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Elliptic curves

An elliptic curve over a field F is a pair (E, O):
e E is a smooth projective curve of genus one defined over F
@ O is a distinguished point on E defined over F
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Applications:
@ computational mathematics
o primality testing, integer factorisation, public-key cryptography
@ algebraic geometry and number theory

o Fermat's last theorem, the Birch and Swinnerton-Dyer conjecture
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Weierstrass equations

Theorem (corollary of Riemann—Roch)

Any elliptic curve E over F can be given by E(X,Y) =0, where
EX,Y):= Y2+ a1 XY +a3Y — (X3 + aX? 4+ a3 X + ag),

for some a; € F such that A(a;) # 0, with O the point at infinity.

This is the Weierstrass model for E, but E has other models.
o If char(F) # 2,3, then E has a short Weierstrass model

E(X,Y):=Y>—(X*+aX+b), abcF,

where A(a, b) = —16(4a° + 27b2).
o If char(F) # 2, then E has an Edwards model

EX,Y):=X>+Y?>—(1+dX?Y?), deF\{0,1},

with O := (1,0).
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Weierstrass equations

Theorem (corollary of Riemann—Roch)

Any elliptic curve E over F can be given by E(X,Y) =0, where
EX,Y):= Y2+ a1 XY +a3Y — (X3 + aX? 4+ a3 X + ag),

for some a; € F such that A(a;) # 0, with O the point at infinity.

In the Weierstrass model, an elliptic curve over F is the data of:
o five coefficients a;, a», a3, as, as € F, and

@ a proof that A(ay, az, as, as, ag) # 0.

structure weierstrass_curve (F : Type) := (a1 ap a3 a4 ag : F)

def weierstrass_curve.A {F : Type} [comm_ring F| (W : weierstrass_curve F) : F :=
—(E a;"2 + 4*E. az)*(E a; "2*E.ag + 4*E.ap*E.ag — E.a;*E.a3*E.ay + E.ap*E.a3"2 — E.ay 2)
— 8%(2*E.ay + E.a;*E.a3)"3 — 27*(E.a3"2 + 4*E.ap)"2
+ 9%(E.a1"2 + 4*E.ap)*(2*E.a4 + E.a;*E.a3)*(E.a3"2 + 4*E.ap)

structure elliptic_curve (F : Type) [comm_ring F| extends weierstrass_curve F :=
(A’ : units F) (coe_A’ : 1A’ = to_weierstrass_curve.A)
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Weierstrass equations

Theorem (corollary of Riemann—Roch)

Any elliptic curve E over F can be given by E(X,Y) =0, where
EX,Y):= Y2+ a1 XY +a3Y — (X3 + aX? 4+ a3 X + ag),

for some a; € F such that A(a;) # 0, with O the point at infinity.

In the Weierstrass model, a point on E is either:
@ the point at infinity O, or
@ two affine coordinates x,y € F and a proof that (x,y) € E.

variables {F : Type} [field F] (E : elliptic_curve F)

def polynomial : F[X][Y] :=
Y2 4 C (C E.a;*X + C E.a3)*Y — C (X"3 + C E.2*X"2 + C E.ag*X + C E.ag)

def equation (x y : F) : Prop := (E.polynomial.eval (C y)).eval x = 0
inductive point

| zero
| some {x y : F} (h : E.equation x y)
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Group law

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Identity is given by O.

instance : has_zero E.point := (zero) [

Negation and addition are characterised by

P+Q+R=0 = P, Q, R are collinear.
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Group law

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Negation is given by —(x,y) := (x, o(y)), where

O’(Y) ==Y — 31X—83.

def neg Y (xy:F):F:= —y —E.a; *x + Ea3
lemma equation_neg {x y : F} : E.equation x y — E.equation x (Eneg_Yxy) := ...
def neg : E.point — E.point

| zero := zero
| (some h) := some (equation_neg h)

instance : has_neg E.point := (neg)

Note: in the coordinate ring F[E] := F[X, Y]/(E(X,Y)),

—(Y-o(Y)=Y? +a XY +a3Y = X3+ aX? + ag X + ag.
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Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Addition is given by (x1,y1) + (%2, y2) := —(x3, y3), where

x3 =N+ ad—a—x — x, y3 1= Ax3 — x1) + 1.

def add : E.point — E.point — E.point
| zero P := P
| P zero := P
| (some hi) (some hy) := some (equation_add h; hp)

instance : has_add E.point := (add)

Here,
yl Y2 if X1 7é X2,
X1 2— X22
—_ )3 —
A\ = X7 + 2a2X1 + a4 — a1y1 if 1 # o(n),
y1—o(y)
00 otherwise.
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Attempts at proof

One may attempt to prove the axioms directly.

instance : add_group E.point :=
{ zero ‘= zero,

neg ‘= neg,
add 1= add,
zero_add = rfl, —— by definition
add_zero = el —— by definition
add_left_neg := ..., —— by cases
add_comm =S —— by cases
add_assoc = sorry } —— seems impossible?

Associativity is a proof that
(P+Q)+R=P+(Q+R),
where each + has five cases!
In the generic case, this is an equality of polynomials with 26,082 terms.

In contrast, the ring tactic in Lean can handle at most 1,000 terms.
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Attempts at proof

Associativity is known to be mathematically difficult with many proofs.

Proof 1: just do it.
@ elementary but slow

@ several known formalisations

o Théry (Coq, 2007): short Weierstrass model Y2 = X® 4 aX + b
o Hales, Raya (Isabelle, 2020): Edwards model X* 4 Y? =1 + dX?Y?
e Fox, Gordon, Hurd (HOL4, 2006): long Weierstrass model

Y2 4 a XY + ayY = X3+ 2o X? + anX + as but no associativity

Proof 2: ad-hoc argument with projective geometry.
@ only works generically via Cayley—Bacharach
@ no known formalisations
e our original attempt
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Attempts at proof

One may instead identify the set of points E(F) with a known group.

Proof 3: identify with a quotient of C by the fundamental lattice \g.
@ only works in characteristic zero via uniformisation
@ no known formalisations

@ needs a lot of theory

Proof 4: identify with the degree zero Weil divisor class group Pic¥(E).
@ algebro-geometric and usually uses Riemann—Roch
@ one known formalisation
e Bartzia, Strub (10,000 lines of Coq, 2014): short Weierstrass model

Proof 5: identify with the ideal class group CI(F[E]).
@ purely algebraic and uses commutative algebra
@ one known formalisation
o our final proof (1,000 lines of Lean, 2023): long Weierstrass model
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Sketch of proof

Proof of the group law.

@ Construct a function E(F) — CI(F[E]).
@ Prove that E(F) — CI(F[E]) respects addition.
@ Prove that E(F) — CI(F[E]) is injective. O

Here, the ideal class group CI(R) of an integral domain R is the
quotient group of invertible fractional ideals by principal fractional ideals.

Any nonzero ideal | < R such that / - J is principal for some ideal J < R
is an invertible fractional ideal of R.

Ideal class groups were formalised in Lean’s mathematical library
mathlib by Baanen, Dahmen, Narayanan, Nuccio (2021).

Key: the coordinate ring F[E] is an integral domain.
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Sketch of proof

Proof of the group law.

@ Construct a function E(F) — CI(F[E]). v
@ Prove that E(F) — CI(F[E]) respects addition. v/
@ Prove that E(F) — CI(F[E]) is injective. O

Consider the function point.to_class given by

E(F) — CI(F[E]))
O — [(1)]
(xy) — [(X=xY-y)]
Note: (X — x, Y — y) is invertible, since
(X =% Y =y) - (X =Y —o(y)) = (X x).

The function point.to_class respects addition, since

(X=x1,Y=y1)-(X=x2, Y =y2)(X=x3, Y —=0(3)) = (Y = A(X—x3)—y3).
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Proof of injectivity

Theorem (Xu, 2022)

The function point. to_class is injective.

Key: F[E] = F[X, Y]/(E(X,Y)) is free over F[X] with basis {1, Y}, so
it has a norm Nm : F[E] — F[X] given by Nm(f) := det([-f]).

If f € F[E], then deg(Nm(f)) # 1.

Proof of Lemma (A).
Let f = p+ qY for p,qg € F[X]. Then

_ P q
Nm(f) =
m(f) = det (q(x3 + X+ X +2) p—a(aX + a3)>
= p* — pg(a1X + a3) — *(X° + 22X + as X + ag).

Then deg(Nm(f)) = max(2deg(p),2deg(q) + 3). O
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Proof of injectivity

Theorem (Xu, 2022)

The function point. to_class is injective.

Key: F[E] = F[X, Y]/(E(X,Y)) is free over F[X] with basis {1, Y}, so
it has a norm Nm : F[E] — F[X] given by Nm(f) := det([-f]).

Lemma (B)
If f € F[E], then deg(Nm(f)) = dimg(F[E]/(f)).

Proof of Lemma (B).
Multiplication by f has Smith normal form

i~ (5 0).  pacFix

e Taking determinants gives Nm(f) = pg.
e Taking quotients gives F[E]/(f) = F[X]/(p) ® F[X]/(q)- O]
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Proof of injectivity

Theorem (Xu, 2022)

The function point. to_class is injective.

Key: F[E] = F[X, Y]/(E(X,Y)) is free over F[X] with basis {1, Y}, so
it has a norm Nm : F[E] — F[X] given by Nm(f) := det([-f]).

Proof of Theorem.
Suffices to show if (x,y) € E(F), then (X — x, Y — y) is not principal.

Suppose otherwise that (X — x, Y — y) = (f) for some f € F[E]. Then

FIL FIX,Y]/(X = x,Y —y) e FIE]/(X —x, Y —y) = FIE]/(f).

Taking dimensions gives
1 = dimr(F) = dimp(F[E]/(£)) € deg(Nm(F)) D1

Contradiction! O
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Concluding retrospectives

Some thoughts:
@ proof works for nonsingular points of Weierstrass curves
e formalisation encouraged proof accessible to undergraduates
@ heavy use of linear algebra and ring theory in mathlib
o fully integrated to mathlib and even ported to mathlib4

Some projects:
@ division polynomials, torsion subgroups, and Tate modules
@ elliptic curves over discrete valuation rings and the reduction map
@ verification of computational algorithms and cryptographic protocols
@ equivalence with scheme-theoretic definitions via Riemann—Roch

@ elliptic curves over specific fields: finite fields, local fields, number
fields, global function fields, complete fields
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