

Adèles and cohomology

Class field theory

David Kurniadi Angdinata

University College London

Thursday, 4 July 2024

The fundamental exact sequence

Let E/F be a Galois extension. The **Brauer group** of E/F is given by

$$\mathrm{Br}(E/F) \cong H^2(\mathrm{Gal}(E/F), E^\times).$$

Theorem (Albert–Brauer–Hasse–Noether)

Let K be a number field. Then there is a short exact sequence

$$0 \rightarrow \mathrm{Br}(\overline{K}/K) \rightarrow \bigoplus_v \mathrm{Br}(\overline{K_v}/K_v) \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0.$$

Why is this the **fundamental exact sequence** of class field theory?

In fact, it suffices to understand

$$0 \rightarrow \mathrm{Br}(L/K) \rightarrow \bigoplus_v \mathrm{Br}(L_w/K_v) \rightarrow \frac{1}{\#G}\mathbb{Z}/\mathbb{Z} \rightarrow 0,$$

where L/K is a finite cyclic extension with Galois group G .

The idealic reciprocity law

Recall that for a modulus $\mathfrak{m} = \mathfrak{m}_0 \mathfrak{m}_\infty$ of a number field K ,

- ▶ $I_K(\mathfrak{m})$ is the ideal group of fractional ideals coprime to \mathfrak{m}_0 , and
- ▶ $P_K(\mathfrak{m})$ is the ray subgroup of principal fractional ideals (α) such that $\text{ord}_\mathfrak{p}(\alpha - 1) \geq \text{ord}_\mathfrak{p}(\mathfrak{m})$ for all $\mathfrak{p} \mid \mathfrak{m}_0$ and $\sigma(\alpha) > 0$ for all $\sigma \mid \mathfrak{m}_\infty$.

Theorem (global reciprocity)

Let L/K be a finite abelian extension of number fields with Galois group G . Then there is a surjective **global Artin map**

$$\Phi_{L/K} : I_K(\mathfrak{m})/P_K(\mathfrak{m}) \twoheadrightarrow G,$$

with kernel precisely $\text{Nm}(I_L(\mathfrak{m}))$, where \mathfrak{m} consists of all ramified primes.

Theorem (local reciprocity)

Let L_w/K_v be a finite abelian extension of non-archimedean local fields with Galois group G_v . Then there is a surjective **local Artin map**

$$\phi_{L_w/K_v} : K_v^\times \twoheadrightarrow G_v,$$

with kernel precisely $\text{Nm}(L_w^\times)$.

Idèles

The **idèle group** of K is defined by

$$\mathcal{I}_K := \left\{ (a_v)_v \in \prod_v K_v^\times : a_v \in \mathcal{O}_v^\times \text{ for almost all } v \right\}.$$

It is a topological group under the restricted product topology, where a basis of open sets is given by the open sets of the product

$$\prod_{v \in S} K_v^\times \times \prod_{v \notin S} \mathcal{O}_v^\times,$$

where S is a finite set of places of K containing the archimedean places.

There is a natural diagonal embedding $\Delta : K^\times \hookrightarrow \mathcal{I}_K$, whose image is the **principal idèle subgroup**, and whose cokernel is the **idèle class group**

$$\mathcal{C}_K := \mathcal{I}_K / \Delta(K^\times).$$

The idèlic reciprocity law

Theorem (idèlic reciprocity)

Let L/K be a finite abelian extension of number fields with Galois group G . Then there is a unique continuous surjection $\tilde{\Psi}_{L/K} : \mathcal{I}_K \twoheadrightarrow G$, such that for all places $w \mid v$, there is a commutative square

$$\begin{array}{ccc} K_v^\times & \xrightarrow{\phi_{L_w/K_v}} & G_v \\ \downarrow & & \downarrow \\ \mathcal{I}_K & \xrightarrow{\tilde{\Psi}_{L/K}} & G. \end{array}$$

Furthermore, it descends to a surjective **idèlic Artin map**

$$\Psi_{L/K} : \mathcal{C}_K \twoheadrightarrow G,$$

with kernel precisely $\text{Nm}(\mathcal{C}_L)$.

Note that $\Psi_{L/K}(a_v) = \text{Fr}_v^{-\text{ord}_v(a_v)}$ for all unramified places v of K .

The idèlic Artin map

Example ($K = \mathbb{Q}$ and $L = \mathbb{Q}(\zeta_{15})$)

There is an isomorphism of topological groups

$$\begin{aligned} \mathcal{I}_{\mathbb{Q}} &\xrightarrow{\sim} \mathbb{Q}^{\times} \times \mathbb{R}^+ \times \prod_p \mathbb{Z}_p^{\times} \\ (a_{\infty}, a_2, a_3, a_5, \dots) &\mapsto \frac{a_{\infty}}{|a_{\infty}|} d \quad |a_{\infty}| \quad \left(\frac{a_2}{d}, \frac{a_3}{d}, \frac{a_5}{d}, \dots \right), \end{aligned}$$

where $d := \prod_p p^{\text{ord}_p(a_p)}$. This induces:

$$\begin{array}{ccccccc} \mathcal{C}_{\mathbb{Q}} & \xrightarrow{\sim} & \mathbb{R}^+ \times \prod_p \mathbb{Z}_p^{\times} & \longrightarrow & \mathbb{Z}_3^{\times} \times \mathbb{Z}_5^{\times} & \longrightarrow & (\mathbb{Z}_3/3\mathbb{Z}_3)^{\times} \times (\mathbb{Z}_5/5\mathbb{Z}_5)^{\times} \\ & \searrow \Psi_{\mathbb{Q}(\zeta_{15})/\mathbb{Q}} & & & & & \downarrow \sim \\ & & \mathbb{Z}/15\mathbb{Z}^{\times} & \xleftarrow{\sim} & (\mathbb{Z}/3\mathbb{Z})^{\times} \times (\mathbb{Z}/5\mathbb{Z})^{\times} & & \end{array}$$

The idèlic Artin map $\Psi_{\mathbb{Q}(\zeta_{15})/\mathbb{Q}} : \mathcal{C}_{\mathbb{Q}} \rightarrow \text{Gal}(\mathbb{Q}(\zeta_{15})/\mathbb{Q})$ maps the idèle class $[(1, 2, 1, 1, \dots)]$ to the automorphism $\zeta_{15} \mapsto \zeta_{15}^{1/2}$.

The content map

There is a surjective **content map** $\tilde{c} : \mathcal{I}_K \twoheadrightarrow I_K$ that maps an idèle $(a_v)_v$ to the ideal $\prod_p \mathfrak{p}^{\text{ord}_p(a_p)}$, which descends to a surjection $c : \mathcal{C}_K \twoheadrightarrow I_K/P_K$.

Lemma

Let G be a finite abelian group, and let \mathfrak{m} be a modulus of a number field K . Then any homomorphism $\Phi_K : I_K(\mathfrak{m}) \rightarrow G$ induces a unique continuous homomorphism $\Psi_K : \mathcal{C}_K \rightarrow G$ such that

$$\Psi_K((a_v)_v) = \Phi_K(c((a_v)_v)),$$

for any $(a_v)_v \in \mathcal{I}_K$ such that $a_v = 1$ for all $v \mid \mathfrak{m}$. Furthermore, any continuous homomorphism $\Psi_K : \mathcal{C}_K \rightarrow G$ arises in such a way.

Since Ψ_K is a homomorphism, it is determined by idèles of the form

$$(\dots, 1, 1, \underset{v}{a}, 1, 1, \dots),$$

where a is either a unit or a uniformiser if v is non-archimedean.

Characters of ideals and idèles

Example ($\Phi_{\mathbb{Q}} : I_{\mathbb{Q}}(3\infty) \rightarrow \text{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q})$)

For brevity, denote $\{a\} := (\dots, 1, 1, \underset{v}{a}, 1, 1, \dots)$.

- ▶ Let $v = p \neq 3, \infty$ and $a = up$. Then $\{up\}_3 = \{up\}_{\infty} = 1$, so

$$\Psi_{\mathbb{Q}}(\{up\}) = \Phi_{\mathbb{Q}}(c(\{up\})) = \Phi_{\mathbb{Q}}(p^{\text{ord}_p(up)}) = \Phi_{\mathbb{Q}}(p) = (\zeta_3 \mapsto \zeta_3^p).$$

- ▶ Let $v = \infty$. Then $\Psi_{\mathbb{Q}}(\{a\}) = \Psi_{\mathbb{Q}}(\Delta(\frac{a}{|a|}) \cdot \{a\}) = 1$, since

$$\Delta(\frac{a}{|a|}) \cdot \{a\} = (\dots, \frac{a}{|a|}, \frac{a}{|a|}, \frac{a}{|a|}a, \frac{a}{|a|}, \frac{a}{|a|}, \dots),$$

and \mathbb{R}^+ is connected while $\text{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q})$ is discrete.

- ▶ Let $v = 3$ and $a = 3$. Then $\Psi_{\mathbb{Q}}(\{3\}) = \Psi_{\mathbb{Q}}(\Delta(\frac{1}{3}) \cdot \{3\}) = 1$, since

$$\Delta(\frac{1}{3}) \cdot \{3\} = (\dots, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}, \dots),$$

and $\Psi_{\mathbb{Q}}(\{1\}) = 1$.

Characters of ideals and idèles

Example ($\Phi_{\mathbb{Q}} : I_{\mathbb{Q}}(3\infty) \rightarrow \text{Gal}(\mathbb{Q}(\zeta_3)/\mathbb{Q})$)

For brevity, denote $\{a\} := (\dots, 1, 1, \underset{v}{a}, 1, 1, \dots)$.

► Let $v = 3$ and $a = 2$. It suffices to find a prime $p \in \mathbb{Z}$ such that

$$\Delta(p) \cdot \{2\} = (\dots, p, p, \underset{3}{2p}, \underset{p}{1}, p, p, \dots) \cdot (\dots, 1, 1, \underset{p}{p}, 1, 1, \dots),$$

and that $2p \rightarrow 1$ in \mathbb{Z}_3 , so that $\Psi_{\mathbb{Q}}(\{2p\}) = 1$ by continuity. Then

$$\Psi_{\mathbb{Q}}(\{2\}) = \Phi_{\mathbb{Q}}(p) = (\zeta_3 \mapsto \zeta_3^p) = (\zeta_3 \mapsto \zeta_3^2),$$

which does not depend on p . Now $\frac{1}{2} = 2 + \sum_{i=1}^{\infty} 3^i$ in \mathbb{Z}_3 , so set

$$p := 2 + \sum_{i=1}^{15} 3^i = 21523361,$$

which is prime in \mathbb{Z} , and $2p = 1 + 3^{16} \rightarrow 1$ in \mathbb{Z}_3 .

Group cohomology

Let G be a finite group, and let M be a G -module. Recall that group cohomology $H^i(G, -)$ is the right derived functor of $(-)^G$, where

$$M^G := \{m \in M : g \cdot m - m = 0 \text{ for all } g \in G\}.$$

The low-dimensional cohomology groups can be made explicit.

- ▶ $H^0(G, M)$ is just M^G .
- ▶ $H^1(G, M)$ consists of 1-cocycles $f : G \rightarrow M$ such that

$$g \cdot f(h) - f(gh) + f(g) = 0, \quad g, h \in G,$$

modulo 1-coboundaries given by $g \mapsto g \cdot m - m$ for some $m \in M$.

- ▶ $H^2(G, M)$ consists of 2-cocycles $f : G \times G \rightarrow M$ such that

$$g \cdot f(h, k) - f(gh, k) + f(g, hk) - f(g, h) = 0, \quad g, h, k \in G,$$

modulo 2-coboundaries given by $(g, h) \mapsto g \cdot f(h) - f(gh) + f(g)$ for some $f : G \rightarrow M$.

The long exact sequence

A short exact sequence of G -modules $0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ induces a long exact sequence of cohomology groups

$$\dots \rightarrow H^1(G, B) \xrightarrow{\bar{g}} H^1(G, C) \xrightarrow{\delta} H^2(G, A) \xrightarrow{\bar{f}} H^2(G, B) \rightarrow \dots$$

For a 1-cocycle $f \in H^1(G, C)$, the 2-cocycle $\delta(f) \in H^2(G, A)$ is given by $(g, h) \mapsto g \cdot \tilde{f}(h) - \tilde{f}(gh) + \tilde{f}(g)$, where $\tilde{f} : G \rightarrow B$ is any lift of f .

Example ($G = \{1, \sigma, \sigma^2\}$ trivial on $0 \rightarrow \mathbb{Z} \xrightarrow{\iota} \mathbb{Q} \rightarrow \mathbb{Q}/\mathbb{Z} \rightarrow 0$)

Let $f \in H^1(G, \mathbb{Q}/\mathbb{Z})$ be given by $\sigma \mapsto [\frac{1}{3}]$. Let $\tilde{f} : G \rightarrow \mathbb{Q}$ be the lift of f given by $\sigma \mapsto \frac{1}{3}$. Then $\delta(f) \in H^2(G, \mathbb{Z})$ is given by

$$(g, h) \mapsto \begin{cases} 1 & \text{if } (g, h) = (\sigma, \sigma^2), (\sigma^2, \sigma), (\sigma^2, \sigma^2), \\ 0 & \text{otherwise.} \end{cases}$$

Note that \mathbb{Q} is torsion-free and divisible, so $H^i(G, \mathbb{Q}) = 0$ for all $i > 0$. In particular, there is an isomorphism $\delta : H^1(G, \mathbb{Q}/\mathbb{Z}) \xrightarrow{\sim} H^2(G, \mathbb{Z})$.

Tate's theorem

Theorem (Tate)

Let M be a G -module, such that for all subgroups $H \leq G$,

T1 $H^1(H, M) = 0$, and

T2 $H^2(H, M)$ is cyclic of order $\#H$.

Then there is an explicit isomorphism $G^{\text{ab}} \xrightarrow{\sim} M^G / \text{Nm}(M)$.

This is the key result in abstract class field theory.

- If $G = \text{Gal}(L_w/K_v)$ and $M = L_w^\times$, this gives the local reciprocity law

$$\text{Gal}(L_w/K_v) \xrightarrow{\sim} K_v^\times / \text{Nm}(L_w^\times).$$

- If $G = \text{Gal}(L/K)$ and $M = \mathcal{C}_L$, this gives the global reciprocity law

$$\text{Gal}(L/K) \xrightarrow{\sim} \mathcal{C}_K / \text{Nm}(\mathcal{C}_L).$$

Cohomology of unramified units

Theorem (local class field theory)

Let L_w/K_v be a finite unramified extension of non-archimedean local fields with Galois group G_v . Then $H^i(G_v, \mathcal{O}_w^\times) = 0$ for all $i > 0$.

The short exact sequence $1 \rightarrow \mathcal{O}_w^\times \rightarrow L_w^\times \xrightarrow{\text{ord}_w} \mathbb{Z} \rightarrow 0$ induces:

$$\begin{array}{ccccccc} & & & & \overset{0}{H^2(G_v, \mathbb{Q})} & & \\ & & & & \uparrow & & \\ \overset{0}{H^1(G_v, \mathcal{O}_w^\times)} & \rightarrow & H^2(G_v, L_w^\times) & \xrightarrow{\text{ord}_w^*} & H^2(G_v, \mathbb{Z}) & \longrightarrow & \overset{0}{H^2(G_v, \mathcal{O}_w^\times)} \\ & & & & \delta \uparrow \sim & & \\ & & & & H^1(G_v, \mathbb{Q}/\mathbb{Z}) & \xrightarrow{f \mapsto f(1)} & \frac{1}{\#G_v} \mathbb{Z}/\mathbb{Z} \\ & & & & \uparrow & & \\ & & & & \overset{0}{H^1(G_v, \mathbb{Q})} & & \end{array}$$

In particular, T2 holds for L_w^\times .

The local invariant map

The **local invariant map** is $\text{inv}_v : H^2(G_v, L_w^\times) \rightarrow \frac{1}{\#G_v}\mathbb{Z}/\mathbb{Z}$.

Example ($K_v = \mathbb{Q}_2$ and $L_w = \mathbb{Q}_2(\zeta_7)$)

Note that $G_v = \{1, \sigma, \sigma^2\}$, so that $\frac{1}{\#G_v}\mathbb{Z}/\mathbb{Z} = \{[0], [\frac{1}{3}], [\frac{2}{3}]\}$. They correspond to the three 1-cocycles $f_0, f_1, f_2 \in H^1(G_v, \mathbb{Q}/\mathbb{Z})$ given by

$$f_0 : \sigma \mapsto [0], \quad f_1 : \sigma \mapsto [\frac{1}{3}], \quad f_2 : \sigma \mapsto [\frac{2}{3}].$$

After choosing a lift and applying δ ,

- ▶ $\delta(f_0)$ is the trivial 2-cocycle,
- ▶ $\delta(f_1)$ maps (g, h) to 1 iff $(g, h) = (\sigma, \sigma^2), (\sigma^2, \sigma), (\sigma^2, \sigma^2)$, and
- ▶ $\delta(f_2)$ maps (g, h) to 1 iff $(g, h) = (\sigma, \sigma^2), (\sigma^2, \sigma), (\sigma, \sigma)$.

Since $\mathbb{Q}_2(\zeta_7)^\times \cong \mathbb{Z}_2[\zeta_7]^\times \times 2^\mathbb{Z}$,

- ▶ $\text{inv}_2^{-1}[0]$ is the trivial 2-cocycle,
- ▶ $\text{inv}_2^{-1}[\frac{1}{3}]$ maps (g, h) to 2 iff $(g, h) = (\sigma, \sigma^2), (\sigma^2, \sigma), (\sigma^2, \sigma^2)$, and
- ▶ $\text{inv}_2^{-1}[\frac{2}{3}]$ maps (g, h) to 2 iff $(g, h) = (\sigma, \sigma^2), (\sigma^2, \sigma), (\sigma, \sigma)$.

Cohomology of idèle classes

Theorem (global class field theory)

Let L/K be a finite extension of number fields with Galois group G . Then $H^1(G, \mathcal{C}_L) = 0$ and $H^2(G, \mathcal{C}_L)$ is finite. Furthermore,

1. (second inequality) $\#H^2(G, \mathcal{C}_L) \leq \#G$, and
2. (first inequality) $\#H^2(G, \mathcal{C}_L) \geq \#G$ if G is cyclic.

In particular, T1 holds for \mathcal{C}_L , and T2 holds for \mathcal{C}_L if G is cyclic.

The short exact sequence $1 \rightarrow L^\times \xrightarrow{\Delta} \mathcal{I}_L \rightarrow \mathcal{C}_L \rightarrow 0$ induces

$$\underline{H^1(G, \mathcal{C}_L)}^0 \rightarrow H^2(G, L^\times) \xrightarrow{\bar{\Delta}} H^2(G, \mathcal{I}_L) \rightarrow H^2(G, \mathcal{C}_L).$$

Thus there are inequalities

$$\# \text{coker}(\bar{\Delta}) \leq \#H^2(G, \mathcal{C}_L) \leq \#G,$$

where the right inequality is an equality if G is cyclic.

The idèlic invariant map

Corollary

Let L/K be a finite extension of number fields with Galois group G .

1. There are canonical isomorphisms $H^i(G, \mathcal{I}_L) \cong \bigoplus_v H^i(G_v, L_v^\times)$ for all $i > 0$. In particular, there is an **idèlic invariant map**

$$\sum_v \text{inv}_v : H^2(G, \mathcal{I}_L) \rightarrow \frac{1}{\text{lcm}_v(\#G_v)} \mathbb{Z}/\mathbb{Z}.$$

2. If $a \in H^2(G, L^\times)$, then $\sum_v \text{inv}_v(a) = 0$.
3. If G is cyclic, then $\sum_v \text{inv}_v$ surjects onto $\frac{1}{\#G} \mathbb{Z}/\mathbb{Z}$.

Proof.

1. Follows from the cohomology of unramified units.
2. Follows from the product formula and explicit description of inv_v .
3. Follows from Chebotarev's density theorem and surjectivity of inv_v .

Back to the fundamental exact sequence

In summary, if G is cyclic, there is a chain complex

$$0 \rightarrow H^2(G, L^\times) \xrightarrow{\bar{\Delta}} H^2(G, \mathcal{I}_L) \xrightarrow{\sum_v \text{inv}_v} \frac{1}{\#G} \mathbb{Z}/\mathbb{Z} \rightarrow 0,$$

which is exact except possibly at the middle. However, it is also exact by

$$\#G \leq \#\text{coker}(\bar{\Delta}) \leq \#H^2(G, \mathcal{C}_L) = \#G.$$

On the other hand, recall that

$$\text{Br}(L/K) = H^2(G, L^\times), \quad \text{Br}(L_w/K_v) = H^2(G_v, L_w^\times).$$

This proves that the sequence

$$0 \rightarrow \text{Br}(L/K) \xrightarrow{\bar{\Delta}} \bigoplus_v \text{Br}(L_w/K_v) \xrightarrow{\sum_v \text{inv}_v} \frac{1}{\#G} \mathbb{Z}/\mathbb{Z} \rightarrow 0$$

is exact.