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The fundamental exact sequence
Let E/F be a Galois extension. The Brauer group of E/F is given by

Br(E/F) = H*(Gal(E/F), E®).

Theorem (Albert—Brauer-Hasse—Noether)

Let K be a number field. Then there is a short exact sequence

0 — Br(K/K) = @ Br(K./K,) = Q/Z — 0.

Why is this the fundamental exact sequence of class field theory?

In fact, it suffices to understand

0 — Br(L/K) = @D Br(Lu/K,) = 2cZ/Z — 0,

where L/K is a finite cyclic extension with Galois group G.
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The idealic reciprocity law

Recall that for a modulus m = mgm., of a number field K,
» Ix(m) is the ideal group of fractional ideals coprime to mg, and
» Py (m) is the ray subgroup of principal fractional ideals («) such that
ordy(ae — 1) > ord,(m) for all p | mg and o(cr) > 0 for all o | m.

Theorem (global reciprocity)

Let L/K be a finite abelian extension of number fields with Galois group
G. Then there is a surjective global Artin map

P/t Ik(m)/Pr(m) - G,

with kernel precisely Nm(I(m)), where m consists of all ramified primes.

Theorem (local reciprocity)

Let L, /K, be a finite abelian extension of non-archimedean local fields
with Galois group G,. Then there is a surjective local Artin map

¢LW/KV : KVX — Gy,

with kernel precisely Nm(LY).
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Ideles

The idele group of K is defined by

Tk = {(av)v c H K} :a, € OF for almost all v} .

v

It is a topological group under the restricted product topology, where a
basis of open sets is given by the open sets of the product

H K} x H oy,
ves vgS

where S is a finite set of places of K containing the archimedean places.

There is a natural diagonal embedding A : K* < Ty, whose image is the
principal idéle subgroup, and whose cokernel is the idele class group

CK = IK/A(KX).
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The idelic reciprocity law

Theorem (idelic reciprocity)

Let L/K be a finite abelian extension of number fields with Galois group
G. Then there is a unique continuous surjection W, i : I — G, such
that for all places w | v, there is a commutative square

KVX DLy, /K G,

[

Ik —» G.
Vi K

Furthermore, it descends to a surjective idélic Artin map
\IJL/K ZCK - G,

with kernel precisely Nm(Cy).
Note that W, k(a,) = Fr, ordv(21) for all unramified places v of K.
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The idelic Artin map

Example (K = Q and L = Q((15))

There is an isomorphism of topological groups

To = Q¢ x Rt x []zy

p
p
(3007327333353"') — ‘32“1 |aOO| (33%7%7"')7

where d 1= Hp p°9(3) This induces:

CQ %} R* x HPZ; —> Z;’( X Z; —» (Z3/3Z3)X X (Z5/5Z5)><

Voes)/a Sy J

Gal(Q(C15)/Q) <= (Z/15Z)* «—=— (Z/3Z)* x (Z/5Z)*

The idelic Artin map Vg(¢,,)/0 : Co — Gal(Q(¢15)/Q) maps the idele

class [(1,2,1,1,...)] to the automorphism (15 (112,
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The content map

There is a surjective content map ¢ : Zx — I that maps an idéle (a,),
to the ideal Hp pode (@) which descends to a surjection ¢ : Cx — Ix/Pk.

Lemma

Let G be a finite abelian group, and let m be a modulus of a number
field K. Then any homomorphism ® : Ix(m) — G induces a unique
continuous homomorphism WV : Cx — G such that

Vi ((av)v) = Px(c((av)v)),

for any (a,), € Zx such that a, =1 for all v | m. Furthermore, any
continuous homomorphism WV : Cx — G arises in such a way.

Since Vi is a homomorphism, it is determined by ideles of the form
(-..,1,1,a,1,1,...),

where a is either a unit or a uniformiser if v is non-archimedean.
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Characters of ideals and ideles

Example (®q : Ip(300) — Gal(Q(()/Q))
For brevity, denote {a} := (..., 1, 1,5, 1,1,...).

> Let v=p#3,00and a=up. Then {up}s = {up}e =1, so

Wo({up}) = ®g(c({up})) = @o(p™* ) = dg(p) = (G = ¢F).

> Let v =o0. Then Wg({a}) = Wo(A(3) - {a}) =1, since

and R™ is connected while Gal(Q((3)/Q) is discrete.
> Let v=3and a=3. Then Wg({3}) = Wo(A(3)- {3}) =1, since

and Wo({1}) =1.
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Characters of ideals and ideles
Example (®q : Ip(300) — Gal(Q(()/Q))
For brevity, denote {a} :=(...,1,1,a,1,1,...).
» Let v =3 and a = 2. It suffices to find a prime p € Z such that

A(p)'{2}:("'7p»P723pal];7p7p»'-')'("-7171up7171a”-)7
P

and that 2p — 1 in Z3, so that Wg({2p}) = 1 by continuity. Then

Vo({2}) = ®a(p) = (G = &) = (G = G).
which does not depend on p. Now % =2+37 3’ in Z3, so set

15
p:=2+) 3 =21523361,
i=1

which is prime in Z, and 2p =1 + 3 — 1 in Zs.
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Group cohomology

Let G be a finite group, and let M be a G-module. Recall that group
cohomology H(G, —) is the right derived functor of (—)¢, where

MC¢ :={meM:g-m—m=0forall g € G}.

The low-dimensional cohomology groups can be made explicit.
> HO(G, M) is just M©.
» H(G, M) consists of 1-cocycles f : G — M such that

modulo 1-coboundaries given by g +— g - m — m for some m € M.
> H?(G, M) consists of 2-cocycles f : G x G — M such that

gf(h7k)—f(gh7k)—|—f(g7hk)—f(g,h):O, gahvkeGa

modulo 2-coboundaries given by (g, h) — g - f(h) — f(gh) + f(g) for
some f: G — M.
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The long exact sequence

A short exact sequence of G-modules 0 — A f B & C = 0induces a
long exact sequence of cohomology groups

- HY(G,B) & HY(G,C) & HX(G,A) L H2(G,B) =

For a 1-cocycle f € H'(G, C), the 2-cocycle §(f) € H*(G, A) is given by
(g,h) — g - F(h) — f(gh) + f(g), where f : G — B'is any lift of f.

Example (G = {1, 0,02} trivialon 0 = Z - Q — Q/Z — 0)

Let f € H}(G, Q/Z) be given by o [1]. Let f : G — Q be the lift of f
given by o — %. Then 6(f) € H?(G, Z) is given by

0 otherwise.

Note that Q is torsion-free and divisible, so H'(G,Q) = 0 for all i > 0. In
particular, there is an isomorphism 4 : HY(G,Q/Z) = H?*(G,Z).

1/17



Tate's theorem

Theorem (Tate)

Let M be a G-module, such that for all subgroups H < G,
T1 HY(H,M) =0, and

T2 H?(H, M) is cyclic of order #H.

Then there is an explicit isomorphism G*® = M¢/Nm(M).

This is the key result in abstract class field theory.
> If G =Gal(L,/K,) and M = L}, this gives the local reciprocity law

Gal(Ly/K,) = K}/Nm(LY).
» If G =Gal(L/K) and M = C,, this gives the global reciprocity law
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Cohomology of unramified units

Theorem (local class field theory)

Let L,,/K, be a finite unramified extension of non-archimedean local
fields with Galois group G,. Then H'(G,,0X) =0 for all i > 0.

du .
The short exact sequence 1 — OX — L% 22 7, — 0 induces:

0

H? "
0 ord* 0
HYGHOE) — H(G,,L}) =% HX(G,,Z) — HX(GO7)

s~

HY(G,,Q/2) = L z/z
T

Hl Vs
0

In particular, T2 holds for L.
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The local invariant map

The local invariant map is inv, : H*(G,, L) — ﬁZ/Z.

Example (K, = Q; and L, = Qx((7))
Note that G, = {1,0,0°}, so that = Z/Z = {[0], [3], [5]}. They
correspond to the three 1-cocycles fy, fi, b € H(G,,Q/Z) given by

fo : o — [0], fioe (3], o [3].

After choosing a lift and applying ¢,
> §(fy) is the trivial 2-cocycle,
» §(f1) maps (g, h) to 1 iff (g, h) = (0,0?),(0?,0), (02, 0?), and
> §(f) maps (g, h) to 1 iff (g, h) = (0,0?),(0?,0),(0,0).
Since Q2((7)™ = Zo[¢r]* x 27,
> inv, 1[0] is the trivial 2-cocycle,
> inv; '[3] maps (g, h) to 2 iff (g, h) = (0,02), (0%, ), (02,0?), and
> invz_l[%] maps (g, h) to 2 iff (g, h) = (0,02), (02, 0), (0, 0).
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Cohomology of idele classes

Theorem (global class field theory)

Let L/K be a finite extension of number fields with Galois group G.
Then HY(G,C.) = 0 and H?(G,Cy) is finite. Furthermore,

1. (second inequality) #H?*(G,C.) < #G, and
2. (first inequality) #H?(G,C.) > #G if G is cyclic.

In particular, T1 holds for C;, and T2 holds for C; if G is cyclic.
The short exact sequence 1 — L* A> 7, — C. — 0 induces
0 _
HY6:C) — H2(G,L*) & H2(G,T.) — H(G,Cy).
Thus there are inequalities

# coker(A) < #H?(G,C) < #G,

where the right inequality is an equality if G is cyclic.
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The idelic invariant map

Corollary
Let L/K be a finite extension of number fields with Galois group G.

1. There are canonical isomorphisms H'(G,Z,) = @, H'(G,, L)) for
all i > 0. In particular, there is an idélic invariant map

vav tH* (G, 1) — |cmv(1#Gv)Z/Z'

2. Ifa€ H*(G, LX), then " inv,(a) = 0.
3. If G is cyclic, then )  inv, surjects onto #Z/Z.

Proof.
1. Follows from the cohomology of unramified units.
2. Follows from the product formula and explicit description of inv,.
3. Follows from Chebotarev's density theorem and surjectivity of inv,.
O
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Back to the fundamental exact sequence

In summary, if G is cyclic, there is a chain complex

> inv,
= e Z/T — 0,

0 = H(G,L*) 2 H(G,T,)
which is exact except possibly at the middle. However, it is also exact by
#G < # coker(A) < #H?(G,CL) = #G.

On the other hand, recall that
Br(L/K) = H?(G, L*), Br(L,/K,) = H*(G,, LY).
This proves that the sequence

>, invy

0 = Br(L/K) 2 @D Br(L,/K,) =" 1.2/2 -0

is exact.
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