

A blueprint for the Birch and Swinnerton-Dyer conjecture in Lean

数学机械化重点实验室 Seminar

David Ang (洪鼎赐)

University of East Anglia

Tuesday, 13 January 2026

Introduction

Let E_K be an elliptic curve over a number field K .

Conjecture (Birch–Swinnerton-Dyer)

Assume that $L(E_K, s)$ has meromorphic continuation at $s = 1$.

1. The order of vanishing of $L(E_K, s)$ at $s = 1$ is equal to $\text{rk}(E_K)$.
2. The group $\text{III}(E_K)$ is finite.
3. The leading term of $L(E_K, s)$ at $s = 1$ satisfies

$$\lim_{s \rightarrow 1} \frac{L(E_K, s)}{(s - 1)^{\text{rk}(E_K)}} = \frac{\Omega(E_K) \cdot \text{Reg}(E_K) \cdot \#\text{III}(E_K) \cdot \text{Tam}(E_K)}{\delta_K \cdot \#\text{tor}(E_K)^2},$$

where δ_K is the absolute discriminant of K .

In this talk, I will describe each of these invariants in detail.

Note that this generalises to abelian varieties over global fields.

Weierstrass equations

An *elliptic curve* E_F over a field F is a smooth projective curve of genus one over F with a distinguished point \mathcal{O} over F .

By the Riemann–Roch theorem, E_F is isomorphic to a curve of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

for some $a_i \in F$ such that $\Delta \neq 0$, and \mathcal{O} is its unique point at infinity.

In `mathlib`, a *Weierstrass curve* over F is a tuple $(a_1, a_2, a_3, a_4, a_6) \in F^5$, and an elliptic curve is a Weierstrass curve such that $\Delta \neq 0$.

A *point* over F is either \mathcal{O} or an affine point $(x, y) \in F^2$ satisfying

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

and a nonsingularity condition.

The group law

With this definition, addition on points is given by explicit rational functions, where associativity is known to be *computationally difficult*: generic associativity is an equality of polynomials with 26,082 terms!

Formalisation (洪-许, 2022)

The type of nonsingular F -points $E_F(F)$ is an abelian group.

It suffices to show that the homomorphism $E_F(F) \rightarrow \text{Cl}(F[E_F])$ mapping (x, y) to $[(X - x, Y - y)]$ is injective. If it were not, then there are polynomials $f, g \in F[X]$ such that $(X - x, Y - y) = (f + gY)$. Then

$$\deg(\text{Nm}(f + gY)) = \begin{cases} \max(2 \deg(f), 2 \deg(g) + 3), \\ \dim_F(F[E_F]/(f + gY)), \end{cases}$$

which give a contradiction.

The Tate module

I attempted to formalise the isomorphism $E_F(F^s)[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$ in 2023.

Silverman defines polynomials $\psi_n, \phi_n, \omega_n \in F^s[X, Y]$ and *claims* that there is a computational proof for the multiplication-by- n formula

$$[n](x, y) = \left(\frac{\phi_n(x)}{\psi_n^2(x)}, \frac{\omega_n(x, y)}{\psi_n^3(x, y)} \right).$$

Computing $\deg(\phi_n) = n^2$ and $\deg(\psi_n^2) = n^2 - 1$, and proving that $(\phi_n, \psi_n^2) = 1$, imply that $\#\ker[n] = n^2$, and the result follows formally.

Formalisation (洪–吳–許, 2026?)

For any $\ell \neq \text{char}(F)$, the ℓ -adic Tate module $T_\ell E_{F^s}$ defines a two-dimensional Galois representation $\rho_{E_F, \ell} : G_F \rightarrow \text{GL}(T_\ell E_{F^s})$.

The proof is much trickier than he claims!

The L-function

Let E_K be an elliptic curve over a number field K .

The **Euler factor** of E_K at a finite place v of K is

$$L_v(E_K, s) := \det(1 - \rho_{E_K, \ell}^{\vee I_v}(\phi_v) \cdot q_v^{-s}),$$

where $\ell \nmid q_v$ is any prime number.

The **L-function** of E_K is

$$L(E_K, s) := \prod_p \frac{1}{L_v(E_K, s)},$$

where the product runs over all finite places v of K .

Assuming an appropriate modularity conjecture for E_K over K , the L-function has analytic continuation to all of \mathbb{C} .

Non-archimedean local fields

Let E_F be an elliptic curve over a non-archimedean local field F with normalised valuation v , valuation ring R , and residue field k .

By the valuative criterion for properness, there is a *reduction map*

$$\widetilde{(\cdot)} : E_F \xleftarrow{\sim} E_R \rightarrow E_k,$$

which induces a map on points $E_F(F) \rightarrow \widetilde{E_F}(k)$.

Note that this generalises to the fraction field F of a Bézout domain R with $k := R/m$ for any maximal ideal m of R .

Say that E_F is *minimal* if $v(\Delta) \in \mathbb{N}$ is minimal subject to $a_i \in R$. Any elliptic curve over F is isomorphic to one that is minimal.

If E_K is an elliptic curve over a number field K with $\mathrm{Cl}(K) = 1$, then E_K is isomorphic to an elliptic curve that is minimal everywhere.

Reduction types

Say that E_F is

- *good* if \widetilde{E}_F is elliptic,
- *split multiplicative* if \widetilde{E}_F is nodal with tangent over k ,
- *non-split multiplicative* if \widetilde{E}_F is nodal with tangent not over k , and
- *additive* if \widetilde{E}_F is cuspidal.

Let E_K be an elliptic curve over a number field K . Then

$$L_v(E_K, s) = \begin{cases} 1 - a_v q_v^{-s} + q_v^{1-2s} & \text{if } E_{K_v} \text{ is good,} \\ 1 - q_v^{-s} & \text{if } E_{K_v} \text{ is split multiplicative,} \\ 1 + q_v^{-s} & \text{if } E_{K_v} \text{ is non-split multiplicative,} \\ 1 & \text{if } E_{K_v} \text{ is additive,} \end{cases}$$

where $a_v := 1 + q_v - \#\widetilde{E}_{K_v}(k_v)$ is the trace of Frobenius of E_K at v .

Tamagawa numbers

The **Tamagawa number** of E_F is

$$\text{Tam}(E_F) := [E_F(F) : E_F^0(F)],$$

where $E_F^0(F)$ is the subgroup of $E_F(F)$ with nonsingular reduction.

Let E_K be an elliptic curve over a number field K , and let

$$\omega := \frac{dx}{2y + a_1x + a_3}.$$

For each place v of K , let ω_v be a non-zero invariant differential of a minimal elliptic curve isomorphic to E_{K_v} . Then its **Tamagawa number** is

$$\text{Tam}(E_K) := \prod_v \text{Tam}(E_{K_v}) \cdot \left| \frac{\omega_v}{\omega} \right|_v,$$

where the product runs over all finite places v of K .

Complex fields

Let $E_{\mathbb{C}}$ be an elliptic curve over \mathbb{C} given by $y^2 = x^3 + Ax + B$.

There is a \mathbb{C} -lattice $\Lambda_{A,B}$ that is unique up to homothety such that

$$\begin{aligned}\mathbb{C}/\Lambda_{A,B} &\longrightarrow E_{\mathbb{C}}(\mathbb{C}) \\ z &\longmapsto (\wp(z), \tfrac{1}{2}\wp'(z))\end{aligned}$$

is an isomorphism of complex Lie groups.

The **period** of $E_{\mathbb{C}}$ is

$$\Omega(E_{\mathbb{C}}) := \int_{\mathbb{C}/\Lambda_{A,B}} 2dx dy = \int_{E_{\mathbb{C}}(\mathbb{C})} \omega \wedge \bar{\omega},$$

which is just the area of $\Lambda_{A,B}$.

See Silverman's *Advanced Topics in the Arithmetic of Elliptic Curves*.

Real fields

Let $E_{\mathbb{R}}$ be an elliptic curve over \mathbb{R} . Then there is an isomorphism

$$E_{\mathbb{R}}(\mathbb{R}) \cong \begin{cases} S^1 & \text{if } \Delta < 0 \\ S^1 \oplus C_2 & \text{if } \Delta > 0 \end{cases}$$

of real Lie groups.

The **period** of $E_{\mathbb{R}}$ is

$$\Omega(E_{\mathbb{R}}) := \int_{E_{\mathbb{R}}(\mathbb{R})} \omega.$$

If E_K is an elliptic curve over a number field K , its **period** is

$$\Omega(E_K) := \prod_v \Omega(E_{K_v}),$$

where the product runs over all infinite places v of K .

The Mordell–Weil theorem

Let E_K be an elliptic curve over a number field K .

Theorem (Mordell–Weil)

$E_K(K)$ is finitely generated.

By the structure theorem of finitely generated abelian groups,

$$E_K(K) \cong \text{tor}(E_K) \oplus \mathbb{Z}^{\text{rk}(E_K)}.$$

where $\text{tor}(E_K)$ is the **torsion subgroup** and $\text{rk}(E_K)$ is the **rank**.

The torsion subgroup can be computed via the reduction map.

The rank is conjecturally the order of vanishing of $L(E_K, s)$ at $s = 1$.

Naïve heights

The proof that $E_K(K)$ is finitely generated reduces to a proof of the *weak Mordell–Weil theorem* that $E_K(K)/n$ is finite and the existence of a *naïve height* $h : E_K(K) \rightarrow \mathbb{R}$ satisfying the following.

- For all $Q \in E_K(K)$, there exists $C_1 \in \mathbb{R}$ such that for all $P \in E_K(K)$,

$$h(P + Q) \leq 2h(P) + C_1.$$

- There exists $C_2 \in \mathbb{R}$ such that for all $P \in E_K(K)$,

$$n^2 h(P) \leq h(nP) + C_2.$$

- For all $C_3 \in \mathbb{R}$, the set $\{P \in E_K(K) : h(P) \leq C_3\}$ is finite.

For instance, when $K = \mathbb{Q}$,

$$\begin{aligned} h &: E_{\mathbb{Q}}(\mathbb{Q}) &\longrightarrow \mathbb{R} \\ (n/d, y) &\longmapsto \log \max(|n|, |d|) . \\ \mathcal{O} &\longmapsto 0 \end{aligned}$$

Canonical heights

Any naïve height defines the *canonical height* $\widehat{h} : E_K(K) \rightarrow \mathbb{R}$ given by

$$\widehat{h}(P) := \lim_{n \rightarrow \infty} \frac{h([2^n]P)}{4^n},$$

which is independent of the choice of naïve height.

This is a quadratic form on $E_K(K)$, with associated bilinear pairing

$$\langle P, Q \rangle := \tfrac{1}{2}(\widehat{h}(P + Q) - \widehat{h}(P) - \widehat{h}(Q)).$$

The **regulator** of E_K is

$$\text{Reg}(E_K) := \left| \det(\langle P_i, P_j \rangle)_{i,j=0}^{\text{rk}(E_K)} \right|,$$

where $\{P_n\}_{n=0}^{\text{rk}(E_K)}$ is any \mathbb{Z} -basis of $E_K(K)/\text{tor}(E_K)$.

Galois cohomology

For any field F , multiplication by $n \in \mathbb{Z}$ gives

$$0 \rightarrow E_F[n] \rightarrow E_F \rightarrow E_F \rightarrow 0,$$

which induces a long exact sequence that truncates to

$$0 \rightarrow E_F(F)/n \rightarrow H^1(F, E_F[n]) \rightarrow H^1(F, E_F)[n] \rightarrow 0.$$

Applying this to $F = K$ and to $F = K_v$ for each place v of K gives

$$\begin{array}{ccccccc} 0 & \longrightarrow & E_K(K)/n & \longrightarrow & H^1(K, E_K[n]) & \longrightarrow & H^1(K, E_K)[n] \longrightarrow 0 \\ & & \downarrow & & \downarrow & \searrow \sigma & \downarrow \tau[n] \\ 0 & \rightarrow & \prod_v E_K(K_v)/n & \rightarrow & \prod_v H^1(K_v, E_K[n]) & \rightarrow & \prod_v H^1(K_v, E_K)[n] \rightarrow 0. \end{array}$$

Note that $H^1(K, E_K[n])$ is not finite in general.

The weak Mordell–Weil theorem

The n -Selmer group $\text{Sel}_n(E_K) := \ker \sigma$ and the **Tate–Shafarevich group**

$$\text{III}(E_K) := \ker \left(\tau : H^1(K, E_K) \rightarrow \prod_v H^1(K_v, E_K) \right)$$

fit in a short exact sequence

$$0 \rightarrow E_K(K)/n \rightarrow \text{Sel}_n(E_K) \rightarrow \text{III}(E_K)[n] \rightarrow 0.$$

The weak Mordell–Weil theorem then reduces to showing that

$$\text{Sel}_n(E_K) \subseteq \text{Sel}_n(K, S) \times \text{Sel}_n(K, S),$$

where $\text{Sel}_n(K, S)$ is the n -Selmer group of K unramified outside an explicit finite set S of bad places of K , which is finite since

$$0 \rightarrow \mathcal{O}_{K,S}^\times / (\mathcal{O}_{K,S}^\times)^n \rightarrow \text{Sel}_n(K, S) \rightarrow \text{Cl}_S(K)[n] \rightarrow 0.$$