 3 | c0(E) Tam(E)#X(E).

Proof. Assume that 3 ∤ c0(E). By Proposition 3.3 and the assumptions, for an odd prime v,

ord3

(
Tam(E)#X(E)

9
#E(Fv)

)
≥ ord3

(
L(E)#E(Fv)

)
≥ 0,

so it suffices to find an odd prime v ∤ N such that #E(Fv) ≡ 3 mod 9. By Chebotarev’s density theorem,
this reduces to finding a matrix M ∈ im

(
ρE,9

)
such that 1 + det(M) − tr(M) = 3. By inspecting Table 2,

such matrices exist for all im
(
ρE,3

)
except for the two 3-adic Galois images 9.72.0.1 and 9.72.0.5, so these

have to be handled separately. If im
(
ρE,3

)
is 9.72.0.1, then im

(
ρE,3

)
is 3Cs.1.1 and not 3B.1.1, so Lemma

4.1 implies that 3 | Tam(E). Otherwise im
(
ρE,3

)
is 9.72.0.5, then im

(
ρE,9

)
fixes a subspace of the group of

9-torsion points of E, so E(Q) ∼= Z/9Z, which contradicts the assumption that E(Q) ∼= Z/3Z.

Remark 4.3. The conclusion of Proposition 4.2 was already observed by Melistas [Mel23, Example 3.8],
where the elliptic curves 27a3, 27a4, and 54a3 all have E(Q) ∼= Z/3Z and Tam(E)#X(E) = 1 but c0(E) = 3.
By the work of Lorenzini, it is generally expected that the factors in Tam(E) would cancel # tor(E), but in
this case it is necessary to consider #X(E) as well, such as in the elliptic curve 1638j3 where E(Q) ∼= Z/3Z
and c0(E) Tam(E) = 1 but #X(E) = 9. Note also that the statement is false for tor(E) ∼= Z/3Z but
rk(E) > 0, such as for the elliptic curve 91b1 where c0(E) Tam(E)#X(E) = 1.
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A lower bound on the ℓ-adic valuation of c0(E)L(E) then follows under the ℓ-part of the Birch–
Swinnerton-Dyer conjecture, but when E has no rational ℓ-isogeny the bound can be made unconditional.

Theorem 4.4. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0, and let ℓ be an odd prime.

1. If E has no rational ℓ-isogeny, then ordℓ
(
c0(E)L(E)

)
≥ 0.

2. Assume that ordℓ
(
L(E)

)
= ordℓ

(
BSD(E)

)
. Then ordℓ

(
c0(E)L(E)

)
≥ −1.

Proof. For the first statement, by Proposition 3.3, it suffices to find an odd prime v ∤ N such that ℓ ∤
#E(Fv), so by Chebotarev’s density theorem this reduces to finding a matrix M ∈ im

(
ρE,ℓ

)
such that

tr(M) ̸= 1 + det(M). Suppose otherwise that tr(M) = 1 + det(M) for all M ∈ im
(
ρE,ℓ

)
, so in particular

tr(M) = 2 for allM ∈ im
(
ρE,ℓ

)
∩SL(ℓ). In this case, by inspecting the order in each conjugacy class of SL(ℓ),

im
(
ρE,ℓ

)
∩ SL(ℓ) is necessarily a ℓ-group, so in particular ℓ | # im

(
ρE,ℓ

)
. Then either im

(
ρE,ℓ

)
is contained

in a Borel subgroup of GL(ℓ) or im
(
ρE,ℓ

)
contains SL(ℓ) [Ser72, Proposition 15]. The former contradicts the

assumption that E has no rational ℓ-isogeny, and the latter is impossible by comparing orders.
For the second statement, the assumption on the ℓ-adic valuations reduces the statement to proving that

ordℓ
(
c0(E) BSD(E)

)
≥ −1. By Mazur’s torsion theorem, it suffices to consider tor(E) being one of

Z/3Z, Z/5Z, Z/6Z, Z/7Z, Z/9Z, Z/10Z, Z/12Z, Z/2Z× Z/6Z,

since ℓ is odd. If E(Q) ̸∼= Z/3Z, then a case-by-case analysis of ℓ yields ordℓ
(
Tam(E)

)
≥ ordℓ

(
#tor(E)

)
except for the elliptic curve 11a3 with ℓ = 5, and the elliptic curves 14a4 and 14a6 with ℓ = 3 [Lor11,
Proposition 1.1], but these exceptions all have ordℓ

(
c0(E)

)
= 1 and ordℓ

(
BSD(E)

)
= −2. If E(Q) ∼= Z/3Z,

then Proposition 4.2 implies that ord3
(
BSD(E)

)
= ord3

(
c0(E) Tam(E)#X(E)

)
− 2 ≥ −1.

Remark 4.5. The assumption on the ℓ-part of the Birch–Swinnerton-Dyer conjecture in the second state-
ment can be slightly weakened, by only requiring that ordℓ

(
L(E)

)
≥ ordℓ

(
BSD(E)

)
for all E, except for

when im
(
ρE,3

)
is 9.72.0.1, where the assumption ordℓ

(
L(E)

)
≤ ordℓ

(
BSD(E)

)
is also needed to proceed

with the argument in Proposition 4.2. Currently this remains an open problem in general even for ℓ = 3,
although substantial progress has been made recently by Keller-Yin when im

(
ρE,ℓ

)
is small [KY24, Theorem

C] and by Burungale–Castella–Skinner when im
(
ρE,ℓ

)
is large [BCS24, Corollary 1.3.1].

Remark 4.6. The second statement might also be provable without appealing to the ℓ-part of the Birch–
Swinnerton-Dyer conjecture when ℓ > 3, by finding a matrixM ∈ im

(
ρE,ℓ

)
such that 1+det(M)−tr(M) ≡ ℓ

mod ℓ2 along the same lines as the proof of Proposition 4.2. In general, this would need a case-by-case analysis
of im

(
ρE,ℓ

)
for when E has no rational ℓ-isogeny, which remains open.

The following is an easy result on the ℓ-adic valuation of L(E)#E(Fv). The factors arising from the
denominator of the rational number L(E)#E(Fv) could a priori cancel the factors appearing in c0(E), but
the congruence of L-values says that this should not happen under Stevens’s conjecture that c1(E) = 1.

Proposition 4.7. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0, and let v ∤ N and ℓ be
odd primes such that v ≡ 1 mod ℓ. Assume that c1(E) = 1. Then

ℓ ∤ c0(E)L(E)#E(Fv) ⇐⇒ ℓ ∤ c0(E) and ordℓ
(
L(E)#E(Fv)

)
= 0.

Proof. Assume first that ℓ ∤ c0(E)L(E)#E(Fv) but ℓ | c0(E). By the assumption that c1(E) = 1, Propo-
sition 3.5 says that L(E,χ) ∈ Z[ζℓ] for any character χ of conductor v and order ℓ, so c0(E)L(E,χ) ≡
0 mod (1− ζℓ), which contradicts ℓ ∤ c0(E)L(E)#E(Fv) by Corollary 3.7. Thus ℓ ∤ c0(E), so that
ordℓ

(
L(E)#E(Fv)

)
= 0 also follows, while the converse is immediate noting that L(E) ̸= 0.

Remark 4.8. Assuming Stevens’s conjecture, Proposition 4.7 yields an immediate proof that L(E)#E(Fv)
is integral at ℓ if ordℓ

(
c0(E)

)
≤ 1. This condition seems to hold for all elliptic curves in the LMFDB [Col], but

a proof remains elusive. On the other hand, assuming the ℓ-part of the Birch–Swinnerton-Dyer conjecture,
there might be a direct proof that L(E)#E(Fv) is integral at ℓ, by arguing that 1+det(M)− tr(M) cancels

# tor(E)
2
for every matrix M lying in every possible im

(
ρE,ℓ

)
. Again, this will be omitted here.
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5 Units of twisted L-values

Under standard arithmetic conjectures, Dokchitser–Evans–Wiersema computed the norm of L(E,χ) in terms
of BSD(E) and BSD(E/K), where K is the degree q subfield of Q

(
ζp
)
cut out by the kernel of χ [DEW21,

Theorem 38]. Some of their results can be summarised in the notation of this paper as follows.

Proposition 5.1. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0, and let χ be a character
of odd prime conductor p ∤ N and odd prime order q ∤ c0(E) BSD(E)#E

(
Fp

)
. Assume that c1(E) = 1, and

that L(E) = BSD(E) and L(E/K) = BSD(E/K). Furthermore, set ζ := χ(N)
(q−1)/2

.

1. The ideal generated by L(E,χ) ∈ Z[ζq] is invariant under complex conjugation and has norm

Nmq

(
L(E,χ)

)
= ±BSD(E/K)

BSD(E)
.

2. The product L(E,χ) · ζ ∈ Z[ζq]+ has norm

Nm+
q

(
L(E,χ) · ζ

)
= ±

√
BSD(E/K)

BSD(E)
.

In particular, if BSD(E) = BSD(E/K), then there is a unit u ∈ Z[ζq]+ such that L(E,χ) = u · ζ−1.

Proof. By Proposition 4.7, under the arithmetic conjectures, the assumption that q ∤ c0(E) BSD(E)#E
(
Fp

)
reduces to q ∤ c0(E) and ordq

(
L(E)#E

(
Fp

))
= 0. In particular L(E, 1) ̸= 0, and moreover ordq

(
L(E,χ)

)
= 0

by Corollary 3.7, so L(E,χ, 1) ̸= 0 as well. This verifies the assumptions of a result by Dokchitser–Evans–
Wiersema [DEW21, Theorem 13(5) to Theorem 13(12)], and is a restatement of it.

In other words, Proposition 5.1.1 predicts that the ideal I of Z[ζq] generated by L(E,χ) has norm
equal to the rational number BSD(E/K) /BSD(E), and Proposition 5.1.2 says that BSD(E/K) /BSD(E)
is necessarily the square of a rational number whose positive square root is equal to the norm of L(E,χ) · ζ.
Thus there are only finitely many possibilities for the prime factorisation of I, and the fact that I is invariant
under complex conjugation narrows down the possibilities further. The precise ideal factorisation can then
be recovered from the Gal

(
K/Q

)
-module structure of X(E/K) [BC21, Remark 7.4].

Assuming that I has been computed as an ideal of Z[ζq], any generator of I is only equal to the actual
value of L(E,χ) up to a unit u ∈ Z[ζq]. Proposition 5.1.2 refines this prediction slightly by adding a condition

on the norm of L(E,χ) · ζ, which determines the actual value of L(E,χ) up to a unit u ∈ Z[ζq]+. In the

special case of q = 3, this is still ambiguous up to a sign, since the units of Z[ζ3]+ = Z are ±1. Corollary 3.7
comes into the picture by pinning down the sign in terms of #E

(
Fp

)
.

Corollary 5.2. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0, and let χ be a cubic
character of odd prime conductor p ∤ N such that 3 ∤ c0(E) BSD(E)#E

(
Fp

)
. Assume that c1(E) = 1, and

that L(E) = BSD(E) and L(E/K) = BSD(E/K). Then

L(E,χ) = u · χ(N)

√
BSD(E/K)

BSD(E)
,

where the sign u = ±1 is such that

u ≡ −#E
(
Fp

)√ BSD(E)
3

BSD(E/K)
mod 3.

This follows immediately from Corollary 3.7 and Proposition 5.1. Corollary 5.2 clarifies much of the
phenomena observed by Dokchitser–Evans–Wiersema [DEW21, Example 45], where they gave many pairs
of examples of arithmetically similar elliptic curves E1 and E2 with L(E1, χ) ̸= L(E2, χ) for a few cubic
characters χ, in the sense that L(E1, χ) ̸= L(E2, χ) precisely because #E1

(
Fp

)
̸≡ #E2

(
Fp

)
mod 3.
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Example 5.3. Let E1 and E2 be the elliptic curves 1356d1 and 1356f1 respectively, and let χ be the cubic
character of conductor 7 such that χ(3) = ζ23 . Then c0(Ei) = BSD(Ei) = BSD

(
Ei/K

)
= 1 for i = 1, 2, so

Proposition 5.1 implies that L(Ei, χ) = ±χ(1356) = ±ζ23 , but it was a priori unclear why L(E1, χ) = ζ23 and
L(E2, χ) = −ζ23 . Corollary 5.2 explains this by requiring that this sign agrees with −#Ei(F7) modulo 3,
and in this case #E1(F7) = 11 and #E2(F7) = 7, which are distinct modulo 3.

They provided many other examples satisfying c0(E) = BSD(E) = BSD(E/K) = 1 with different L(E,χ)
for a few different cubic characters χ, and they can all be explained similarly. For reference and comparison,
the values of L(E,χ) for the above character and of #E(F7) are tabulated as follows.

E 1356d1 1356f1 3264r1 3264s1 3540a1 3540b1 4800i1 4800bj1 4800bm1
L(E,χ) ζ23 −ζ23 −ζ23 ζ23 −ζ23 ζ23 −ζ23 −ζ23 ζ23
#E(F7) 11 7 10 8 7 11 7 7 11

When q ̸= 3 but BSD(E) = BSD(E/K), Proposition 5.1 says that L(E,χ) is a unit in Z[ζq], and Corollary
3.7 places an explicit congruence on this unit in terms of #E

(
Fp

)
.

Corollary 5.4. Let E be an elliptic curve of conductor N such that L(E, 1) ̸= 0, and let χ be a character of
odd prime conductor p ∤ N and odd prime order q ∤ c0(E) BSD(E)#E

(
Fp

)
such that BSD(E) = BSD(E/K).

Assume that c1(E) = 1, and that L(E) = BSD(E) and L(E/K) = BSD(E/K). Then L(E,χ) = u for some
unit u ∈ Z[ζq], such that u ≡ −#E

(
Fp

)
BSD(E) mod

(
1− ζq

)
.

Again, this follows immediately from Corollary 3.7 and Proposition 5.1. Corollary 5.4 partially explains
the remaining phenomena observed by Dokchitser–Evans–Wiersema [DEW21, Example 44], where they gave
many pairs of examples of arithmetically trivial elliptic curves E1 and E2 with L(E1, χ) ̸= L(E2, χ) for
quintic characters χ, in the sense that L(E1, χ) ̸= L(E2, χ) precisely because #E1

(
Fp

)
̸≡ #E2

(
Fp

)
mod 5.

Example 5.5. Let E1 and E2 be the elliptic curves 307a1 and 307c1 respectively, and let χ be the quintic
character of conductor 11 such that χ(2) = ζ5. Then c0(Ei) = BSD(Ei) = BSD

(
Ei/K

)
= 1 for i = 1, 2, so

Proposition 5.1 implies that L(Ei, χ) is a unit, but it was a priori unclear why L(E1, χ) = 1 and L(E2, χ) =
ζ5u

2, where u := 1+ ζ45 . Corollary 5.4 explains this by requiring that L(Ei, χ) ≡ −#Ei(F11) mod (1− ζ5),
and in this case #E1(F11) = 9 and #E2(F11) = 16, which are distinct modulo 5.

They provided a few other examples satisfying c0(E) = BSD(E) = BSD(E/K) = 1 with different L(E,χ)
for this character, and they can all be explained similarly. For reference and comparison, the values of L(E,χ)
for the above character and of #E(F11) are tabulated as follows.

E 307a1 307c1 432g1 432h1 714b1 714h1 1187a1 1187b1 1216g1 1216k1
L(E,χ) 1 ζ5u

2 u2 −ζ5u−1 1 −ζ45u3 ζ25u
−1 ζ5u

−3 −ζ35u2 ζ45u
−1

#E(F11) 9 16 16 8 9 13 17 8 9 7

When q ̸= 3 and BSD(E) ̸= BSD(E/K), it is slightly awkward to rephrase Proposition 5.1 in a way that
is applicable by Corollary 3.7, so it is best illustrated with an example [DEW21, Example 46].

Example 5.6. Let E1 and E2 be the elliptic curves 291d1 and 139a1 respectively, and let χ be the quintic
character of conductor 31 such that χ(3) = ζ35 . Then c0(Ei) = BSD(Ei) = 1, but BSD

(
Ei/K

)
= 112 for

i = 1, 2, so Proposition 5.1 implies that L(Ei, χ) generates an ideal of norm 112 invariant under complex
conjugation. By considering the primes above 112 in Z[ζ5], there are only two such ideals, generated by
λ1 := 3ζ35 + ζ25 + 3ζ5 ≡ 2 mod (1− ζ5) and λ2 := ζ35 + 3ζ5 + 3 ≡ 2 mod (1− ζ5), and in fact

(
L(Ei, χ)

)
=

(λi). Assuming this, Corollary 3.7 then predicts that L(Ei, χ) = uiλi for some units ui ∈ Z[ζ5] such that
2ui ≡ −#Ei(F31) mod (1− ζ5), and in this case #E1(F31) = 33 ≡ 3 mod 5 and #E1(F31) = 23 ≡ 3
mod 5, so ui ≡ 1 mod (1− ζ5). In fact, u1 = ζ45 and u2 = ζ5 − ζ5 + 1.

Remark 5.7. As this example highlights, in general it is possible for L(E1, χ) ≡ L(E2, χ) mod
(
1− ζq

)
but L(E1, χ) ̸= L(E2, χ), even when c0(Ei) = BSD(Ei) = 1, so a general Birch–Swinnerton-Dyer formula
for L(E,χ) remains unlikely even with #E

(
Fp

)
. There are also examples for when Ei have the same

conductor and discriminant, and furthermore BSD
(
Ei/K

)
= 1, such as for the elliptic curves 544b1 and

544f1 and the quintic character χ of conductor 11 given by χ(2) = ζ5, where L(E1, χ) = −ζ35 − ζ5 and
L(E2, χ) = −2ζ35 − 3ζ25 − 2ζ5. This is the pair of elliptic curves with the smallest conductor satisfying the
aforementioned properties but L(E1, χ) ̸= L(E2, χ), and other examples do seem to be quite rare.
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6 Residual densities of twisted L-values

For a fixed elliptic curve E of conductor N , a natural problem is to determine the asymptotic distribution
of L(E,χ) as χ varies over characters of some fixed prime order q but arbitrarily high odd prime conductor
p ∤ N . However, for each such p, there are q− 1 characters χ of conductor p and order q, giving rise to q− 1
conjugates of L(E,χ), so a uniform choice of χ for each p has to be made for any meaningful analysis. One
solution is to observe that the residue class of L(E,χ) modulo

(
1− ζq

)
is independent of the choice of χ, so

a simpler problem would be to determine the asymptotic distribution of these residue classes instead. As
in the introduction, let X<n

E,q be the set of equivalence classes of characters of odd order q and odd prime

conductor p ∤ N less than n, where two characters in X<n
E,q are equivalent if they have the same conductor.

Define the residual densities δE,q of L(E,χ) to be the natural densities of L(E,χ) modulo
(
1− ζq

)
, namely

δE,q(λ) := lim
n→∞

#
{
χ ∈ X<n

E,q

∣∣∣ L(E,χ) ≡ λ mod
(
1− ζq

)}
#X<n

E,q

, λ ∈ Fq,

if such a limit exists. When q ∤ c0(E), this can be computed for each λ ∈ Fq directly using Corollary 3.7,
with the only subtlety being the possible cancellations between L(E) and #E

(
Fp

)
. In the generic scenario

when im
(
ρE,q

)
is maximal, there is a clean description in terms of Legendre symbols.

Proposition 6.1. Let E be an elliptic curve such that L(E, 1) ̸= 0, and let q ∤ c0(E) be an odd prime.

1. If ordq
(
L(E)

)
> 0, then δE,q(0) = 1 and δE,q(λ) = 0 for any λ ∈ F×

q .

2. If ordq
(
L(E)

)
≤ 0, then set m := 1− ordq

(
L(E)

)
and

GE,qm :=
{
M ∈ im

(
ρE,qm

) ∣∣∣ det(M) ≡ 1 mod q
}
.

Then for any λ ∈ Fq,

δE,q(λ) =
#
{
M ∈ GE,qm

∣∣∣ 1 + det(M)− tr(M) ≡ −λL(E)
−1

mod qm
}

#GE,qm
.

In particular, if ordq
(
L(E)

)
≤ 0 and ρE,q is surjective, then set

λE,q :=

(
λL(E)

−1

q

)(
λL(E)

−1
+ 4

q

)
.

Then for any λ ∈ Fq,

δE,q(λ) =



1

q − 1
if λE,q = 1

q

q2 − 1
if λE,q = 0

1

q + 1
if λE,q = −1

.

Proof. By Corollary 3.7, δE,q(λ) is just the natural density of −L(E)#E
(
Fp

)
≡ λ mod q. If ordq

(
L(E)

)
>

0, then only λ = 0 gives a non-zero natural density, otherwise this is equivalent to 1+p−ap(E) ≡ −λL(E)
−1

mod qm, noting that L(E)
−1

is well-defined and non-zero modulo qm by definition. By Chebotarev’s density
theorem, this occurs with the proportion of matrices M ∈ GE,q with det(M) = p and tr(M) = ap(E),
so the second statement follows. If ρE,q is surjective, then Theorem 4.4.1 yields m = 1, so δE,q(λ) is the

proportion of matricesM ∈ SL(q) such that tr(M) ≡ 2−λL(E)
−1

mod q. The final statement then follows
by #SL(q) = (q − 1) q(q + 1) and by inspecting the trace in each conjugacy class of SL(q), noting that
tr(M) = x+ x−1 for some x ∈ Fq \{±1} precisely when x2 − 4 is a quadratic residue modulo q.

Remark 6.2. Without the assumption q ∤ c0(E), the same argument can be used to compute the residual
density of c0(E)L(E,χ) instead, by adding a factor of c0(E) to every instance of L(E) in the statement and
proof of Proposition 6.1. On the other hand, Proposition 3.5 predicts that L(E,χ) ∈ Z[ζq] under Stevens’s
conjecture, so both sides of the congruence are divisible by q and the statement becomes vacuous.
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Remark 6.3. Under standard arithmetic conjectures, Proposition 5.1 says that L(E,χ) · ζ ∈ Z[ζq], so
Nm+

q

(
L(E,χ) · ζ

)
∈ Z. Since the norm is multiplicative and ζ ≡ 1 mod

(
1− ζq

)
, the asymptotic distribution

of the residue class of Nm+
q

(
L(E,χ) · ζ

)
modulo q essentially boils down to computing δE,q.

Assuming the q-part of the Birch–Swinnerton-Dyer conjecture, Theorem 4.4.3 says ordq
(
BSD(E)

)
≥ −1,

so non-trivial δE,q are only visible when ordq
(
BSD(E)

)
= 0,−1. Once this is determined, computing δE,q

then reduces to identifying im
(
ρE,q

)
or im

(
ρE,q2

)
, and then weighing the proportion of matrices with a

certain determinant and trace. To illustrate this in action, the next result describes the possible ordered
triples

(
δE,3(0) , δE,3(1) , δE,3(2)

)
of residual densities, which is only made possible thanks to the classification

of 3-adic Galois images by Rouse–Sutherland–Zureick-Brown [RSZB22, Corollary 1.3.1 and Corollary 12.3.3].

Theorem 6.4. Let E be an elliptic curve such that 3 ∤ c0(E) and L(E, 1) ̸= 0. Assume that ord3
(
L(E)

)
=

ord3
(
BSD(E)

)
. Then precisely one of the following holds.

1. If ord3
(
BSD(E)

)
> 0, then δE,3(0) = 1 and δE,3(1) = δE,3(2) = 0.

2. If ord3
(
BSD(E)

)
= 0 and 3 | #tor(E), then δE,3(0) = 1 and δE,3(1) = δE,3(2) = 0.

3. If ord3
(
BSD(E)

)
= 0 and 3 ∤ #tor(E), then

(
δE,3(0) , δE,3(1) , δE,3(2)

)
is given in Table 1.

4. If ord3
(
BSD(E)

)
= −1, then

(
δE,3(0) , δE,3(1) , δE,3(2)

)
is given in Table 2.

In particular,
(
δE,3(0) , δE,3(1) , δE,3(2)

)
only depends on BSD(E) and on im

(
ρE,9

)
, and can only be one of

(1, 0, 0) ,
(
3
8 ,

3
8 ,

1
4

)
,
(
3
8 ,

1
4 ,

3
8

)
,
(
1
2 ,

1
2 , 0
)
,
(
1
2 , 0,

1
2

)
,
(
1
8 ,

3
4 ,

1
8

)
,(

1
8 ,

1
8 ,

3
4

)
,
(
1
4 ,

1
2 ,

1
4

)
,
(
1
4 ,

1
4 ,

1
2

)
,
(
5
9 ,

2
9 ,

2
9

)
,
(
1
3 ,

2
3 , 0
)
,
(
1
3 , 0,

2
3

)
.

Proof. The fact that there are only four possibilities is an immediate consequence of Theorem 4.4. By Propo-
sition 6.1, the first statement follows immediately under the assumption that ord3

(
L(E)

)
= ord3

(
BSD(E)

)
,

while the second statement follows from 3 | 1+det(M)− tr(M) for all M ∈ im
(
ρE,3

)
whenever 3 | #tor(E).

The final statement follows from the first four, so it remains to prove the third and fourth statements.
For the third statement, it suffices to consider GE,3 = im

(
ρE,3

)
∩SL(3), and there are only 5 possibilities

for im
(
ρE,3

)
when ρE,3 is not surjective, as tabulated in Table 1. If ρE,3 is surjective, then δE,3(λ) is

already computed in the final statement in Proposition 6.1, while the other 5 cases are similar but easier
computations. For instance, if im

(
ρE,3

)
is 3B.1.2, then GE,3 is conjugate to the subgroup of unipotent

upper triangular matrices in SL(3), so counting the six matrices with each trace yields δE,3(0) = 1 and
δE,3(1) = δE,3(2) = 0. Note that when δE,3(1) ̸= δE,3(2), the residue of BSD(E) modulo 3 would swap
δE,3(1) and δE,3(2), such as in the case of SL(3) ⊆ im

(
ρE,3

)
where δE,3(1) = 1

4 precisely if BSD(E) ≡ 1
mod 3 and δE,3(1) =

3
8 otherwise.

For the fourth statement, it suffices to consider GE,9, and by the classification this is the projection onto
GL(9) of 21 different possible im

(
ρE,3

)
, as tabulated in Table 2. For instance, if im

(
ρE,3

)
is 3.8.0.1, then

GE,9 is the preimage of the subgroup of SL(3) generated by
(
1 2
0 1

)
and

(
1 2
0 2

)
under the canonical projection

GL(9) ↠ GL(3). This preimage in GL(9) consists of 243 matrices, of which 135 have trace 0 and 54 have
trace 1 and 2 each, so δE,3(0) =

135
243 = 5

9 and δE,3(1) = δE,3(2) =
54
243 = 2

9 . The other 20 cases are similar
but easier computations, noting again the residue of 3BSD(E) modulo 3 when δE,3(1) ̸= δE,3(2), such as in
the case of 27.648.18.1 where δE,3(1) = 0 precisely if 3BSD(E) ≡ 2 mod 3 and δE,3(1) =

2
3 otherwise.

Remark 6.5. The first case happens when 3 ∤ #tor(E) but 3 | Tam(E)#X(E), such as for the elliptic
curve 50b4 where BSD(E) = 3, and the second case happens when 9 | Tam(E)#X(E), such as for the
elliptic curve 84a1 where BSD(E) = 1

2 . Note also that if im
(
ρE,3

)
is 3Cs.1.1, a much easier argument to

prove that δE,3(0) = 1 and δE,3(1) = δE,3(2) = 0 is to observe that GE,3 is trivial, so E
(
Fp

)
acquires full

3-torsion for any p ≡ 1 mod 3, and thus L(E,χ) ≡ −BSD(E)#E
(
Fp

)
≡ 0 mod 3 always.

Remark 6.6. Assuming the 3-part of the Birch–Swinnerton-Dyer conjecture holds, Theorem 6.4 then de-
scribes the densities of the sign u determined in Corollary 5.2, and hence the actual densities of L(E,χ).
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7 Twisted L-values of Kisilevsky–Nam

The computation of residual densities was originally motivated by the statistical data in Kisilevsky–Nam
[KN22, Section 7]. They numerically computed millions of modified twisted L-values by fixing the elliptic
curve and varying the character, but considered an alternative normalisation given by

L+(E,χ) :=

L(E,χ) if χ(N) = 1

L(E,χ) ·
(
1 + χ(N)

)
if χ(N) ̸= 1

,

in contrast to the normalisation factor ζ in Proposition 5.1. Under the implicit assumption that L(E,χ) ∈
Z[ζq], they showed that L+(E,χ) ∈ Z[ζq]+ [KN22, Proposition 2.1], so that Nm+

q

(
L+(E,χ)

)
∈ Z. Fixing six

elliptic curves E and five small orders q, they varied the character χ over millions of conductors p, empirically
determined the greatest common divisor gcdE,q of all the integers Nm+

q

(
L+(E,χ)

)
, and considered

L̃+(E,χ) :=
Nm+

q

(
L+(E,χ)

)
gcdE,q

.

Remark 7.1. The definition of L̃+(E,χ) is equivalent to that of Aχ defined by Kisilevsky–Nam when q is
odd and L(E, 1) ̸= 0, since χ(N) = −1 never occurs and the global root number is always 1 [KN22, Section
2.2]. Their definition of L(E,χ) has an extra factor of 2, but this is cancelled out after division by gcdE,q.

Remark 7.2. In the interpretation of Proposition 5.1, the integer gcdE,q is predicted to arise from contri-
butions by the greatest common divisors of BSD(E/K) /BSD(E) ranging over various number fields K of
degree q over Q coming from characters of order q, but this will not be discussed here.

As their normalisation differs from that in Proposition 5.1 [KN22, Remark 1], the resulting residual
densities are skewed. More precisely, define X<n

E,q as before, and define the analogous residual densities δ′E,q

of L̃+(E,χ) to be the natural densities of L̃+(E,χ) modulo q, or in other words

δE,q(λ) := lim
n→∞

#
{
χ ∈ X<n

E,q

∣∣∣ L̃+(E,χ) ≡ λ mod q
}

#X<n
E,q

, λ ∈ Fq,

if such a limit exists. In the simplest case where q = 3 and 3 ∤ gcdE,3, there is no norm, and so

L̃+(E,χ) ≡

{
L(E,χ) gcdE,3 if χ(N) = 1

2L(E,χ) gcdE,3 otherwise
,

which becomes amenable to a similar computation to that of Proposition 6.1 provided χ(N) is known. For
certain elliptic curves, χ(N) depends completely on #E

(
Fp

)
due to a shared action of Frobenius in GL(3).

Lemma 7.3. Let E be an elliptic curve of conductor N with no rational 3-isogeny such that the splitting field
F of X3 −N lies in the splitting field K of the 3-division polynomial ψE,3, and let χ be a cubic character of
odd prime conductor p ∤ N . Then im

(
ρE,3

)
= GL(3) and Gal

(
K/Q

) ∼= PGL(3). Furthermore, if p does not

split completely in K, then #E
(
Fp

)
≡ 2 mod 3 if and only if χ(N) = 1. Otherwise, if p splits completely

in K, then #E
(
Fp

)
̸≡ 2 mod 3 and χ(N) = 1.

Proof. Let L be the extension of K obtained by adjoining the Y -coordinates of E[3]. By the assumption that
E has no rational 3-isogeny and the classification of im

(
ρE,3

)
, if ρE,3 were not surjective, then Gal

(
L/Q

)
is

either 3Nn or 3Ns. Neither of this could occur, since by the assumption that F ⊆ K, there are inclusions

Q ⊆ Q(ζ3) ⊆ F ⊆ K ⊆ L,

so in particular Gal
(
L/Q

)
surjects onto Gal

(
F/Q

) ∼= S3, which forces Gal
(
L/Q

) ∼= GL(3). On the other

hand, Gal
(
K/Q

)
permutes the roots of the degree 4 polynomial ψE,3, so it must be the quotient group

PGL(3) ∼= S4. Its subgroup Gal
(
K/Q(ζ3)

) ∼= A4 surjects onto Gal
(
F/Q(ζ3)

) ∼= Z/3Z, with kernel the

unique subgroup Gal
(
K/F

) ∼=(Z/2Z)2 of index 4 consisting precisely of all elements of A4 of order 1 or 2.
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Now Frp ∈ Gal
(
K/Q

)
acts on the residue field of a prime π of F above p by

Frp(ζ3) ≡ ζp3 mod π, Frp
(

3
√
N
)
≡ 3

√
N

p
mod π.

Clearly Frp fixes ζ3, so that Frp ∈ Gal
(
K/Q(ζ3)

)
. Claim that, when p does not split completely in K, the

condition Frp ∈ Gal
(
K/F

)
is equivalent to #E

(
Fp

)
≡ 2 mod 3 and to χ(N) = 1. On one hand, this means

that Frp fixes 3
√
N , or equivalently that 3

√
N

p−1 ≡ 1 mod p, which is precisely the condition that χ(N) = 1.
On the other hand, this also means that Fr2p = 1 in Gal

(
K/Q(ζ3)

)
, which is equivalent to Frp having order

exactly 2 in Gal
(
K/Q(ζ3)

)
. By the Cayley–Hamilton theorem, these are precisely the trace 0 matrices in

PGL(3), or equivalently the trace 0 matrices in GL(3), which proves the equivalence with ap(E) = 0. If p
splits completely in K, then Frp = 1 in Gal

(
K/Q(ζ3)

)
, but these never have trace 0 in PGL(3) or GL(3).

Remark 7.4. The first assumption is necessary, evident in the elliptic curve 50b1 with F ⊆ K but im
(
ρE,3

)
is 3B, where 7 does not split completely in K but #E(F7) = 10 ≡ 1 mod 3 and χ(50) = χ(50) = 1. The
second assumption is also necessary, evident in the elliptic curve 21a1 with no rational 3-isogeny but F ̸⊆ K,
where 13 does not split completely in K but #E(F13) = 16 ≡ 1 mod 3 and χ(21) = χ(21) = 1. For the final
statement, checking that p splits completely in F but not in K is not sufficient to conclude, such as for the
elliptic curve 11a1, where #E(F19) = 20 ≡ 2 mod 3 and χ(11) = χ(11) = 1. If p does split completely in
K, then both #E

(
Fp

)
≡ 0 mod 3 and #E

(
Fp

)
≡ 1 mod 3 are possible, such as for the elliptic curve 11a1,

where #E(F337) = 360 ≡ 0 mod 3 and #E(F193) = 190 ≡ 1 mod 3. Finally, note that this argument only
works for cubic characters, as PGL(q) is almost simple for q > 3 and admits few non-trivial surjections.

For elliptic curves satisfying this property, the residual density of L̃+(E,χ) is easy to compute.

Proposition 7.5. Let E be an elliptic curve of conductor N with no rational 3-isogeny such that 3 ∤ c0(E)
and 3 ∤ gcdE,3, and the splitting field F of X3 −N lies in the splitting field K of the 3-division polynomial
ψE,3, and let χ be a cubic character of odd prime conductor p ∤ N . Then

L̃+(E,χ) ≡


0 mod 3 if #E

(
Fp

)
≡ 0 mod 3

2 mod 3 if #E
(
Fp

)
≡ 1 mod 3 and p splits completely in K

1 mod 3 otherwise

.

In particular,

δ′E,3(0) =
9

24
, δ′E,3(1) =

15

24
, δ′E,3(2) =

1

24
.

Proof. By Corollary 3.7 and the assumptions that 3 ∤ c0(E) and 3 ∤ gcdE,3,

L̃+(E,χ) ≡

{
2#E

(
Fp

)
L(E) gcdE,3 if χ(N) = 1

#E
(
Fp

)
L(E) gcdE,3 otherwise

.

Clearly L̃+(E,χ) ≡ 0 mod 3 when #E
(
Fp

)
≡ 0 mod 3. By Lemma 7.3, χ(N) = 1 occurs either when

#E
(
Fp

)
≡ 1 mod 3 but p splits completely in K or when #E

(
Fp

)
≡ 2 mod 3 but p does not split

completely in K, the only remaining case being when #E
(
Fp

)
≡ 1 mod 3 and χ(N) ̸= 1. The first

statement then follows by substituting the residues of #E
(
Fp

)
modulo 3, and noting that gcdE,3 cancels

out the factors in L(E) by definition. For the final statement, the description of the groups in Lemma 7.3
implies that #E

(
Fp

)
≡ λ mod 3 occurs with the proportion of matrices M ∈ SL(3) with tr(M) = 2−λ, by

Chebotarev’s density theorem. If p splits completely in K, then Frp = 1 in PGL(3), so Frp = ±1 in GL(3),
and in particular in SL(3), but the condition #E

(
Fp

)
≡ 1 mod 3 forces Frp = −1, which has trace 1. The

final statement then follows by counting matrices in SL(3) with a certain trace.

Remark 7.6. Elliptic curves with discriminant ∆ = ±Nn for some 3 ∤ n satisfy this property, since 3
√
N

can then be expressed in terms of 3
√
∆ [Ser72, Section 5.3b]. This completely explains the numerical data

by Kisilevsky–Nam for the elliptic curve 11a1 where gcdE,3 = 5 and the elliptic curves 15a1 and 17a1 where
gcdE,3 = 4, all of which satisfy the assumptions of Proposition 7.5. The same method cannot explain
the density patterns when 3 | gcdE,3, such as for the remaining three elliptic curves 14a1, 19a1, and 37b1
considered by Kisilevsky–Nam, since Corollary 3.7 is a priori not valid modulo 9, as noted in Remark 3.9.
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A Tables of Galois images

This section tabulates the mod-3 and 3-adic Galois images of elliptic curves E with restricted 3-torsion up
to conjugacy, crucially used in Proposition 4.2 and Theorem 6.4. In both tables, the examples of elliptic
curves are chosen so that it has the smallest conductor possible satisfying 3 ∤ c0(E) and L(E, 1) ̸= 0, but in
general there are many elliptic curves with each prescribed mod-3 or 3-adic Galois image.

Mod-3 Galois images of elliptic curves without 3-torsion

The possible mod-3 Galois images are well-known [Zyw15, Theorem 1.2, Proposition 1.14, and Proposition
1.16], and those of elliptic curves without 3-torsion are tabulated as follows. The subgroup generators are
taken from Sutherland [Sut16, Section 6.4], and are viewed as elements of GL(3). The final two columns give
examples of elliptic curves with the given mod-3 Galois image with b = 1 and b = 2 respectively, where b ∈ F3

is the residue of BSD(E) modulo 3. The column labelled GE,3 lists the elements of GE,3 = im
(
ρE,3

)
∩SL(3)

as defined in Proposition 6.1, so the residual densities can be read off directly in the column labelled δE,3 as
ordered triples

(
δE,3(0) , δE,3(−b) , δE,3(b)

)
, which is used in Theorem 6.4.

Table 1: mod-3 Galois images of elliptic curves without 3-torsion

im
(
ρE,3

)
Generators of im

(
ρE,3

)
GE,3 δE,3 b = 1 b = 2

GL(3)

(
2 0
0 1

)(
2 1
2 0

)
SL(3) 3

8 ,
3
8 ,

1
4 11a2 11a1

3B.1.2

(
2 0
0 1

)(
1 1
0 1

) (
1 0
0 1

)(
1 1
0 1

)(
1 2
0 1

)
1, 0, 0 19a2 14a3

3B

(
2 0
0 2

)(
1 0
0 2

)(
1 1
0 1

) (
1 0
0 1

)(
1 1
0 1

)(
1 2
0 1

)
(
2 0
0 2

)(
2 1
0 2

)(
2 2
0 2

) 1
2 ,

1
2 , 0 50b3 50b1

3Cs

(
2 0
0 2

)(
1 0
0 2

) (
1 0
0 1

)(
2 0
0 2

)
1
2 ,

1
2 , 0 304e2 304b2

3Nn

(
1 0
0 2

)(
2 1
2 2

) (
1 0
0 1

)(
1 1
1 2

)(
0 2
1 0

)(
2 1
1 1

)
(
2 0
0 2

)(
2 2
2 1

)(
0 1
2 0

)(
1 2
2 2

) 1
8 ,

1
8 ,

3
4 704e1 245b1

3Ns

(
2 0
0 2

)(
0 2
1 0

)(
1 0
0 2

) (
1 0
0 1

)(
2 0
0 2

)(
0 2
1 0

)(
0 1
2 0

)
1
4 ,

1
4 ,

1
2 1690d1 338d1

The remaining two mod-3 Galois images 3B.1.1 and 3Cs.1.1 have 3-torsion, so computing the residual
densities require finer information from their mod-9 Galois images.

3-adic Galois images of elliptic curves with 3-torsion

The possible 3-adic Galois images are classified [RSZB22, Corollary 1.3.1 and Corollary 12.3.3], and those
of elliptic curves with 3-torsion are tabulated as follows. The subgroup generators are taken from Rouse–
Sutherland–Zureick-Brown [RSZB22, Software Repository], and are viewed as elements of GL(3m) if their
corresponding 3-adic Galois images are of the form 3m.i.g.n. The column labelled ME,3 gives matrices
M ∈ im

(
ρE,9

)
such that 1 + det(M)− tr(M) = 3, which is used in Proposition 4.2. The final two columns

give examples of elliptic curves with the given 3-adic Galois image with b = 1 and b = 2 respectively, where
b ∈ F3 is the residue of 3BSD(E) modulo 3. The column labelled #GE,9 lists the cardinalities of GE,9 as
defined in Proposition 6.1 for reference, but the residual densities are calculated separately in the column
labelled δE,3 as ordered triples

(
δE,3(0) , δE,3(−b) , δE,3(b)

)
, which is used in Theorem 6.4.
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Table 2: 3-adic Galois images of elliptic curves with 3-torsion

im
(
ρE,3

)
im
(
ρE,3

)
Generators of im

(
ρE,3

)
ME,3 #GE,9 δE,3 b = 1 b = 2

3.8.0.1 3B.1.1

(
1 2
0 1

)(
1 2
0 2

) (
4 0
0 2

)
243 5

9 ,
2
9 ,

2
9 20a2 20a1

3.24.0.1 3Cs.1.1

(
2 0
0 1

) (
2 0
0 4

)
81 1, 0, 0 26a1 14a1

9.24.0.1 3B.1.1

(
7 5
0 8

)(
1 8
0 4

) (
4 0
0 2

)
81 1, 0, 0 189c3 702e3

9.24.0.2 3B.1.1

(
7 3
0 8

)(
7 2
6 2

) (
4 0
0 2

)
81 1

3 ,
2
3 , 0

9.72.0.1 3Cs.1.1

(
5 6
3 1

)(
4 6
0 1

)(
5 0
0 1

)
N/A 27 1, 0, 0 54b1

9.72.0.2 3Cs.1.1

(
8 3
3 4

)(
8 6
0 4

)(
1 3
0 1

) (
8 0
0 4

)
27 1, 0, 0 54a1

9.72.0.3 3Cs.1.1

(
8 3
3 4

)(
5 0
0 7

) (
2 0
0 4

)
27 1, 0, 0 19a1 7094c1

9.72.0.4 3Cs.1.1

(
2 3
6 7

)(
1 6
6 1

)(
4 3
6 4

) (
5 0
0 4

)
27 1, 0, 0

9.72.0.5 3B.1.1

(
1 2
0 8

)(
1 7
0 4

)
N/A 27 1, 0, 0 54b3

9.72.0.6 3B.1.1

(
1 5
0 8

)(
4 1
0 8

) (
4 0
0 8

)
27 1, 0, 0

9.72.0.7 3B.1.1

(
4 4
0 5

)(
1 0
0 8

) (
4 0
0 5

)
27 1, 0, 0

9.72.0.8 3B.1.1

(
7 7
6 4

)(
7 7
6 2

) (
1 2
3 1

)
27 1

3 ,
2
3 , 0

9.72.0.9 3B.1.1

(
4 2
3 5

)(
1 3
0 1

)(
7 2
3 1

) (
4 1
0 5

)
27 1

3 ,
2
3 , 0

9.72.0.10 3B.1.1

(
1 5
6 5

)(
1 0
0 8

) (
4 0
0 8

)
27 1

3 ,
2
3 , 0 486c1

27.72.0.1 3B.1.1

(
7 23
0 5

)(
1 8
9 16

) (
4 0
0 2

)
81 1, 0, 0

27.648.13.25 3B.1.1

(
16 4
0 16

)(
1 17
0 26

) (
4 0
0 5

)
27 1, 0, 0 N/A N/A

27.648.18.1 3B.1.1

(
16 15
9 25

)(
10 16
9 17

)(
7 22
6 4

) (
4 1
0 5

)
27 1

3 ,
2
3 , 0 108a1 36a1

27.1944.55.31 3Cs.1.1

(
2 18
12 25

)(
16 18
21 16

) (
5 0
0 4

)
9 1, 0, 0 N/A N/A

27.1944.55.37 3Cs.1.1

(
17 6
21 10

)(
2 3
3 25

) (
5 0
3 4

)
9 1, 0, 0 27a1 N/A

27.1944.55.43 3B.1.1

(
19 10
18 8

)(
4 11
3 16

) (
4 4
0 5

)
9 1

3 ,
2
3 , 0 243b1 N/A

27.1944.55.44 3B.1.1

(
10 23
3 13

)(
13 13
0 14

) (
4 4
0 5

)
9 1

3 ,
2
3 , 0 N/A N/A

Remark A.1. Note that many of the 3-adic Galois images seemingly do not represent any elliptic curves
with b ̸= 0, in the sense that a search through the LMFDB [Col] yields no examples satisfying 3 ∤ c0(E)
and L(E, 1) ̸= 0, but current results a priori do not rule out their existence. To rule out examples for a
specific 3-adic Galois image, one could consider the explicit family of Weierstrass equations parameterised by
the associated modular curve, and then investigate the divisibility of Tamagawa numbers as in Lemma 4.1.
Such is the case for the last six 3-adic Galois images arising from elliptic curves with complex multiplication,
where their associated modular curves have effectively computable finite sets of rational points.
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