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Abstract

In 1922, Louis Mordell proved that the group of rational points of an elliptic curve is finitely generated.
Subsequently, in 1928, André Weil generalised this for abelian varieties over number fields, and their
collective result has since been known as the Mordell-Weil theorem. This report documents an ongoing
attempt to formalise relevant definitions and a proof of the Mordell-Weil theorem for an elliptic curve
over a number field in the Lean theorem prover, along with any design decisions made in the process.
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1 Background

This section provides the relevant definitions in the arithmetic of elliptic curves, outlines a proof of the
Mordell-Weil theorem for an elliptic curve over a number field, and briefly introduces the Lean theorem
prover and its mathematical library. For more details on the constructions, consult Silverman’s book The
Arithmetic of Elliptic Curves [Sil09] and Katz-Mazur’s book Arithmetic Moduli of Elliptic Curves [KM85].

1.1 Elliptic curves

Depending on the ambient category the reader wishes to consider, there are many seemingly different defin-
itions of an elliptic curve with varying degrees of abstraction, which are non-trivially equivalent in many
cases. For the sake of a short exposition, this will begin at the generality of schemes.

An elliptic curve over a scheme S is an S-scheme E, equipped with a zero section S → E of the
natural morphism f : E → S, such that f is smooth, proper, and all its geometric fibres are integral curves
of genus one. For an S-scheme T , the set of T -points E (T ) of E is the set of S-scheme morphisms
T → E, which furnishes a contravariant functor SchS → Set given by T 7→ E (T ). On the other hand,
E represents the relative Picard functor SchS → Ab given by T 7→ Pic0E/S (T ), and there is a natural

identification E (T )
∼−→ Pic0E/S (T ), giving E the structure of an abelian scheme. In some sense this is a

global definition, great for the purposes of proving general results in algebraic geometry, but for the purposes
of the Mordell-Weil theorem it suffices to consider the local definition over a field.

When S = SpecF for a field F , the above definition translates to a single smooth, proper, geometrically
integral curve of genus one E, equipped with a choice of a point O ∈ E given by the zero section that
will play the role of an identity element later. For the S-scheme T = SpecK given by a field extension
K of F , the set of T -points, now denoted by the set of K-points E (K), can be naturally identified with
the relative Picard group, now just the usual Picard group Pic0E/F (K) of degree zero divisors modulo
principal divisors. More concretely, this identification sends a K-point P ∈ E (K) to the class of the degree
zero divisor [P ] − [O], which can be shown to be bijective due to the Riemann-Roch theorem. Considering
only the field extensions of F then furnishes a covariant functor from category of fields containing F to Ab
given by K 7→ E (K), which can be enriched to a functor AlgF → Ab with a bit of work.

As a further consequence of the Riemann-Roch theorem, elliptic curves over a field F can also be given
a Weierstrass model, namely the projective plane curve given by the equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, ai ∈ F.

The distinguished point O is often chosen to be the unique point at infinity [X : Y : Z] = [0 : 1 : 0], and the
remaining technical conditions are reduced to the non-vanishing of a quantity called the discriminant

∆ :=−
(
a21 + 4a2

)2 (
a21a6 + 4a2a6 − a1a3a4 + a2a

2
3 − a24

)
− 8 (2a4 + a1a3)

3

− 27
(
a23 + 4a6

)2
+ 9

(
a21 + 4a2

)
(2a4 + a1a3)

(
a23 + 4a6

)
.

Under the identification E (K)
∼−→ Pic0E/F (K), the group law is simply a chord-and-tangent process on the

K-points of E, governed by the property that three K-points sum to zero precisely if they are collinear, as
illustrated below. This is well-defined, as a projective line necessarily intersect E at exactly three K-points,
counted with multiplicity and possibly at O, by Bézout’s theorem. In particular, the group law can be given
by completely explicit equations, albeit having to consider several cases at all times.
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Morphisms of elliptic curves over a fixed base scheme is complicated to define, but given the Weierstrass
model over a field, isomorphisms preserving O can be given explicitly by a linear change of variables

[X : Y : Z] 7→
[
u2X + rZ : u3Y + u2sX + tZ : Z

]
, u ∈ F×, r, s, t ∈ F,

which extend to an isomorphism of their corresponding group of K-points by functoriality. For instance,
completing the square and completing the cube are both admissible changes of variables provided chF ̸= 2, 3,
so that the Weierstrass model can be reduced to a short Weierstrass model

Y 2Z = X3 +AXZ3 +BZ3, A,B ∈ F,

with the same unique point at infinity, and whose affine K-points are symmetric about the x := X/Z-axis.
Furthermore, any such change of variables preserves a quantity called the j-invariant

j :=

(
−48a4 − 24a1a3 + 16a22 + 8a21a2 + a41

)3
∆

,

which also classifies elliptic curves up to isomorphism over all finite extensions of F simultaneously.
More general morphisms preserving O are called isogenies, with a crucial example being the multi-

plication by n ∈ N map [n] : E → E, whose kernel is the n-torsion subgroup scheme E [n]. The
x-coordinates of the K-points in E (K) [n] can then be given by the K-roots of a certain n-division poly-
nomial ψn (x) ∈ F [X], which are defined inductively. For instance, under the symmetric short Weierstrass
model, an affine K-point (x, y) ∈ E (K) lies in E (K) [2] precisely if y = 0, by definition of the group law,
so that the affine K-points in E (K) [2] are exactly the K-roots of ψ2 (x) := x3 + Ax + B. In particular,
E (K) [2] has at most four K-points including O, and has exactly four K-points when ψ2 (x) splits in K.

Finally, given extensions L/K/F , the group of F -automorphisms Aut (L/K) acts on the E (L) and
E (L) [n] naturally, which, when they are Galois, have invariants E (K) and E (K) [n] respectively. This will
be crucial in the explicit Galois cohomology of elliptic curves to be seen later.

1.2 The Mordell-Weil theorem

The following is perhaps the most fundamental result in the arithmetic of elliptic curves.

Theorem 1.1 (Mordell-Weil). Let F be a number field. Then E (F ) is finitely generated.

In particular, the structure theorem for finitely generated abelian groups says that E (F ) is isomorphic
to the direct product of a finite group T and a finite number r ∈ N of copies of Z. Here, T is the torsion
subgroup of E, which for F = Q has been completely classified by Mazur, with substantial partial results
for other number fields. On the other hand, the rank r ∈ N of E is subtly more mysterious, lending itself to a
multitude of important problems in number theory, most notably the Birch and Swinnerton-Dyer conjecture
that equates it with the order of vanishing of the Hasse-Weil L-function of E.

Weil’s original proof of Theorem 1.1, as well as its subsequent interpretations, can generally be divided
into two large chunks, the first of which is often referred to as the weak Mordell-Weil theorem, which
involves proving that E (F ) /2E (F ) is finite. With modern technical advances, this is done by implicitly
embedding E (F ) /2E (F ) in a computably finite group Sel (F,E [n]) obtained via the machinery of Galois
cohomology. This embedding can be given by an explicit complete 2-descent homomorphism

δ : E (F ) → F×/
(
F×)2 × F×/

(
F×)2 ,

whose kernel is exactly 2E (F ) and whose image is contained in two copies of a certain provably finite
subgroup F (S, 2) called a Selmer group. It is worth noting that there are other descent methods, such as
by a cyclic 2-isogeny, and that there are other less direct paths to the same conclusion, such as via reducing
the problem to the finiteness of a certain composite extension analogous to Kummer theory, but complete
2-descent remains to be the fastest and least technical proof of the weak Mordell-Weil theorem.
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The weak Mordell-Weil theorem is certainly necessary for the full Mordell-Weil theorem, and its sufficiency
is a consequence of the existence of an explicit naive height on E (F ) measuring the complexity of F -points
on E (F ). In particular, it is a function h : E (F ) → R≥0 satisfying the following three properties.

• For all Q ∈ E (F ), there exists C1 ∈ R such that for all P ∈ E (F ), we have h (P +Q) ≤ 2h (P ) + C1.

• There exists C2 ∈ R such that for all P ∈ E (F ), we have 4h (P ) ≤ h (2P ) + C2.

• For all C3 ∈ R, we have {P ∈ E (F ) | h (P ) ≤ C3} is finite.

This forms the latter half of the proof, and completes the proof of Theorem 1.1 by the descent theorem,
which says that any abelian group A endowed with a height function A → R≥0 such that A/2A is finite is
necessarily finitely generated. It is also worth noting that there is a more canonical height function studied
by Néron and Tate that happens to be a quadratic form, which can also be used to deduce the same result,
but for the purposes of the Mordell-Weil theorem it suffices to consider the aforementioned naive height.

Detailed steps of both halves, especially the definition of the complete 2-descent homomorphism and the
naive height function, will be elucidated during a discussion of their implementation in the following section.

1.3 The Lean theorem prover

The formalisation of the Mordell-Weil theorem will be done in the Lean theorem prover [Mic], a func-
tional programming language and an interactive theorem prover based on the calculus of constructions with
inductive types, developed principally by Leonardo de Moura at Microsoft Research in 2013. Essentially,
dependent type theory in Lean plays the role of set theory in mathematics via a version of the Curry-
Howard correspondence, where the statement of a theorem is formalised as a type in Lean, and a proof of
said theorem, if it exists, will be the unique term of that type. This interpretation may present unexpected
challenges to a working mathematician, such as the subtle notion of equality in Lean between two sets that
are obviously equal in conventional mathematics, but are far from being the same type in Lean.

While a proof of a theorem in Lean is merely a term, clever monadic metaprogramming has enabled
the feature known as tactics, programmes that act on a proof state rather than specifying the exact term
necessary to inhabit a type. By hiding the various bookkeeping complications, such as the composition
of many terms within a single proof, specifying tactics to fill a proof in tactic mode allows the working
mathematician to focus on the proof argument more naturally than in the usual term mode. For instance,
the type p → p, inhabited by the term λ p, p in term mode, is more naturally expressed in tactic mode as
begin intro p, exact p end, via the aptly-named tactics intro and exact and delimited by the keywords
begin and end. There is a long list of other more sophisticated tactics available in the community website,
such as simp, which simplifies the proof state with existing lemmas, and ring, which normalises expressions
in commutative ring theory. Finally, note that the keyword sorry inhabits all types, and acts as a placeholder
in both term and tactic modes to the proof of a theorem whenever deemed necessary.

The formal statement and eventual proof of the Mordell-Weil theorem is only made remotely possible by
the existing Lean mathematical library mathlib [Lea], a community-driven effort to build a unified library of
formalised mathematics, including large chunks of undergraduate-level algebra, analysis, topology, geometry,
and other areas. In particular, the ongoing proof of the Mordell-Weil theorem crucially uses many basic
results from the group theory, ring theory, field theory, and number theory libraries, while awaiting
basic results of local fields and Galois cohomology to be formalised in the near future. The current definition
of elliptic curves is located in the algebraic geometry library despite not using anything in the library
itself, but should eventually use the newly-developed Proj construction of schemes.

For the remainder of the report, code snippets of theorem statements will be presented whenever inform-
ative, but are often pseudocode to simplify cumbersome notation or highlight certain parts, while encouraging
the reader to explore the actual repository. Most of the code is found in the mordell weil branch of mathlib
under the algebraic geometry/EllipticCurve directory, but specific files will be listed in each section.

As a final remark, it is worth noting that the Weierstrass model of an elliptic curve over a field F with
chF ̸= 2, 3 has been formalised in other theorem provers, namely in CoCoA [Fri98] and in Coq [HT07]
[BS14], but all of them have stopped at the proof of the group law. The weak Birch and Swinnerton-Dyer
conjecture has also been stated in Lean [Bel21], leaving a sorry for the proof of the Mordell-Weil theorem.
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2 Implementation

This section describes the ongoing formalisation of the Mordell-Weil theorem mostly in the mordell weil

branch of mathlib, along with any difficulties encountered and design decisions made in the process.

2.1 Weierstrass equations

The code in this section can be found in algebraic geometry/EllipticCurve.lean.

2.1.1 The EllipticCurve structure

The first order was to select an appropriate mathematically-accurate definition of elliptic curves that is
sufficiently general and suitable for computational purposes, yet sufficiently realistic under the current state
of mathlib. While schemes do exist in mathlib, only affine schemes, and very recently projective schemes, have
been properly constructed as examples. There are few isolated definitions and results on schemes, insufficient
to define the genus of a curve or prove the Riemann-Roch theorem, which excludes the possibility of defining
elliptic curves over a scheme while still allowing for locally-defined Weierstrass models. The choice was
eventually made by Kevin Buzzard to define elliptic curves directly by the coefficients of a Weierstrass model
over a commutative ring, along with important quantities such as the discriminant and the j-invariant.

def disc_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=

-(a1^2 + 4*a2)^2*(a1^2*a6 + 4*a2*a6 - a1*a3*a4 + a2*a3^2 - a4^2)

- 8*(2*a4 + a1*a3)^3 - 27*(a3^2 + 4*a6)^2 + 9*(a1^2 + 4*a2)*(2*a4 + a1*a3)*(a3^2 + 4*a6)

structure EllipticCurve (R : Type) [comm_ring R] :=

(a1 a2 a3 a4 a6 : R) (disc_unit : units R) (disc_unit_eq : disc_unit.val = disc_aux a1 a2 a3 a4 a6)

variables {R : Type} [comm_ring R] (E : EllipticCurve R)

def disc : R := disc_aux E.a1 E.a2 E.a3 E.a4 E.a6

def j : R := E.disc_unit.inv*(-48*E.a4 - 24*E.a1*E.a3 + 16*E.a2^2 + 8*E.a1^2*E.a2 + E.a1^4)^3

Note that while this is the current mathlib definition, it is only mathematically-accurate for commutative
rings whose class group has trivial 12-torsion, which includes fields and principal ideal domains.

2.1.2 Changes of variables

Under the Weierstrass model, isomorphisms are then given as simple linear changes of variables, with com-
pleting the square cov2 and completing the cube cov3 as special cases. The fact that the j-invariant is
invariant under these changes of variables is a simple application of ring1.

def cov (u : units R) (r s t : R) : EllipticCurve R :=

{ a1 := u.inv*(E.a1 + 2*s),

a2 := u.inv^2*(E.a2 - s*E.a1 + 3*r - s^2),

a3 := u.inv^3*(E.a3 + r*E.a1 + 2*t),

a4 := u.inv^4*(E.a4 - s*E.a3 + 2*r*E.a2 - (t + r*s)*E.a1 + 3*r^2 - 2*s*t),

a6 := u.inv^6*(E.a6 + r*E.a4 + r^2*E.a2 + r^3 - t*E.a3 - t^2 - r*t*E.a1),

disc_unit := ⟨u.inv^12*E.disc_unit.val, u.val^12*E.disc_unit.inv, by . . ., by . . .⟩, -- ring1

disc_unit_eq := by { simp only [disc_unit_eq, disc_aux], ring1 } }

lemma cov.j_eq (u : units R) (r s t : R) : (E.cov u r s t).j = E.j := by . . . -- ring1

def cov2 : EllipticCurve R := E.cov 1 0 (-E.a1/2) (-E.a3/2)

def cov3 : EllipticCurve R := E.cov 1 (-(a1^2 + 4*a2)/12) 0 0

Again, this is only mathematically-accurate for rings whose class group has trivial 12-torsion. Through-
out, whenever a proof is not informative or does not fit in a line, it will be shortened to by ... for brevity.
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2.2 Group law

The code in this section can be found in algebraic geometry/EllipticCurve/point.lean.

2.2.1 The point inductive

Due to the choice of defining elliptic curves by coefficients of the Weierstrass equation, the group structure
on E (K) does not come for free via the identification with Pic0E/F (K), and the type of K-points has to

be defined manually as projective coordinates satisfying the Weierstrass equation in P2. However, using
projective coordinates is clearly an overkill, as the point at infinity is unique, so instead the K-points are
defined as an inductive between O and the remaining affine K-points satisfying a Weierstrass equation.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

local notation F↑K := algebra_map F K

inductive point

| zero

| some (x y : K) (w : y^2 + (F↑K)E.a1*x*y + (F↑K)E.a3*y
= x^3 + (F↑K)E.a2*x^2 + (F↑K)E.a4*x + (F↑K)E.a6)

notation E(K) := point E K

Here, a clean notation is introduced for E (K). Note that the coefficients of the Weierstrass equation lie
in the base field F , and has to be coerced via algebra map to the coordinate field K to be type-correct.

2.2.2 Group operations

The group operation on E (K) is then defined via the aforementioned chord-and-tangent process, with O
acting as the identity, which is achieved by writing down an instance of the typeclass has zero.

instance : has_zero E(K) := ⟨zero⟩

Recall that negation of a K-point is a reflection (x, y) 7→ (x,−y) about the x-axis in the short Weierstrass
model, but in general there are additional contributions from a1 and a3. It is then necessary, by definition
of the inductive, to supply a proof that the negated K-point still lies on E, given a proof that the original
K-point lies on E. This is a simple matter of rewriting the unaltered right hand side of the Weierstrass
equation w with the left hand side via rw, then running the fast commutative ring theory normaliser ring1.

def neg : E(K) → E(K)

| zero := zero

| (some x y w) := some x (-y - (F↑K)E.a1*x - (F↑K)E.a3)
begin

rw [← w],

ring1

end

instance : has_neg E(K) := ⟨neg⟩

Addition, however, is quite a bit more involved. After splitting the trivial cases involving O, the primary
computation is that of the line L joining two affine K-points, which further splits into cases depending on
whether they are distinct or symmetric about the x-axis. The third intersection is obtained by inspecting
the coefficients of a cubic equation and then negated, which is essentially the same code in both cases.

On the other hand, the proof that the resulting K-point still lies on E is a matter of checking the
equality of two huge rational functions, which in theory is doable by the field theory simplifier field simp.
Yet, the tactic seems to be relatively primitive, in the sense that it cannot simplify increasing denominator
exponents, resulting in expressions that are far too large to work with, and causing frustrating deterministic
timeouts. Instead, the final decision was to manually break the expressions down into several sub-expressions,
automating steps with the fast ring1 whenever division is avoidable, resulting in about 200 lines of hideous
polynomial equalities but guaranteeing that the definitions will compile within reasonable time.
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def add : E(K) → E(K) → E(K)

| zero P := P

| P zero := P

| (some x1 y1 w1) (some x2 y2 w2) :=

-- add distinct points

if x_ne : x1 ̸= x2 then

let L := (y1 - y2)/(x1 - x2),

x3 := L^2 + (F↑K)E.a1*L - (F↑K)E.a2 - x1 - x2,

y3 := -L*x3 - (F↑K)E.a1*x3 - y1 + L*x1 - (F↑K)E.a3
in some x3 y3 $ by . . . -- field_simp but explicit

-- double a point

else if y_ne : y1 + y2 + (F↑K)E.a1*x2 + (F↑K)E.a3 ̸= 0 then

let L := (3*x1^2 + 2*(F↑K)E.a2*x1 + (F↑K)E.a4 - (F↑K)E.a1*y1)/(2*y1 + (F↑K)E.a1*x1 + (F↑K)E.a3),
x3 := L^2 + (F↑K)E.a1*L - (F↑K)E.a2 - 2*x1,

y3 := -L*x3 - (F↑K)E.a1*x3 - y1 + L*x1 - (F↑K)E.a3
in some x3 y3 $ by . . . -- field_simp but explicit

-- draw vertical line

else

zero

instance : has_add E(K) := ⟨add⟩

Note that the actual code extracts the case of point doubling into a separate function, and separates the
actual definitions from the proofs that the resulting K-point lies in E.

2.2.3 Group axioms

Most of the five remaining axioms of an add comm group are relatively easy to prove, with commutativity
being split into six cases that are relatively straightforward to check just by unfolding definitions.

lemma zero_add (P : E(K)) : 0 + P = P := by cases P; refl

lemma add_zero (P : E(K)) : P + 0 = P := by cases P; refl

lemma add_left_neg (P : E(K)) : -P + P = 0 :=

begin

cases P,

{ refl },

{ . . . } -- ring1

end

lemma add_comm (P Q : E(K)) : P + Q = Q + P :=

begin

rcases ⟨P, Q⟩ with ⟨_ | _, _ | _⟩,
. . . -- six cases

end

On the other hand, associativity seems to be an entirely different beast.

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) :=

begin

rcases ⟨P, Q, R⟩ with ⟨_ | _, _ | _, _ | _⟩,
. . . -- ??? cases

end

7



Preliminary attempts to replicate the methods for checking commutativity have proved to be futile due
to the sheer number of cases to consider, and some estimates put the number of coefficients of the relevant
polynomial identities to be checked to be well over a hundred thousand. This is a problem known to be
difficult even in conventional mathematics, with several indirect proofs to avoid bashing out the algebra.

• One could use the Cayley-Bacharach theorem in classical incidence geometry [Cas91, Lemma 7.1] to
directly equate two affine K-points (P + Q) + R and P + (Q + R) defined differently by the chord-
and-tangent process. This requires Bézout’s theorem, which in turn requires the notion of intersection
multiplicities, which need significant work to define given the current state of mathlib.

• One could also turn to the theory of elliptic functions in complex analysis, and prove a version of the
uniformisation theorem [Sil09, Corollary VI.5.1.1], giving a lattice Λ ⊂ C and an explicit isomorphism
of groups C/Λ ∼−→ E (C). This is again far from being formalised in mathlib, and only works well when
chF = 0 by the Lefschetz principle, yet delving into chF ̸= 0 will be inevitable.

• The proper way to obtain the group structure in E (K) is via the identification with Pic0E/F (K) [Sil09,
Proposition III.3.4], which boils down to divisors, differentials, and the Riemann-Roch theorem. This
was achieved in Coq albeit only for the short Weierstrass model, and is likely the way forward.

Despite the tedium, there is currently an ongoing attempt to bash out the algebra in the ell add assoc

branch, but the ultimate decision was to leave associativity as a sorry and move on, as all the methods
listed here will lead the project too far afield from the original aim of proving the Mordell-Weil theorem.

In retrospect, the primary benefit of using affine coordinates is the uniqueness of each affine K-point
(x, y) given coordinates x and y and a proof w that (x, y) ∈ E (K), whereas using projective coordinates will
introduce an additional layer of quotients and a third variable that is often redundant. However, using affine
coordinates also introduces an additional layer of cases to check at every stage and having to resort to the
awkward field simp, whereas no division is necessary in projective coordinates, allowing ring to be used a
lot more generously. Given that projectivisation is only recently developed in mathlib, it is perhaps worth
venturing into projective coordinates eventually to automate the computations with ring.

2.2.4 Functoriality and Galois actions

Now the functoriality of K 7→ E (K) has to be proven manually, but this is a simple matter of unfolding the
definitions and pushing an F -algebra homomorphism ϕ : K → L of fields through several cases.

variables {L M : Type} [field L] [field M] [algebra F L] [algebra F M] [algebra K L] [algebra K M]

[algebra L M] [is_scalar_tower F K L] [is_scalar_tower F K M] [is_scalar_tower F L M]

def point_hom.to_fun (φ : K →a[F] L) : E(K) → E(L)

| zero := zero

| (some x y w) := some (φ x) (φ y) $ by . . . -- push it inwards

def point_hom (φ : K →a[F] L) : E(K) →+ E(L) :=

{ to_fun := point_hom.to_fun φ,
map_zero’ := rfl,

map_add’ := by . . . } -- push it inwards

local notation K→[F]L := (algebra.of_id K L).restrict_scalars F

lemma point_hom.id (P : E(K)) : point_hom (K→[F]K) P = P := by cases P; refl

lemma point_hom.comp (P : E(K)) :

point_hom (L→[F]M) (point_hom (K→[F]L) P) = point_hom ((L→[F]M).comp (K→[F]L)) P :=

by cases P; refl

While the category of fields extending a base field F does not exist in mathlib, point hom.id and
point hom.comp are precisely the axioms for a covariant functor from this category to Ab. More work
needs to be done to turn this into a functor AlgF → Ab, since this requires defining the group law over an
arbitrary F -algebra, but just having these lemmas suffices for most purposes.

8



Similarly, defining the distributive multiplicative action Aut (L/K) ↷ E (L) is again a matter of unfolding
the definitions and pushing a K-automorphism σ ∈ Aut (L/K) through several cases.

def point_gal (σ : L ≃a[K] L) : E(L) → E(L)

| zero := zero

| (some x y w) := some (σ · x) (σ · y) $ by . . . -- push it inwards

instance : distrib_mul_action (L ≃a[K] L) E(L) :=

{ smul := point_gal,

one_smul := λ P, by cases P; refl,

mul_smul := λ _ _ P, by cases P; refl,

smul_add := by . . ., -- push it inwards

smul_zero := λ _, rfl }

When L/K is Galois, Galois theory shows that the invariant subgroup of Gal (L/K) ↷ E (L) is precisely
E (K), but this is only proven for finite L/K as only finite Galois theory exists in mathlib. It is worth noting
that, to ensure type-correctness for the subgroups of E (L), this invariant subgroup is really the injective
image of E (K) in E (L), which requires a separate proof that point hom is injective.

lemma point_hom.injective (φ : K →a[F] L) : function.injective $ point_hom φ := by . . .

def point_gal.fixed : add_subgroup E(L) :=

{ carrier := mul_action.fixed_points (L ≃a[K] L) E(L),

zero_mem’ := λ _, rfl,

add_mem’ := λ _ _ hP hQ _, by rw [smul_add, hP, hQ],

neg_mem’ := λ _ hP σ, by simpa only [smul_neg, neg_inj] using hP σ }

lemma point_gal.fixed.eq [finite_dimensional K L] [is_galois K L] :

point_gal.fixed E K L = (point_hom $ K→[F]L).range :=

by . . . -- finite Galois theory

2.2.5 Changes of variables

Finally, recall that an admissible change of variables E
∼−→ E′ extends to a group isomorphism E (K)

∼−→
E (K ′), the proof of which is a simple manipulation of coefficients with ring1.

variables (u : units F) (r s t : F)

def cov.to_fun : (E.cov u r s t)(K) → E(K)

| zero := zero

| (some x y w) := some (u.val^2*x + r) (u.val^3*y + u.val^2*s*x + t) $ by . . . -- ring1

def cov.inv_fun : E(K) → (E.cov u r s t)(K)

| zero := zero

| (some x y w) := some (u.inv^2*(x - r)) (u.inv^3*(y - s*x + r*s - t)) $ by . . . -- ring1

def cov.equiv_add : (E.cov u r s t)(K) ≃+ E(K) :=

{ to_fun := cov.to_fun u r s t,

inv_fun := cov.inv_fun u r s t,

left_inv := by . . ., -- ring1

right_inv := by . . ., -- ring1

map_add’ := by . . . } -- ring1

def cov2.equiv_add : E.cov2(K) ≃+ E(K) := cov.equiv_add 1 0 (-E.a1/2) (-E.a3/2)

def cov3.equiv_add : E.cov3(K) ≃+ E(K) := cov.equiv_add 1 (-(a1^2 + 4*a2)/12) 0 0
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2.3 Torsion points

The code in this section can be found in algebraic geometry/EllipticCurve/torsion.lean.

2.3.1 Multiplication by n maps

With the more restricted definition of an elliptic curve, defining general morphisms or isogenies E → E′,
even when E = E′, would be rather tricky. Fortunately, the maps [n] : E → E are often the whole story
at least in the case chF = 0, and they are trivial to define on E (L) via existing has scalar instances on
abelian groups, taking into account the equivariant action Aut (L/K) ↷ E (L) [n] that will be needed later.

variables (n : N) (σ : L ≃a[K] L) (P : E(L))

def mul_by’ : E(L) →+[L ≃a[K] L] E(L) :=

{ to_fun := (·) n,

map_smul’ := by . . ., -- simp

map_zero’ := smul_zero n,

map_add’ := smul_add n }

lemma mul_by.map_smul : n · σ · P = σ · n · P := (mul_by’ n).map_smul’ σ P

def mul_by : E(K) →+ E(K) := mul_by’ n

notation E(K)[n] := (mul_by n : E(K) →+ E(K)).ker

notation E(K)·n := (mul_by n : E(K) →+ E(K)).range

notation E(K)/n := E(K) / E(K)·n

Here, three suggestive notations are introduced for ease of reading the remainder of this report, but they
are likely to be removed in the actual code given an ongoing discussion on notation for pointwise operations.

2.3.2 Functoriality and Galois actions

While functoriality and properties of the Galois action are just as easily proven for the image nE (K) and the
cokernel E (K) /n, for the purposes of complete 2-descent it suffices to prove them for the kernel E (K) [n],
all of which follow almost immediately from their respective statements for E (K).

def ker_hom (φ : K →a[F] L) : E(K)[n] →+ E(L)[n] :=

⟨λ ⟨P, hP⟩, ⟨point_hom φ P, by . . .⟩, rfl, by . . .⟩

lemma ker_hom.id (P : E(K)[n]) : ker_hom n (K→[F]K) P = P := by rcases P with _ | _; refl

lemma ker_hom.comp (P : E(K)[n]) :

ker_hom n (L→[F]M) (ker_hom n (K→[F]L) P) = ker_hom n ((L→[F]M).comp (K→[F]L)) P :=

by rcases P with _ | _; refl

lemma ker_hom.injective (φ : K →a[F] L) : function.injective $ ker_hom n φ := by . . .

def ker_gal (σ : L ≃a[K] L) : E(L)[n] → E(L)[n] := λ ⟨P, hP⟩, ⟨σ · P, by . . .⟩

instance : has_scalar (L ≃a[K] L) E(L)[n] := ⟨ker_gal n⟩

instance : mul_action (L ≃a[K] L) E(L)[n] := ⟨ker_gal n, by . . ., by . . .⟩

def ker_gal.fixed : add_subgroup E(L)[n] :=

⟨mul_action.fixed_points (L ≃a[K] L) E(L)[n], λ _, rfl, by . . ., by . . .⟩

lemma ker_gal.fixed.eq [finite_dimensional K L] [is_galois K L] :

ker_gal.fixed n E K L = (ker_hom n $ K→[F]L).range :=

by . . .
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2.3.3 Cubic discriminants

In fact, for the purposes of complete 2-descent it suffices to analyse E [2], whose affine K-points have
x-coordinates that are exactly the K-roots of the cubic polynomial ψ2 (x). The discriminant of ψ2 (x)
happens to be a non-zero multiple of the discriminant ∆ of E, so its roots are distinct in a splitting field
precisely because ∆ ̸= 0. Unfortunately, there was no API to work with discriminants of cubic polynomials,
particularly to extract the distinct roots from a cubic polynomial with non-vanishing discriminant, so this
was developed independently and is now available in mathlib at algebra/cubic discriminant.lean.

structure cubic (R : Type) := (a b c d : R)

variables {R S : Type} [comm_ring R] [is_domain R] [semiring S] (φ : R →+* S) (P : cubic R)

def to_poly : R[X] := C P.a*X^3 + C P.b*X^2 + C P.c*X + C P.d

def equiv : cubic R ≃ {p : R[X] // p.degree ≤ 3} := by . . . -- to_poly

def map : cubic S := ⟨φ P.a, φ P.b, φ P.c, φ P.d⟩

def roots : multiset R := P.to_poly.roots

def disc : R := P.b^2*P.c^2 - 4*P.a*P.c^3 - 4*P.b^3*P.d - 27*P.a^2*P.d^2 + 18*P.a*P.b*P.c*P.d

The actual file itself contains many trivial lemmas about coefficients and degrees, primarily to incorporate
some potentially useful API for degenerate cubic polynomials whose leading coefficients may be zero, so to
prove results about a non-degenerate cubic polynomial requires a proof that its leading coefficient is non-zero.
For instance, fixing a ring homomorphism to a ring S where a cubic polynomial P has three roots x, y, and
z, a relevant result is that its discriminant is non-zero precisely if these roots are distinct, in which case P

can be written as a product of factors corresponding to these roots when viewed as a polynomial over S.

theorem eq_prod_three_roots (ha : P.a ̸= 0) (h3 : (map φ P).roots = {x, y, z}) :

(map φ P).to_poly = C (φ P.a) * (X - C x) * (X - C y) * (X - C z) :=

by . . . -- ring1

theorem disc_ne_zero_iff_roots_ne (ha : P.a ̸= 0) (h3 : (map φ P).roots = {x, y, z}) :

P.disc ̸= 0 ↔ x ̸= y ∧ x ̸= z ∧ y ̸= z :=

by . . . -- eq_prod_three_roots

2.3.4 2-division polynomials

Under this API, the fact that the discriminant of ψ2 (x) is 16∆ is then an application of ring1 and unfolding
the definitions, which in the relevant case of chF ̸= 2 implies that the roots of ψ2 (x) are distinct.

def ψ2_x : cubic K :=

⟨4, (F↑K)E.a1^2 + 4*(F↑K)E.a2, 4*(F↑K)E.a4 + 2*(F↑K)E.a1*(F↑K)E.a3, (F↑K)E.a3^2 + 4*(F↑K)E.a6⟩

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc := by . . . -- ring1

variables [invertible (2 : F)]

lemma ψ2_x.roots_ne {a b c : K} (h3 : (ψ2_x E K).roots = {a, b, c}) : a ̸= b ∧ a ̸= c ∧ b ̸= c :=

by . . . -- disc_ne_zero_iff_roots_ne

It is perhaps worth noting that the condition invertible 2 is imposed on F rather than K, since the
former implies the latter, but due to the instance resolution system it is not possible to automatically derive
an instance of invertible 2 on K without running into cycles. Several instances had to be rewritten
manually as definitions, and the entire problem took quite a while to be satisfactorily resolved.

General n-division polynomials can probably be defined pretty easily by induction, but generalisations
of the above results will require a good API for discriminants of general polynomials, which has yet to exist.
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2.3.5 2-torsion subgroups

An important ingredient for the weak Mordell-Weil theorem will be the finiteness of E (K) [n], which for
complete 2-descent translates to the finiteness of E (K) [2]. Since the affine K-points in E (K) [2] can now
be characterised by polynomial identities on their coordinates, finiteness is achieved by projecting an affine
K-point to the x-coordinate, then utilising the existing fintype instance on roots of polynomials.

lemma E2_y {x y w} : some x y w ∈ E(K)[2] ↔ y = -((F↑K)E.a1*x + (F↑K)E.a3)/2 := by . . . -- ring1

lemma E2_x {x y w} : some x y w ∈ E(K)[2] ↔ x ∈ (ψ2_x E K).roots := by . . . -- ring1

def E2_to_ψ2 : E(K)[2] → option {x // x ∈ (ψ2_x E K).roots}

| ⟨zero , _⟩ := none

| ⟨some x y w, h⟩ := some ⟨x, E2_x.mp h⟩

lemma E2_to_ψ2.injective : function.injective E2_to_ψ2 := by . . . -- injection from definition

instance : fintype E(K)[2] := fintype.of_injective E2_to_ψ2 E2_to_ψ2.injective

While an injection suffices for the finiteness of E (K) [2], it is easy to prove an upper bound on its
cardinality and that the projection map is in fact a surjection, and hence an equivalence.

theorem E2.card_le_four : fintype.card E(K)[2] ≤ 4 := by . . . -- properties of cubics

lemma E2_to_ψ2.surjective : function.surjective E2_to_ψ2 := by . . . -- construct explicit lift

def E2_to_ψ2.equiv : E(K)[2] ≃ option {x // x ∈ (ψ2_x E K).roots} :=

equiv.of_bijective E2_to_ψ2 ⟨E2_to_ψ2.injective, E2_to_ψ2.surjective⟩

Now the finiteness of E (K) [2] will suffice for the first reduction lemma in complete 2-descent [Sil09,
Lemma VIII.1.2], but a preliminary attempt to reproduce the proof of the second reduction step in the liter-
ature [Sil09, Proposition VIII.1.2] did not lead very far. This involved reducing the finiteness of E (F ) /2E (F )
to the finiteness of the splitting field of ψ2 (x) over F via a Galois cohomological Kummer pairing, yet work-
ing with finiteness of degrees of extensions was far too infuriating, and the idea was ultimately scrapped in
favour of explicitly writing down the complete 2-descent homomorphism. In retrospect, it is perhaps worth
returning to this more conceptual proof in the future, especially once Galois cohomology and the notion of
ramification are defined in mathlib. Nevertheless, some basic lemmas proven in said attempt may prove to
be useful, such as the exact cardinality of E (K) [2] and the trivial Galois action over the splitting field.

variables [algebra (ψ2_x E F).splitting_field K] [algebra (ψ2_x E F).splitting_field L]

theorem E2.card_eq_four : fintype.card E(K)[2] = 4 := by . . . -- properties of cubics

lemma E2.hom.bijective : function.bijective $ ker_hom 2 $ K→[F]L := by . . . -- ker_hom.injective

def E2.hom.equiv : E(K)[2] ≃ E(L)[2] := equiv.of_bijective (ker_hom 2 $ K→[F]L) E2.hom.bijective

lemma E2.gal.fixed (σ : L ≃a[K] L) (P : E(L)[2]) : σ · P = P := by . . . -- ker_gal.fixed.eq

Given the above results, it is probably not too difficult to construct an injective group homomorphism
E (K) [2] ↪→ (Z/2Z)2 that is surjective over the splitting field. Again, with a good definition of n-division

polynomials, it should not be too difficult to define E (K) [n] ↪→ (Z/nZ)2 as well.
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2.4 Weak Mordell-Weil theorem

The code in this section can be found in algebraic geometry/EllipticCurve/mordell weil.lean and in
algebraic geometry/EllipticCurve/selmer.lean, the latter of which is likely to be moved in the future.

2.4.1 Reduction lemma

With a working explicit definition of E (K) [n], much of the weak Mordell-Weil theorem can be proven via
complete 2-descent, but to define the homomorphism itself requires an assumption that K contains the
splitting field of ψ2 (x) over F , so that E (K) [2] has exactly three distinct roots. The first reduction step
would be to prove that this assumption is mild, in the sense that the finiteness of E (K) /2E (K) is sufficient
for the finiteness of E (F ) /2E (F ). This holds for an arbitrary finite Galois extension L/K, with no difficulty
introduced by replacing 2 with a general n ∈ N, and is proven by considering the exact diagram

0 Φ E (K) /nE (K) E (L) /nE (L)

0 H1 (Gal (L/K) , E (L) [n]) H1 (K,E [n]) H1 (L,E [n])

κ

ι

κK κL

inf res

,

where the bottom row is the inflation-restriction exact sequence, and the vertical injections are truncated
connecting homomorphisms of the long exact sequence in Galois cohomology. The required result translates
to the finiteness of the kernel Φ, which follows, via the injection κ, from the finiteness of L/K by assumption
and of E (L) [n] by the previous section. Now Φ is easy to define, knowing that nE (K) ≤ nE (L).

variables [finite_dimensional K L] [is_galois K L] (n : N)

lemma range_le_comap_range : E(K)·n ≤ add_subgroup.comap (point_hom $ K→[F]L) E(L)·n := by . . .

def ι : E(K)/n →+ E(L)/n := quotient_add_group.map _ _ _ $ range_le_comap_range n

def Φ : add_subgroup E(K)/n := (ι n).ker

As Galois cohomology has yet to exist in mathlib, κ has to be defined explicitly by tracing the definition
of the connecting homomorphisms. It turns out that κ ([P ]) = (σ 7→ σ ·Q−Q), where Q ∈ E (L) [n] is a
choice of a lift such that nQ = P obtained by classical.some, but making it type-correct and proving
injectivity turned out to be slightly tricky due to layers of subtypes, quotients, and existentials.

lemma Φ_mem_range (P : Φ n) : point_hom (K→[F]L) P.val.out’ ∈ E(L)·n := by . . .

def κ : Φ n → L ≃a[K] L → E(L)[n] :=

λ P σ, ⟨σ · (Φ_mem_range n P).some - (Φ_mem_range n P).some, by . . .⟩

lemma κ.injective : function.injective $ κ n := by . . .

Note that this merely provides an injection from Φ into the finite set of functions Gal (L/K) → E (L) [n],
which is sufficient, rather than into the actual cohomology group H1 (Gal (L/K) , E (L) [n]).

The reduction lemma is then immediate by the newly-written fintype of ker of codom that expresses
finiteness over left exact sequences. This does assume that chF ̸= 2 to detect the fintype instance of
E (L) [2] automatically, and is written as a definition rather than an instance to avoid cycles.

variables [invertible (2 : F)]

instance : fintype (Φ 2 E K) := fintype.of_injective (κ 2) $ κ.injective 2

def coker_2_of_fg_extension.fintype [fintype E(L)/2] : fintype E(K)/2 :=

add_group.fintype_of_ker_of_codom $ ι 2
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2.4.2 Complete 2-descent

Now let F be a number field. Assuming E [2] ⊆ E (K), it follows immediately by disc ne zero iff roots ne

that ψ2 (x) has exactly three distinct K-roots e1, e2, e3 ∈ K. Since chF ̸= 2, 3, a change of variables reduces
E to a short Weierstrass equation, which by eq prod three roots can be written as

y2 = (x− e1) (x− e2) (x− e3) .

The complete 2-descent homomorphism δ is then defined by generically sending

E (K) −→ K×/
(
K×)2 ×K×/

(
K×)2

(x, y) 7−→ ([x− e1] , [x− e2])
,

which is well-defined on affineK-points except when x = e1 or x = e2, in which case the undefined component
is modified slightly. Note that while the short Weierstrass equation hypotheses are unused in the definition
of δ, they are crucial in proving that it respects addition and in computing the kernel later.

variables (ha1 : E.a1 = 0) (ha3 : E.a3 = 0) (h3 : (ψ2_x E K).roots = {e1, e2, e3})

def δ.to_fun : E(K) → (units K) / (units K)^2 × (units K) / (units K)^2

| zero := 1

| (some x y w) :=

if he1 : x = e1 then

(units.mk0 ((e1 - e3)*(e1 - e2)) $ mul_ne_zero (sub_ne_zero.mpr (ψ2_x.roots_ne h3).2.1)

(sub_ne_zero.mpr (ψ2_x.roots_ne h3).1),

units.mk0 (e1 - e2) $ sub_ne_zero.mpr (ψ2_x.roots_ne h3).1)

else if he2 : x = e2 then

(units.mk0 (e2 - e1) $ sub_ne_zero.mpr (ψ2_x.roots_ne h3).1.symm,

units.mk0 ((e2 - e3)*(e2 - e1)) $ mul_ne_zero (sub_ne_zero.mpr (ψ2_x.roots_ne h3).2.2)

(sub_ne_zero.mpr (ψ2_x.roots_ne h3).1.symm))

else

(units.mk0 (x - e1) $ sub_ne_zero.mpr he1, units.mk0 (x - e2) $ by sub_ne_zero.mpr he2)

def δ : E(K) →+ additive ((units K) / (units K)^2 × (units K) / (units K)^2) :=

{ to_fun := δ.to_fun ha1 ha3 h3,

map_zero’ := rfl,

map_add’ := by . . . }

An important remark here is the distinction between the additive group E (K) and the multiplicative
group K×, so for a homomorphism between them to be constructed, one of E (K) or K× has to be tagged
as the other type. This is a known design issue in mathlib that surfaces often, say in valuation theory and in
Kummer theory, with one solution being an overhaul of monoid hom structures to include a binary operation.

With this definition of δ, proving that its kernel is 2E (K) is completely constructive, with one inclusion
being obvious by map nsmul. The other inclusion follows from the fact that if P = (x, y) ∈ E (K) is such
that x− ei = t2i and y = t1t2t3 for some ti ∈ K×, then by unfolding point doubling,

2 · (x+ t1t2 + t1t3 + t2t3, (t1 + t2) (t1 + t3) (t2 + t3)) = P.

lemma δ.ker : (δ ha1 ha3 h3).ker = E(K)·2 := by . . .

On the other hand, proving that its image is finite seems to be a lot more work. This image lies in two
copies of K (B, 2), which is defined in the next section and depends on a finite set of bad primes

B =
{
p ∈ M0

K

∣∣ E has bad reduction at p
}
∪
{
p ∈ M0

K

∣∣ p divides 2
}
.

Now the notion of having bad reduction requires defining minimal Weierstrass models, but B can simply be
enlarged to contain slightly more primes dividing ∆ for a non-minimal Weierstrass model, so the finiteness
of B is doable. However, to show that the image of δ lies in this group, the standard conceptual argument
in the literature [Sil09, Proposition X.1.1] seemingly boils this down to the fact that the splitting field of
ψ2 (x) is unramified over F outside B, then applying Kummer theory. This would entail formalising many
definitions and basic results of local fields and the action of inertia, which are far from being settled in
mathlib, and likely needing a few more facts about elliptic curves over local fields.
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However, an argument by Cassels over Q [Cas91, Theorem 15.1] leads to the following generalisation over
number fields that circumvents the local theory entirely. By a change of variables, assume without loss of
generality that A,B ∈ OK , so that ei ∈ OK . Taking valuations over the short Weierstrass equation yields

ordp (x− e1) + ordp (x− e2) + ordp (x− e3) ≡ 0 mod 2, p ∈ M0
K ,

so there are either zero or two of {e1, e2, e3} such that ordp (x− ei) ≡ 1 mod 2 by parity. An easy valuation
argument shows that ordp (x− ei) ≥ 0, and in the latter case of two roots that ordp (ei − ej) > 0, or in

other words that p ∈ B, which turns out to be the precise condition for im δ ⊆ K (B, 2)
2
as seen in the next

section. Due to time constraints however, this was left as a sorry, but this will be the next step to complete.

lemma bad_primes : finset $ height_one_spectrum $ O K :=

@set.to_finset _

{p : height_one_spectrum $ O K | p.valuation (F↑K)E.disc_unit ̸= 1 ∨ p.valuation (Z↑K)n < 1}

sorry

lemma δ.range_le : (δ ha1 ha3 h3).range ≤ K(bad_primes E 2, 2) × K(bad_primes E 2, 2) := sorry

Note again that valuations of height one spectrum are multiplicative, so that p.valuation x < 1

means |x|p < 1 or ordp x > 0. In any case, combining the reduction lemma and the injection induced by the
complete 2-descent homomorphism, assuming that K (B, 2) is finite, proves the weak Mordell-Weil theorem.

def δ.lift : E(K)/2 →+ K(bad_primes E 2, 2) × K(bad_primes E 2, 2) :=

(add_subgroup.inclusion $ δ.range_le ha1 ha3 h3).comp $
(quotient_add_group.range_ker_lift $ δ ha1 ha3 h3).comp $
(quotient_add_group.equiv_quotient_of_eq $ δ.ker ha1 ha3 h3).symm.to_add_monoid_hom

lemma δ.lift.injective : function.injective $ δ.lift ha1 ha3 h3 := by . . .

instance : fintype E(F)/2 := by . . .

2.4.3 The Selmer group

It remains to define K (B, 2) and prove that it is finite, which holds true for an arbitrary finite set of primes
S ⊆ M0

K , again with no difficulty introduced by replacing 2 with a general n ∈ N. This is the Selmer group

K (S, n) :=
{
[b] ∈ K×/

(
K×)n ∣∣ ∀p ∈ S, ordp b ≡ 0 mod n

}
,

which is a well-defined closed condition on K×/ (K×)
n
. However, precisely formalising the condition turned

out to be quite tricky due to layers of the multiplicative tag, quotients, and units, which further required
an equivalence between a group G and (G ∪ {0})× that is part of an equivalence of categories.

def group.with_zero_units {G : Type} [group G] : units (with_zero G) ≃* G :=

{ to_fun := λ x, (with_zero.ne_zero_iff_exists.mp x.ne_zero).some,

inv_fun := λ x, ⟨x, x−1, by . . ., by . . .⟩,
left_inv := by . . .,
right_inv := by . . .,
map_mul’ := by . . . }

variables (p : height_one_spectrum $ O K)

def val_of_ne_zero : units K →* multiplicative Z :=

group.with_zero_units.to_monoid_hom.comp $ units.map p.valuation

def val_of_ne_zero_mod : (units K) / (units K)^n →* multiplicative (zmod n) :=

(int.quotient_zmultiples_nat_equiv_zmod n).to_multiplicative.to_monoid_hom.comp $
quotient_group.map (units K)^n (add_subgroup.zmultiples n).to_subgroup (val_of_ne_zero p) $ by . . .
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The Selmer group can then be defined using the homomorphism val of ne zero mod, with a suggestive
notation, and proving that it is a subgroup follows immediately from properties of kernels of homomorphisms.

variables (S : finset $ height_one_spectrum $ O K) (n : N)

def selmer : subgroup $ (units K) / (units K)^n :=

{ carrier := {b | ∀ p /∈ S, val_of_ne_zero_mod p b = 1},

one_mem’ := λ _ _, by rw [map_one],

mul_mem’ := λ _ _ hx hy p hp, by rw [map_mul, hx p hp, hy p hp, one_mul],

inv_mem’ := λ _ hx p hp, by rw [map_inv, hx p hp, inv_one] }

notation K(S, n) := selmer K S n

Now to prove that the Selmer group is finite, it suffices to prove that K (∅, n) is finite, as it is by definition
the kernel of the natural homomorphism, denoted by selmer.val in code, given by

f : K (S, n) −→ (Z/nZ)#S

[b] 7−→ (ordp b)p∈S

.

def selmer.val : K(S, n) →* S → multiplicative (zmod n) :=

{ to_fun := λ b p, val_of_ne_zero_mod p b,

map_one’ := funext $ λ p, map_one $ val_of_ne_zero_mod p,

map_mul’ := λ x y, funext $ λ p, map_mul (val_of_ne_zero_mod p) x y }

lemma selmer.val_ker : selmer.val.ker = K(∅, n).subgroup_of K(S, n) := by . . .

The finiteness of K (∅, n) in turn relies on two fundamental theorems in algebraic number theory, namely
the finiteness of the class group ClK and the finite generation of the unit group O×

K . The former was
formalised in mathlib only rather recently [BDNN21], while the latter is part of Dirichlet’s unit theorem,
which has yet to be formalised but should be doable with the currently available machinery. Assuming
this sorry, a trivial consequence of the structure theorem for finitely generated abelian groups, which was
merged into mathlib literally a few days ago, yields the finiteness of O×

K/
(
O×

K

)n
for n > 0.

instance : group.fg (units $ O K) := sorry

instance [fact $ 0 < n] : fintype $ (units $ O K) / (units $ O K)^n := by . . .

Along with ClK , they nest K (∅, n) in a left exact sequence

0 → O×
K/

(
O×

K

)n g−→ K (∅, n) h−→ ClK .

Now g is simply the quotient map of the canonical inclusion O×
K ↪→ K×, but to map into the subtype K (∅, n)

rather than all of K×/ (K×)
n
, this was broken into a selmer.from unit map O×

K ↪→ K (∅, n) and a kernel
computation. The latter is merely a double-sided inclusion, one being trivial and the other required the
assumption n > 0 to prove that xn ∈ OK implies that x ∈ OK via standard facts on integral closure.

def ne_zero_of_unit : units (O K) →* units K :=

{ to_fun := λ ⟨⟨v, _⟩, ⟨i, _⟩, vi, iv⟩, ⟨v, i, by injection vi, by injection iv⟩,
map_one’ := rfl,

map_mul’ := λ ⟨⟨_, _⟩, ⟨_, _⟩, _, _⟩ ⟨⟨_, _⟩, ⟨_, _⟩, _, _⟩, rfl }

def selmer.from_unit : units (O K) →* K(∅, n) :=

{ to_fun := λ x, ⟨quotient_group.mk $ ne_zero_of_unit x, by . . .⟩,
map_one’ := rfl,

map_mul’ := λ ⟨⟨_, _⟩, ⟨_, _⟩, _, _⟩ ⟨⟨_, _⟩, ⟨_, _⟩, _, _⟩, rfl }

lemma selmer.from_unit_ker [fact $ 0 < n] : selmer.from_unit.ker = (units (O K))^n := by . . .
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On the other hand, h, or rather selmer.to class in code, is slightly more complicated to define even
mathematically. Given a representative x of a class in K (∅, n), its principal fractional ideal ⟨x⟩ necessarily
factorises into the n-th power of a fractional ideal x by unique factorisation into prime ideals, whose class
lands in ClK . Then h is defined to map the class [x] ∈ K (∅, n) to the class [x] ∈ ClK . The two layers of
quotients coupled with a currently weak API for unique factorisation in Dedekind domains made h quite
tedious to formalise, let alone exactness at K (∅, n). For instance, a preliminary attempt on a direct proof
that ⟨x⟩ is an n-th power resulted in a mathematically-accurate set-theoretic function h, but proving that it
is a homomorphism was incredibly tricky due to having different lifts for [x].

def fractional_ideal.units_of_factorization (f : height_one_spectrum (O K) → Z) :

(units $ fractional_ideal (non_zero_divisors $ O K) K) :=

units.mk0 (finprod (λ p : height_one_spectrum $ O K, p.as_ideal ^ f p)) $ by . . .

lemma selmer.val_exists (x : K(∅, n)) : ∃ z : Z, z * n = -(val_of_ne_zero p x.val.out’).to_add :=

by . . .

def selmer.to_class.to_fun (x : K(∅, n)) : class_group (O K) K :=

quotient_group.mk’ (to_principal_ideal (O K) K).range $
fractional_ideal.units_of_factorization $ λ p, (selmer.val_exists p x).some

A more elegant solution was to slightly modularise the definition of h, by first proving a similar lemma
selmer.val exists of mk for an element x ∈ K×, then the lemma selmer.to class of mk that it is well-
defined, in the sense that taking its class and choosing a different lift computes the same expected output,
which made the actual code somewhat longer but more comprehensible.

lemma selmer.val_exists_of_mk {x : units K} (hx : quotient_group.mk x ∈ K(∅, n)) :

∃ z : Z, z * n = -(val_of_ne_zero p x).to_add :=

by . . .

lemma selmer.to_class_of_mk [fact $ 0 < n] {x : units K} (hx : quotient_group.mk x ∈ K(∅, n)) :

selmer.to_class.to_fun ⟨quotient_group.mk x, hx⟩
= quotient_group.mk’ (to_principal_ideal (O K) K).range

(fractional_ideal.units_of_factorization $ λ p, (selmer.val_exists_of_mk p hx).some) :=

by . . .

def selmer.to_class [fact $ 0 < n] : K(∅, n) →* class_group (O K) K :=

{ to_fun := selmer.to_class.to_fun,

map_one’ := by . . .,
map_mul’ := by . . . }

lemma selmer.to_class_ker [fact $ 0 < n] : selmer.to_class.ker = selmer.from_unit.range := by . . .

It is worth noting that the proofs of selmer.to class of mk and selmer.to class of ker crucially use
the fractional ideal.lean file in Maria Inés de Frutos-Fernandez’s formalisation of adèles and idèles of
global fields [Fru22], primarily the fractional ideal.factorization principal lemma that expresses a
principal ideal as a finprod over all primes, which is in the process of being incorporated into mathlib.

Once g and h are defined and the relevant sequence is shown to be left exact, finiteness of K (∅, n), and
hence of all Selmer groups, is a matter of applying fintype of ker of codom to f and h.

def selmer.fintype [fact $ 0 < n] : fintype K(∅, n) :=

group.fintype_of_ker_of_codom $ selmer.to_class n

instance [fact $ 0 < n] : fintype K(S, n) := group.fintype_of_ker_of_codom $ selmer.val S n

Note that the actual code supplies the fintype proofs in hidden arguments that cannot be inferred. It
is worth emphasising that the finiteness of Selmer groups is a result in pure algebraic number theory, and
can be incorporated into mathlib a lot sooner than the arithmetic of elliptic curves once Dirichlet’s unit
theorem is formalised. Defining Selmer groups independently also has the added benefit of reusability, even
if complete 2-descent were to be scrapped in the future for a more conceptual Galois cohomological proof.
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2.5 Height functions

The code in this section can be found in algebraic geometry/EllipticCurve/heights.lean in the main
branch, and in algebraic geometry/height function.lean in the descent theorem branch.

2.5.1 Naive heights

The remaining ingredient to the Mordell-Weil theorem is a coherent definition of heights on elliptic curves.
The standard theory in the literature [Sil09, Section VIII.6] involves first defining a relative height function
on P1

K that restricts to E via a surjective morphism f : E → P1
K , then considering its absolute version on

P1
Q and taking logarithms. By choosing f = x, this results in a function defined on affine K-points by

h : E (K) \ {O} −→ R>0

(x, y) 7−→ 1

[K : Q]

∑
v∈MK

[Kv : Qv] logmax (|x|v ,|1|v) ,

requiring that the places v ∈ MK have normalised absolute values, and setting h (O) := 0. Notice that h
is normalised with local and global degrees to satisfy a certain extension formula, which requires a robust
theory of local field extensions to prove, but the three properties of heights remain true without these scaling
factors for any particular K, so they can be safely omitted. In contrast, to show that h is well-defined
irrespective of homogeneous coordinates requires the product formula, which should be relatively doable.
Due to time constraints however, only the special case of K = Q is formalised, since the three properties
can be proven with explicit inequalities that are not too cumbersome, and h becomes the naive height

h : E (Q) \ {O} −→ R>0

(x, y) 7−→ logmax (|p|∞ ,|q|∞)
,

where x = p/q is written in lowest terms. Note that this possible since Z is a GCD domain, while an arbitrary
ring of integers OK may not be, which justifies the complication in the definition of h.

def height : E(Q) → R
| zero := 0

| (some x _ _) := (max (|x.num|) (|x.denom|) : R).log

2.5.2 Properties of heights

In what follows, as done previously, assume a short Weierstrass model with A,B ∈ Z.
The finiteness of {P ∈ E (Q) | h (P ) ≤ C}, sometimes called the Northcott property, is proven by ob-

serving that there are finitely many choices for the numerator and the denominator of the x-coordinate of a
Q-point, which boils down to a very explicit embedding into a product of types known to be finite.

def height_le_constant.fun {C : R} :

{P : E(Q) // height P ≤ C} → option (fin (2*C.exp.floor + 1) × fin (C.exp.floor + 1) × fin 2)

| ⟨zero , _⟩ := none

| ⟨some x y w, h⟩ := some ⟨(x.num + C.exp.floor).to_nat, x.denom, if y ≤ 0 then 0 else 1⟩

variables (ha1 : E.a1 = 0) (ha3 : E.a3 = 0)

lemma height_le_constant.injective {C : R} :

function.injective $ @height_le_constant.function E C :=

by . . .

def height_le_constant.fintype (C : R) : fintype {P : E(Q) // height P ≤ C} :=

fintype.of_injective height_le_constant.fun $ height_le_constant.injective ha1 ha3

Here, the embedding maps the numerator into integers between −
⌊
eC

⌋
and

⌊
eC

⌋
, and as such has be

translated into non-negative integers to reuse the fintype instance of the fin type. Note that its definition
does not require the short Weierstrass equation hypotheses, but proving injectivity for the y-coordinate does.
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The remaining two properties are essentially consequences of a certain parallelogram law on the canonical
height, expressing h (P +Q) in terms of h (P ) up to some controllable constant. Their proofs are essentially
huge case bashes, each specifying the constant explicitly and involves lengthy manipulations of inequalities,
which ended up being about 600 lines in total, so they shall not be described in detail here.

The only worthwhile remark is in the proof of the first property h (P +Q) ≤ 2h (P )+C1, which crucially
uses properties of padic val rat to express an affine Q-point (x, y) as

(
a/d2, b/d3

)
for some a, b, d ∈ Z such

that (a, d) = (b, d) = 1. This turned out to be quite tedious, as the API for padic val rat was missing
a lot of boilerplate, but more annoyingly because its definition requires the rational number in question to
be non-zero for it to be mathematically-accurate, so cases had to be opened at every step, in stark contrast
to height one spectrum.valuation with codomain with zero (multiplicative Z) to avoid the extra
layer of cases. Perhaps the current disconnect between the older padics library and the newly-developed
adic valuation library should be resolved by redefining the former as a special case of the latter.

lemma padic_val_point.denom {A B : Z} {x y : Q} (w : y ^ 2 = x ^ 3 + A * x + B) :

∃ n : N, x.denom = n ^ 2 ∧ y.denom = n ^ 3 :=

by . . .

Assuming this, the constant for an affine Q-point Q =
(
a/d2, b/d3

)
can then be given explicitly by

C1 := max{2h (Q) , log
(
d4 + 2|a| d2 + a2

)
,

log
(
|a| d2 +

∣∣a2 +Ad4
∣∣+∣∣Aad2 + 2Bd4

∣∣+ 2|bd|
√
1 +|A|+|B|

)
}.

lemma exists_constant_height_add_le (Q : E(Q)) :

∃ C : R, ∀ P : E(Q), height (P + Q) ≤ 2 * height P + C :=

by . . .

The second property 4h (P ) ≤ h (2P ) + C2 does not require p-adic analysis, but requires bounding the
cancellation between the numerator and the denominator of the x-coordinate of an affine K-point, which
boils down to checking a few polynomial identities. The constant can then be given explicitly by

C2 := max{4max {h (Q) | Q ∈ E (Q) [2]} , log 2 (12 + 16|A|) , log 2 (3 + 5|A|+ 27|B|) ,
log 8

(∣∣4A3 + 27B2
∣∣+A2|B|+|A|

∣∣3A3 + 22B2
∣∣+ 3|B|

∣∣A3 + 8B2
∣∣) ,

log 2
(
A2|B|+|A|

∣∣5A3 + 32B2
∣∣+ 2|B|

∣∣13A3 + 96B2
∣∣+ 3A2

∣∣A3 + 8B2
∣∣)}.

lemma exists_constant_le_height_dbl : ∃ C : R, ∀ P : E(Q), 4 * height P ≤ height (2 · P) + C :=

by . . .

2.5.3 Descent theorem

The final ingredient to the Mordell-Weil theorem is the descent theorem [Sil09, Theorem VIII.3.1], which
was formalised entirely by Jujian Zhang, independently and prior to this project, in the descent theorem

branch of mathlib. Zhang assumes the existence of a structure height function whose fields are precisely
the three properties of heights, and subsequently derives the proof of the theorem descent.

variables (A : Type) [add_comm_group A]

structure height_function :=

(to_fun : A → R) (nonneg : ∀ P : A, 0 ≤ to_fun P) (C1 : A → R) (C1_pos: ∀ a : A, 0 < C1 a)

(height_add_le : ∀ P Q : A, to_fun (P + Q) ≤ 2 * to_fun P + C1 Q) (m : N) (hm : 2 ≤ m)

(C2 : R) (C2_pos : 0 < C2) (height_nsmul_ge : ∀ P : A, m^2 * to_fun P ≤ to_fun (m · P) + C2)

(finite : ∀ C3 : R, {P : A | to_fun P < C3}.finite)

theorem descent : A.fg := by . . .

Zhang’s actual definition of height function has a few other differences from the naive height function
defined in the previous section, but they are all minor and are essentially equivalent.
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3 Future

This section concludes the report with a summary on the progress so far, a list of suggestions for future
potential projects related to elliptic curves and the Mordell-Weil theorem, and a final personal remark.

3.1 Current progress

The overall strategy of the proof of the Mordell-Weil theorem is mostly settled, but there is currently a
disconnect between the three parts that were mostly written independently of each other. Bridging these
gaps should not be too difficult, but the current repository also contains a few sorry lemmas.

• In point.lean, the only block is a proof of the associativity of the group law. This will likely either
be a brute-force approach given enough time, or an identification with Pic0E/F (K), probably under a
restricted definition that works only for Weierstrass models of elliptic curves.

• In mordell weil.lean, the proof that im δ ⊆ K (B, 2)
2
and the accompanying definition of bad primes

are currently being worked on. The other missing component is the bridge between weak and full
Mordell-Weil via heights, which will require a well-developed theory over K rather than just over Q.

• In selmer.lean, the only missing result is the finite generation part of Dirichlet unit’s theorem, which
can be delegated as its own project. Over time, there may be algebraic lemmas with a temporary
sorry sprinkled throughout the file as a result of actively merging other parts of the file into mathlib.

All other relevant files, including heights.lean for naive heights over Q, are sorry-free.

3.2 Potential projects

Formalising the basics of elliptic curves and a primitive proof of the Mordell-Weil theorem opens up several
other potential formalisation work. The following are some ideas in roughly increasing accessibility.

• Generalise the definition of ψ2 (x) to ψn (x) by induction, construct an injective group homomorphism

E (K) [n] ↪→ (Z/nZ)2 surjective over the splitting field, and define the Tate module.

• Explore the theory over finite fields, such as proving the Hasse-Weil bound, defining the Hasse-Weil
zeta-function, and perhaps verifying the Weil conjectures for elliptic curves.

• Verify the correctness of algorithms, such as Schoof or Lenstra, and of some cryptographic protocols.

• Explore the theory over local fields, such as developing formal groups abstractly, defining reduction
types, proving that E (K) [n] ↪→ Ẽp (κp) for good primes p ∈ M0

K , and perhaps proving the Néron-
Ogg-Shafarevich criterion. This will require the ramification theory of local fields.

• Define Sel (K,E [n]) and the Tate-Shafarevich group, and reprove the weak Mordell-Weil theorem more
conceptually by embedding E (K) /2E (K) ↪→ Sel (K,E [n]). This will require Galois cohomology.

• Redefine elliptic curves using the Proj construction, and reprove all results using this definition. This
will require much algebraic geometry, particularly the Riemann-Roch theorem.

• Explore the theory over global function fields, such as reproving the Mordell-Weil theorem, defining
elliptic surfaces and the Néron-Severi group, and perhaps stating the Birch and Swinnerton-Dyer
conjecture over function fields. This will again require much algebraic geometry.

• Explore the complex theory, such as defining elliptic functions and integrals, proving the uniformisation
theorem, defining modular curves, and perhaps stating some version of the modularity theorem and
some form of modular parameterisation. This will require a very robust theory of modular forms.

3.3 Concluding retrospect

On hindsight, given the severe lack of algebraic geometry in mathlib and the timeline for the project, one
cannot say that elliptic curves have been truly formalised, but trying to prove the Mordell-Weil theorem
remains a good stress test for the usability and compatibility of various mathlib libraries.
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