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Introduction
Let Ex be an elliptic curve over a number field K.

Conjecture (Birch—Swinnerton-Dyer)
Assume that L(Ek,s) has meromophic continuation at s = 1.
1. The order of vanishing of L(Ek,s) at s =1 is equal to rk(Ek).
2. The group III( Ek) is finite.
3. The leading term of L(Ex,s) at s = 1 satisfies
L(EK, S) Q(EK) : Reg(EK) . #H_[(EK) . Tam(EK)

lim = ,

s—1 (S — 1)rk(E’<) Ok - #tOF(EK)2

where §k is the absolute discriminant of K.

In this talk, | will describe each of these invariants in detail.

Note that this generalises to abelian varieties over global fields.
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Weierstrass equations

An elliptic curve Er over a field F is a smooth projective curve of genus
one over F with a distinguished point O over F.

By the Riemann—Roch theorem, Ef is isomorphic to a curve of the form
Y? + aixy + azy = x> + ax® + agx + a,
for some a; € F such that A # 0, and O is its unique point at infinity.

In mathlib, a Weierstrass curve over F is a tuple (a1, a2, a3, as, ag) € F>,
and an elliptic curve is a Weierstrass curve such that A # 0.

A point over F is either O or an affine point (x,y) € F? satisfying
Y2+ aixy + asy = x> + ax® + agx + a,

and a nonsingularity condition.
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The group law

With this definition, addition on points is given by explicit rational
functions, where associativity is known to be computationally difficult:
generic associativity is an equality of polynomials with 26,082 terms!

Formalisation (G—i%F, 2022)
The type of nonsingular F-points EF(F) is an abelian group.

It suffices to show that the homomorphism Er(F) — CI(F[EF]) mapping
(x,y) to [(X — x, Y — y)] is injective. If it were not, then there are
polynomials f, g € F[X] such that (X —x,Y —y) = (f + gY). Then

max(2 deg(f), 2 deg(g) + 3),

deg(Nm(f +gY)) = {dimF(F[EF]/(ergY)),

which give a contradiction.
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The Tate module

| attempted to formalise the isomorphism Ef(F*®)[n] = (Z/nZ)? in 2023.

Silverman defines polynomials ¥, ¢, w, € F°[X, Y] and claims that
there is a computational proof for the multiplication-by-n formula

Pn(x) w,,(x,y))
Pa(x) Pa(xy))

Computing deg(¢,) = n? and deg(%'2) = n> — 1, and proving that
(¢n, %) = 1, imply that # ker[n] = n?, and the result follows formally.

) = (

Formalisation (3—2-1F, 20267)
For any ¢ # char(F), the {-adic Tate module T¢Egs defines a
two-dimensional Galois representation pg, ¢ : GF — GL(T;EFs).

The proof is much trickier than he claims!
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The L-function

Let Ex be an elliptic curve over a number field K.

The Euler factor of Ex at a finite place v of K is
L,(Ek,s) :=det(1 — pé}iv’g(qsv) q,°),

where ¢ 1 g, is any prime number.

The L-function of Ek is
L(E,
K>S H L EK7

where the product runs over all finite places v of K.

Assuming an appropriate modularity conjecture for Ex over K, the
L-function has analytic continuation to all of C.
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Non-archimedean local fields

Let EF be an elliptic curve over a non-archimedean local field F with
normalised valuation v, valuation ring R, and residue field k.

By the valuative criterion for properness, there is a reduction map
() . EF & ER - Ek7

which induces a map on points Eg(F) — E;(k)

Note that this generalises to the fraction field F of a Bézout domain R
with k := R/m for any maximal ideal m of R.

Say that Er is minimal if v(A) € N is minimal subject to a; € R. Any
elliptic curve over F is isomorphic to one that is minimal.

If Ex is an elliptic curve over a number field K with CI(K) = 1, then Ex
is isomorphic to an elliptic curve that is minimal everywhere.
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Reduction types

Say that Ef is
® good if E; is elliptic,
® split multiplicative if E; is nodal with tangent over k,
® non-split multiplicative if E; is nodal with tangent not over k, and

® additive if ET: is cuspidal.

Let Ex be an elliptic curve over a number field K. Then

1—a,q,°+ql=? if Ek, is good,

Ly(Ex. s) 1—gq,° if Ex, is split multiplicative,
75 - . . . . . .
K 144q,° if Ex, is non-split multiplicative,
1 if Ex, is additive,

where a, :=1+q, — #E}:(k\,) is the trace of Frobenius of Ex at v.
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Tamagawa numbers
The Tamagawa number of Ef is
Tam(Er) := [EF(F) : EP(F)],
where EX(F) is the subgroup of Ef(F) with nonsingular reduction.

Let Ex be an elliptic curve over a number field K, and let

_ dx
N 2y—|—alx+33'

For each place v of K, let w, be a non-zero invariant differential of a
minimal elliptic curve isomorphic to Ex,. Then its Tamagawa number is

Tam(Ex) HTam Ex.) ‘“’V

where the product runs over all finite places v of K.
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Complex fields

Let Ec be an elliptic curve over C given by y? = x> + Ax + B.

There is a C-lattice Aa g that is unique up to homothety such that

(j//\A,B — Ekj((:)
z — (p(2), 3¢(2))

is an isomorphism of complex Lie groups.

The period of E¢ is

Q(Ec) == / 2dxdy = / w AW,
C/Mas Ec(C)

which is just the area of Ay .

See Silverman's Advanced Topics in the Arithmetic of Elliptic Curves.
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Real fields

Let Eg be an elliptic curve over R. Then there is an isomorphism

Er(R)

I

st ifA<O
S'eG ifA>0

of real Lie groups.

The period of Ey is
Q(Eg) ::/ w.
Er(R)

If Ex is an elliptic curve over a number field K, its period is
Q(Ex) = [ [ QEk,),

where the product runs over all infinite places v of K.
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The Mordell-Weil theorem

Let Ex be an elliptic curve over a number field K.

Theorem (Mordell-Weil)
Ex(K) is finitely generated.

By the structure theorem of finitely generated abelian groups,
Ex(K) = tor(Ex) @ Zr<(Ex),

where tor(Ey) is the torsion subgroup and rk(Ey) is the rank.

The torsion subgroup can be computed via the reduction map.

The rank is conjecturally the order of vanishing of L(Ek,s) at s = 1.
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Naive heights

The proof that Ex(K) is finitely generated reduces to a proof of the weak
Mordell-Weil theorem that Ex(K)/n is finite and the existence of a naive
height h: Ex(K) — R satisfying the following.

® For all Q € Ex(K), there exists C; € R such that for all P € Ex(K),
h(P + Q) < 2h(P) + C.
® There exists C; € R such that for all P € Ex(K),
n?h(P) < h(nP) + G..

® For all GG € R, the set {P € Ex(K) : h(P) < G3} is finite.

For instance, when K = Q,

h ' EQ — R
(n/d, )/) —  logmax(|nl, |d]) .
— 0
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Canonical heights

Any naive height defines the canonical height h: Ex(K) — R given by
~ h([2"P
AP = tim MZ1P)
n— o0 4n

which is independent of the choice of naive height.

This is a quadratic form on Ex(K), with associated bilinear pairing

(P, Q) := 3(h(P + Q) — h(P) — h(Q)).

The regulator of Ex is
Reg(Ex) == |det((P;, P;))" 51

where {P,}'% ( “)is any Z-basis of Ex(K)/ tor(Ek).
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Galois cohomology
For any field F, multiplication by n € Z gives
0 — Ef[n] — EF — EF — 0,
which induces a long exact sequence that truncates to
0 — Er(F)/n — H'(F,Eg[n]) — H*(F,Eg)[n] — 0.
Applying this to F = K and to F = K, for each place v of K gives

0 — Ex(K)/n —— HY(K, Ex[n]) —— HY(K, Ex)[n] — 0

l T

0+ [ Ex(Ko)/n = ] H' (Ko, Exln]) = [] H*(Ky. Ex)[n] = .

v

Note that H*(K, Ex[n]) is not finite in general.
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The weak Mordell-Weil theorem

The n-Selmer group Sel,(Ex) := ker o and the Tate—Shafarevich group

II(Ex) := ker <T L HY(K, Ex) = [ [ H (K., EK)>

fit in a short exact sequence
0 — Ex(K)/n — Sel,(Ex) — III(Ek)[n] — O.
The weak Mordell-Weil theorem then reduces to showing that
Seln(Ek) C Seln(K, S) x Selq(K, S),

where Sel,(K, S) is the n-Selmer group of K unramified outside an
explicit finite set S of bad places of K, which is finite since

0 — OF 5/(OF.s)" — Sela(K, S) — Cls(K)[n] = 0.
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