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Introduction

Let EK be an elliptic curve over a number field K .

Conjecture (Birch–Swinnerton-Dyer)
Assume that L(EK , s) has meromophic continuation at s = 1.

1. The order of vanishing of L(EK , s) at s = 1 is equal to rk(EK ).

2. The group X(EK ) is finite.

3. The leading term of L(EK , s) at s = 1 satisfies

lim
s→1

L(EK , s)

(s − 1)rk(EK )
=

Ω(EK ) · Reg(EK ) ·#X(EK ) · Tam(EK )

δK ·#tor(EK )2
,

where δK is the absolute discriminant of K.

In this talk, I will describe each of these invariants in detail.

Note that this generalises to abelian varieties over global fields.
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Weierstrass equations

An elliptic curve EF over a field F is a smooth projective curve of genus
one over F with a distinguished point O over F .

By the Riemann–Roch theorem, EF is isomorphic to a curve of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

for some ai ∈ F such that ∆ ̸= 0, and O is its unique point at infinity.

In mathlib, a Weierstrass curve over F is a tuple (a1, a2, a3, a4, a6) ∈ F 5,
and an elliptic curve is a Weierstrass curve such that ∆ ̸= 0.

A point over F is either O or an affine point (x , y) ∈ F 2 satisfying

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

and a nonsingularity condition.
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The group law

With this definition, addition on points is given by explicit rational
functions, where associativity is known to be computationally difficult:
generic associativity is an equality of polynomials with 26,082 terms!

Formalisation (洪–许, 2022)
The type of nonsingular F -points EF (F ) is an abelian group.

It suffices to show that the homomorphism EF (F )→ Cl(F [EF ]) mapping
(x , y) to [(X − x ,Y − y)] is injective. If it were not, then there are
polynomials f , g ∈ F [X ] such that (X − x ,Y − y) = (f + gY ). Then

deg(Nm(f + gY )) =

{
max(2 deg(f ), 2 deg(g) + 3),

dimF (F [EF ]/(f + gY )),

which give a contradiction.
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The Tate module

I attempted to formalise the isomorphism EF (F
s)[n] ∼= (Z/nZ)2 in 2023.

Silverman defines polynomials ψn, ϕn, ωn ∈ F s [X ,Y ] and claims that
there is a computational proof for the multiplication-by-n formula

[n](x , y) =

(
ϕn(x)

ψ2
n(x)

,
ωn(x , y)

ψ3
n(x , y)

)
.

Computing deg(ϕn) = n2 and deg(ψ2
n) = n2 − 1, and proving that

(ϕn, ψ
2
n) = 1, imply that # ker[n] = n2, and the result follows formally.

Formalisation (洪–吴–许, 2026?)
For any ℓ ̸= char(F ), the ℓ-adic Tate module TℓEF s defines a
two-dimensional Galois representation ρEF ,ℓ : GF → GL(TℓEF s ).

The proof is much trickier than he claims!
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The L-function

Let EK be an elliptic curve over a number field K .

The Euler factor of EK at a finite place v of K is

Lv (EK , s) := det(1− ρ∨Iv
EK ,ℓ

(ϕv ) · q−s
v ),

where ℓ ∤ qv is any prime number.

The L-function of EK is

L(EK , s) :=
∏
p

1

Lv (EK , s)
,

where the product runs over all finite places v of K .

Assuming an appropriate modularity conjecture for EK over K , the
L-function has analytic continuation to all of C.
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Non-archimedean local fields

Let EF be an elliptic curve over a non-archimedean local field F with
normalised valuation v , valuation ring R, and residue field k.

By the valuative criterion for properness, there is a reduction map

(̃·) : EF
∼←− ER ↠ Ek ,

which induces a map on points EF (F )→ ẼF (k).

Note that this generalises to the fraction field F of a Bézout domain R
with k := R/m for any maximal ideal m of R.

Say that EF is minimal if v(∆) ∈ N is minimal subject to ai ∈ R. Any
elliptic curve over F is isomorphic to one that is minimal.

If EK is an elliptic curve over a number field K with Cl(K ) = 1, then EK

is isomorphic to an elliptic curve that is minimal everywhere.
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Reduction types

Say that EF is

• good if ẼF is elliptic,

• split multiplicative if ẼF is nodal with tangent over k ,

• non-split multiplicative if ẼF is nodal with tangent not over k, and

• additive if ẼF is cuspidal.

Let EK be an elliptic curve over a number field K . Then

Lv (EK , s) =


1− avq

−s
v + q1−2s

v if EKv is good,

1− q−s
v if EKv is split multiplicative,

1 + q−s
v if EKv is non-split multiplicative,

1 if EKv is additive,

where av := 1 + qv −#ẼKv (kv ) is the trace of Frobenius of EK at v .
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Tamagawa numbers

The Tamagawa number of EF is

Tam(EF ) := [EF (F ) : E
0
F (F )],

where E 0
F (F ) is the subgroup of EF (F ) with nonsingular reduction.

Let EK be an elliptic curve over a number field K , and let

ω :=
dx

2y + a1x + a3
.

For each place v of K , let ωv be a non-zero invariant differential of a
minimal elliptic curve isomorphic to EKv . Then its Tamagawa number is

Tam(EK ) :=
∏
v

Tam(EKv ) ·
∣∣∣ωv

ω

∣∣∣
v
,

where the product runs over all finite places v of K .
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Complex fields

Let EC be an elliptic curve over C given by y2 = x3 + Ax + B.

There is a C-lattice ΛA,B that is unique up to homothety such that

C/ΛA,B −→ EC(C)
z 7−→ (℘(z), 12℘

′(z))

is an isomorphism of complex Lie groups.

The period of EC is

Ω(EC) :=

∫
C/ΛA,B

2dxdy =

∫
EC(C)

ω ∧ ω,

which is just the area of ΛA,B .

See Silverman’s Advanced Topics in the Arithmetic of Elliptic Curves.
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Real fields

Let ER be an elliptic curve over R. Then there is an isomorphism

ER(R) ∼=

{
S1 if ∆ < 0

S1 ⊕ C2 if ∆ > 0

of real Lie groups.

The period of ER is

Ω(ER) :=

∫
ER(R)

ω.

If EK is an elliptic curve over a number field K , its period is

Ω(EK ) :=
∏
v

Ω(EKv ),

where the product runs over all infinite places v of K .
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The Mordell–Weil theorem

Let EK be an elliptic curve over a number field K .

Theorem (Mordell–Weil)
EK (K ) is finitely generated.

By the structure theorem of finitely generated abelian groups,

EK (K ) ∼= tor(EK )⊕ Zrk(EK ).

where tor(EK ) is the torsion subgroup and rk(EK ) is the rank.

The torsion subgroup can be computed via the reduction map.

The rank is conjecturally the order of vanishing of L(EK , s) at s = 1.
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Näıve heights

The proof that EK (K ) is finitely generated reduces to a proof of the weak
Mordell–Weil theorem that EK (K )/n is finite and the existence of a näıve
height h : EK (K )→ R satisfying the following.

• For all Q ∈ EK (K ), there exists C1 ∈ R such that for all P ∈ EK (K ),

h(P + Q) ≤ 2h(P) + C1.

• There exists C2 ∈ R such that for all P ∈ EK (K ),

n2h(P) ≤ h(nP) + C2.

• For all C3 ∈ R, the set {P ∈ EK (K ) : h(P) ≤ C3} is finite.
For instance, when K = Q,

h : EQ(Q) −→ R
(n/d , y) 7−→ logmax(|n|, |d |)

O 7−→ 0
.
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Canonical heights

Any näıve height defines the canonical height ĥ : EK (K )→ R given by

ĥ(P) := lim
n→∞

h([2n]P)

4n
,

which is independent of the choice of näıve height.

This is a quadratic form on EK (K ), with associated bilinear pairing

⟨P,Q⟩ := 1
2 (ĥ(P + Q)− ĥ(P)− ĥ(Q)).

The regulator of EK is

Reg(EK ) :=
∣∣∣det(⟨Pi ,Pj⟩)rk(EK )

i,j=0

∣∣∣ ,
where {Pn}rk(EK )

n=0 is any Z-basis of EK (K )/ tor(EK ).
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Galois cohomology

For any field F , multiplication by n ∈ Z gives

0→ EF [n]→ EF → EF → 0,

which induces a long exact sequence that truncates to

0→ EF (F )/n→ H1(F ,EF [n])→ H1(F ,EF )[n]→ 0.

Applying this to F = K and to F = Kv for each place v of K gives

0 EK (K )/n H1(K ,EK [n]) H1(K ,EK )[n] 0

0
∏
v

EK (Kv )/n
∏
v

H1(Kv ,EK [n])
∏
v

H1(Kv ,EK )[n] 0.

σ
τ [n]

Note that H1(K ,EK [n]) is not finite in general.
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The weak Mordell–Weil theorem

The n-Selmer group Seln(EK ) := ker σ and the Tate–Shafarevich group

X(EK ) := ker

(
τ : H1(K ,EK )→

∏
v

H1(Kv ,EK )

)

fit in a short exact sequence

0→ EK (K )/n→ Seln(EK )→X(EK )[n]→ 0.

The weak Mordell–Weil theorem then reduces to showing that

Seln(EK ) ⊆ Seln(K , S)× Seln(K , S),

where Seln(K , S) is the n-Selmer group of K unramified outside an
explicit finite set S of bad places of K , which is finite since

0→ O×
K ,S/(O

×
K ,S)

n → Seln(K ,S)→ ClS(K )[n]→ 0.
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