The Group Law on Weierstrass Elliptic Curves An Elementary Formal Proof in Any Characteristic

David Kurniadi Angdinata¹ Junyan Xu²

¹London School of Geometry and Number Theory, UK

²Cancer Data Science Laboratory, National Cancer Institute, Bethesda, MD, USA

Fourteenth International Conference on Interactive Theorem Proving

Wednesday, 2 August 2023

< ∃ >

Elliptic curves

An **elliptic curve** over a field F is a pair (E, \mathcal{O}) :

- E is a smooth projective curve of genus one defined over F
- \mathcal{O} is a distinguished point on E defined over F

→ < ∃ →</p>

Elliptic curves

An **elliptic curve** over a field F is a pair (E, \mathcal{O}) :

- *E* is a *smooth projective curve* of *genus one* defined over *F*
- \mathcal{O} is a distinguished point on E defined over F

Applications:

- computational mathematics
 - primality testing, integer factorisation, public-key cryptography
- algebraic geometry and number theory
 - Fermat's last theorem, the Birch and Swinnerton-Dyer conjecture

Image: A image: A

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$, for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with \mathcal{O} the point at infinity.

э

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$, for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with \mathcal{O} the point at infinity.

This is the **Weierstrass model** for *E*, but *E* has other models.

크 에 프 어 프

э

Any elliptic curve
$$E$$
 over F can be given by $E(X, Y) = 0$, where
 $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,
for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with \mathcal{O} the point at infinity.

This is the Weierstrass model for E, but E has other models.

• If $char(F) \neq 2, 3$, then E has a short Weierstrass model $E(X, Y) := Y^2 - (X^3 + aX + b), \qquad a, b \in F,$ where $\Delta(a, b) = -16(4a^3 + 27b^2).$

Any elliptic curve *E* over *F* can be given by
$$E(X, Y) = 0$$
, where
 $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,
for some $a_i \in F$ such that $\Lambda(a_i) \neq 0$ with Ω the point at infinity.

This is the Weierstrass model for E, but E has other models.

If char(F) ≠ 2, 3, then E has a short Weierstrass model E(X, Y) := Y² - (X³ + aX + b), a, b ∈ F, where Δ(a, b) = -16(4a³ + 27b²).
If char(F) ≠ 2, then E has an Edwards model E(X, Y) := X² + Y² - (1 + dX²Y²), d ∈ F \ {0, 1},

with $\mathcal{O} := (1, 0)$.

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,

for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with \mathcal{O} the point at infinity.

In the Weierstrass model, an **elliptic curve** over F is the data of:

- five coefficients $a_1, a_2, a_3, a_4, a_6 \in F$, and
- a proof that $\Delta(a_1, a_2, a_3, a_4, a_6) \neq 0$.

э

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,

for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with O the point at infinity.

In the Weierstrass model, an **elliptic curve** over F is the data of:

- five coefficients $a_1, a_2, a_3, a_4, a_6 \in F$, and
- a proof that $\Delta(a_1, a_2, a_3, a_4, a_6) \neq 0$.

structure weierstrass_curve $(F : Type) := (a_1 a_2 a_3 a_4 a_6 : F)$

 $\begin{array}{l} \texttt{def weierstrass_curve} \Delta \ \{\texttt{F}:\texttt{Type}\} \ [\texttt{comm_ring }\texttt{F}] \ (\texttt{W}:\texttt{weierstrass_curve }\texttt{F}):\texttt{F}:=\\ -(\texttt{E.a}_1^2 + 4^*\texttt{E.a}_2)^*(\texttt{E.a}_1^2 \texttt{*}\texttt{E.a}_6 + 4^*\texttt{E.a}_2^*\texttt{E.a}_6 - \texttt{E.a}_1^*\texttt{E.a}_3^*\texttt{E.a}_4 + \texttt{E.a}_2^*\texttt{E.a}_3^2 - \texttt{E.a}_4^2)\\ - 8^*(2^*\texttt{E.a}_4 + \texttt{E.a}_1^*\texttt{E.a}_3)^3 - 27^*(\texttt{E.a}_3^2 + 4^*\texttt{E.a}_6)^2\\ + 9^*(\texttt{E.a}_1^2 + 4^*\texttt{E.a}_2)^*(2^*\texttt{E.a}_4 + \texttt{E.a}_1^*\texttt{E.a}_3)^*(\texttt{E.a}_3^2 + 4^*\texttt{E.a}_6)\\ \texttt{structure elliptic_curve } (\texttt{F}:\texttt{Type}) \ [\texttt{comm_ring }\texttt{F}] \ \texttt{extends weierstrass_curve }\texttt{F}:=\\ (\Delta':\texttt{units }\texttt{F}) \ (\texttt{coe_}\Delta':\uparrow\Delta'=\texttt{to_weierstrass_curve} \Delta) \end{array}$

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,

for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with O the point at infinity.

In the Weierstrass model, a **point** on E is either:

- the point at infinity \mathcal{O} , or
- two affine coordinates $x, y \in F$ and a proof that $(x, y) \in E$.

Any elliptic curve E over F can be given by E(X, Y) = 0, where $E(X, Y) := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X + a_6)$,

for some $a_i \in F$ such that $\Delta(a_i) \neq 0$, with O the point at infinity.

In the Weierstrass model, a **point** on E is either:

- the point at infinity \mathcal{O} , or
- two affine coordinates $x, y \in F$ and a proof that $(x, y) \in E$.

```
variables {F : Type} [field F] (E : elliptic_curve F)
def polynomial : F[X][Y] :=
    Y^2 + C (C E.a<sub>1</sub>*X + C E.a<sub>3</sub>)*Y - C (X^3 + C E.a<sub>2</sub>*X^2 + C E.a<sub>4</sub>*X + C E.a<sub>6</sub>)
def equation (x y : F) : Prop := (E.polynomial.eval (C y)).eval x = 0
inductive point
    | zero
    | some {x y : F} (h : E.equation x y)
```

伺 ト イヨト イヨト

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

回 と く ヨ と く ヨ と

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Identity is given by \mathcal{O} .

instance : has_zero E.point := $\langle zero \rangle$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ …

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Identity is given by \mathcal{O} .

instance : has_zero E.point := (zero)

Negation and addition are characterised by

▶ < ∃ >

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Negation is given by $-(x, y) := (x, \sigma(y))$, where $\sigma(Y) := -Y - a_1X - a_3.$

```
def neg_polynomial : F[X][Y] := -Y - C (C E.a_1 * X + C E.a_3)
```

```
def neg_Y (x y : F) : F := (E.neg_polynomial.eval (C y)).eval x
```

```
lemma equation_neg {x y : F} : E.equation x y \rightarrow E.equation x (E.neg_Y x y) := ...
```

```
\begin{array}{l} \texttt{def neg}:\texttt{E.point}\rightarrow\texttt{E.point}\\ |\texttt{zero}:=\texttt{zero}\\ |\texttt{(some h)}:=\texttt{some}(\texttt{equation_neg h}) \end{array}
```

instance : has_neg E.point := $\langle neg \rangle$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Negation is given by $-(x, y) := (x, \sigma(y))$, where $\sigma(Y) := -Y - a_1X - a_3.$

```
def neg_polynomial : F[X][Y] := -Y - C (C E.a_1 * X + C E.a_3)
```

```
def neg_Y (x y : F) : F := (E.neg_polynomial.eval (C y)).eval x
```

```
lemma equation_neg {x y : F} : E.equation x y \rightarrow E.equation x (E.neg_Y x y) := ...
```

```
def neg : E.point → E.point
  | zero := zero
  | (some h) := some (equation_neg h)
```

 $instance : has_neg E.point := \langle neg \rangle$

Note:

$$-(Y \cdot \sigma(Y)) = Y^2 + a_1 X Y + a_3 Y$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Negation is given by $-(x, y) := (x, \sigma(y))$, where $\sigma(Y) := -Y - a_1X - a_3.$

```
def neg_polynomial : F[X][Y] := -Y - C (C E.a_1 * X + C E.a_3)
```

```
def neg_Y (x y : F) : F := (E.neg_polynomial.eval (C y)).eval x
```

```
lemma equation_neg {x y : F} : E.equation x y \rightarrow E.equation x (E.neg_Y x y) := ...
```

```
def neg : E.point → E.point
  | zero := zero
  | (some h) := some (equation_neg h)
```

instance : has_neg E.point := $\langle neg \rangle$

<u>Note</u>: in the coordinate ring $F[E] := F[X, Y] / \langle E(X, Y) \rangle$,

$$-(Y \cdot \sigma(Y)) = Y^2 + a_1XY + a_3Y \equiv X^3 + a_2X^2 + a_4X + a_6.$$

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Addition is given by $(x_1, y_1) + (x_2, y_2) := -(x_3, y_3)$, where $x_3 := \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$, $y_3 := \lambda(x_3 - x_1) + y_1$.

 $\begin{array}{l} \texttt{def add}: \texttt{E.point} \rightarrow \texttt{E.point} \rightarrow \texttt{E.point} \\ \mid \texttt{zero } \texttt{P} := \texttt{P} \\ \mid \texttt{P zero} := \texttt{P} \\ \mid (\texttt{some } \texttt{h}_1) (\texttt{some } \texttt{h}_2) := \texttt{some} (\texttt{equation_add} \texttt{h}_1 \texttt{h}_2) \\ \texttt{instance} : \texttt{has_add} \texttt{E.point} := \langle\texttt{add}\rangle \end{array}$

Theorem (the group law)

The points of E form an abelian group under a geometric addition law.

Addition is given by $(x_1, y_1) + (x_2, y_2) := -(x_3, y_3)$, where $x_3 := \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$, $y_3 := \lambda(x_3 - x_1) + y_1$.

 $\begin{array}{l} \texttt{def add}: \texttt{E.point} \rightarrow \texttt{E.point} \rightarrow \texttt{E.point} \\ \mid \texttt{zero } \texttt{P} := \texttt{P} \\ \mid \texttt{P zero} := \texttt{P} \\ \mid (\texttt{some } \texttt{h}_1) (\texttt{some } \texttt{h}_2) := \texttt{some} (\texttt{equation_add} \texttt{h}_1 \texttt{h}_2) \\ \texttt{instance} : \texttt{has_add} \texttt{E.point} := \langle\texttt{add}\rangle \end{array}$

Here,

$$\lambda := \begin{cases} \frac{y_1 - y_2}{x_1 - x_2} & x_1 \neq x_2\\ \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{y_1 - \sigma(y_1)} & y_1 \neq \sigma(y_1) \\ \infty & \text{otherwise} \end{cases}$$

One may attempt to prove the axioms directly.

instance : add_g	group E.point :=
{ zero	:= zero,
neg	:= neg,
add	:= add,
zero_add	:= rfl, by definition
add_zero	:= rfl, by definition
add_left_neg	$g := \ldots, \qquadby \ cases$
add_comm	$:= \ldots,$ by cases
add_assoc	:= sorry } seems impossible?

回 と く ヨ と く ヨ と …

One may attempt to prove the axioms directly.

Associativity is a proof that

$$(P+Q)+R=P+(Q+R),$$

where each + has five cases!

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

One may attempt to prove the axioms directly.

instance : add_g	roup E.poin	nt :=
{ zero	:= zero,	
neg	:= neg,	
add	:= add,	
zero_add	:= rfl,	—— by definition
add_zero	:= rfl,	—— by definition
add_left_neg	:=,	—— by cases
add_comm	:=,	—— by cases
add_assoc	:= sorry }	seems impossible

Associativity is a proof that

$$(P+Q)+R=P+(Q+R),$$

where each + has five cases!

In the generic case, this is an equality of polynomials with 26,082 terms.

In contrast, the ring tactic in Lean can handle at most 1,000 terms.

→ < Ξ →</p>

Associativity is known to be mathematically difficult with many proofs.

문에서 문어 :

æ

Associativity is known to be mathematically difficult with many proofs.

Proof 1: just do it.

- elementary but slow
- several known formalisations
 - Théry (Coq, 2007): short Weierstrass model $Y^2 = X^3 + aX + b$
 - Hales, Raya (Isabelle, 2020): Edwards model $X^2 + Y^2 = 1 + dX^2Y^2$
 - Fox, Gordon, Hurd (HOL4, 2006): long Weierstrass model $Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$ but no associativity

Associativity is known to be mathematically difficult with many proofs.

Proof 1: just do it.

- elementary but slow
- several known formalisations
 - Théry (Coq, 2007): short Weierstrass model $Y^2 = X^3 + aX + b$
 - Hales, Raya (Isabelle, 2020): Edwards model $X^2 + Y^2 = 1 + dX^2Y^2$
 - Fox, Gordon, Hurd (HOL4, 2006): long Weierstrass model
 - $Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$ but no associativity

Proof 2: ad-hoc argument with projective geometry.

- only works generically via Cayley-Bacharach
- no known formalisations
 - our original attempt

• • = •

One may instead identify the set of points E(F) with a known group.

< 注入 < 注入 -

One may instead identify the set of points E(F) with a known group.

Proof 3: identify with a quotient of \mathbb{C} by the *fundamental lattice* Λ_E .

- only works in characteristic zero via uniformisation
- no known formalisations
 - needs a lot of theory

• • = •

One may instead identify the set of points E(F) with a known group.

Proof 3: identify with a quotient of \mathbb{C} by the fundamental lattice Λ_E .

- only works in characteristic zero via uniformisation
- no known formalisations
 - needs a lot of theory

Proof 4: identify with the *degree zero Weil divisor class group* $\operatorname{Pic}_{F}^{0}(E)$.

- algebro-geometric and usually uses Riemann-Roch
- one known formalisation
 - Bartzia, Strub (10,000 lines of Coq, 2014): short Weierstrass model

One may instead identify the set of points E(F) with a known group.

Proof 3: identify with a quotient of \mathbb{C} by the fundamental lattice Λ_E .

- only works in characteristic zero via uniformisation
- no known formalisations
 - needs a lot of theory

Proof 4: identify with the *degree zero Weil divisor class group* $\operatorname{Pic}_{F}^{0}(E)$.

- algebro-geometric and usually uses Riemann-Roch
- one known formalisation
 - Bartzia, Strub (10,000 lines of Coq, 2014): short Weierstrass model

Proof 5: identify with the *ideal class group* Cl(F[E]).

- purely algebraic and uses commutative algebra
- one known formalisation
 - our final proof (1,000 lines of Lean, 2023): long Weierstrass model

Proof of the group law.

- Construct a function $E(F) \rightarrow \operatorname{Cl}(F[E])$.
- **2** Prove that $E(F) \rightarrow Cl(F[E])$ respects addition.
- Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

向下 イヨト イヨト

Proof of the group law.

- Construct a function $E(F) \rightarrow Cl(F[E])$.
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Here, the **ideal class group** Cl(R) of an integral domain R is the quotient group of *invertible fractional ideals* by *principal fractional ideals*.

A B M A B M

э

Proof of the group law.

- Construct a function $E(F) \rightarrow Cl(F[E])$.
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Here, the **ideal class group** Cl(R) of an integral domain R is the quotient group of *invertible fractional ideals* by *principal fractional ideals*.

Example

Any nonzero ideal $I \leq R$ such that $I \cdot J$ is principal for some ideal $J \leq R$ is an invertible fractional ideal of R.

э

Proof of the group law.

- Construct a function $E(F) \rightarrow Cl(F[E])$.
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Here, the **ideal class group** Cl(R) of an integral domain R is the quotient group of *invertible fractional ideals* by *principal fractional ideals*.

Example

Any nonzero ideal $I \leq R$ such that $I \cdot J$ is principal for some ideal $J \leq R$ is an invertible fractional ideal of R.

Ideal class groups were formalised in Lean's mathematical library mathlib by Baanen, Dahmen, Narayanan, Nuccio (2021).

Proof of the group law.

- Construct a function $E(F) \rightarrow Cl(F[E])$.
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Here, the **ideal class group** Cl(R) of an integral domain R is the quotient group of *invertible fractional ideals* by *principal fractional ideals*.

Example

Any nonzero ideal $I \leq R$ such that $I \cdot J$ is principal for some ideal $J \leq R$ is an invertible fractional ideal of R.

Ideal class groups were formalised in Lean's mathematical library mathlib by Baanen, Dahmen, Narayanan, Nuccio (2021).

Key: the coordinate ring F[E] is an integral domain.

向 ト イヨ ト イヨ ト

Proof of the group law.

- Construct a function $E(F) \rightarrow \operatorname{Cl}(F[E])$. \checkmark
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Consider the function <code>point.to_class</code> given by

$$\begin{array}{rcl} E(F) & \longrightarrow & \operatorname{Cl}(F[E]) \\ \mathcal{O} & \longmapsto & [\langle 1 \rangle] \\ (x,y) & \longmapsto & [\langle X-x, Y-y \rangle] \end{array}$$

Proof of the group law.

- Construct a function $E(F) \rightarrow \operatorname{Cl}(F[E])$. \checkmark
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition.
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Consider the function <code>point.to_class</code> given by

$$\begin{array}{rcl} E(F) & \longrightarrow & \operatorname{Cl}(F[E]) \\ \mathcal{O} & \longmapsto & [\langle 1 \rangle] \\ (x,y) & \longmapsto & [\langle X-x, Y-y \rangle] \end{array}$$

<u>Note</u>: $\langle X - x, Y - y \rangle$ is invertible, since $\langle X - x, Y - y \rangle \cdot \langle X - x, Y - \sigma(y) \rangle = \langle X - x \rangle.$

Sketch of proof

Proof of the group law.

- Construct a function $E(F) \rightarrow \operatorname{Cl}(F[E])$. \checkmark
- **2** Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ respects addition. \checkmark
- Solution Prove that $E(F) \rightarrow \operatorname{Cl}(F[E])$ is injective.

Consider the function <code>point.to_class</code> given by

$$\begin{array}{rcl} E(F) & \longrightarrow & \operatorname{Cl}(F[E]) \\ \mathcal{O} & \longmapsto & [\langle 1 \rangle] \\ (x,y) & \longmapsto & [\langle X-x, Y-y \rangle] \end{array}$$

<u>Note</u>: $\langle X - x, Y - y \rangle$ is invertible, since $\langle X - x, Y - y \rangle \cdot \langle X - x, Y - \sigma(y) \rangle = \langle X - x \rangle.$

The function point.to_class respects addition, since

$$\langle X-x_1, Y-y_1 \rangle \cdot \langle X-x_2, Y-y_2 \rangle \cdot \langle X-x_3, Y-\sigma(y_3) \rangle = \langle Y-\lambda(X-x_3)-y_3 \rangle.$$

Theorem (Xu, 2022)

The function point.to_class is injective.

回 と く ヨ と く ヨ と …

æ

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \det([\cdot f])$.

伺 ト イヨト イヨト

э.

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \det([\cdot f])$.

Lemma (A)

If $f \in F[E]$, then deg $(Nm(f)) \neq 1$.

伺 と く ヨ と く ヨ と

= nav

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \det([\cdot f])$.

Lemma (A)

If $f \in F[E]$, then deg $(Nm(f)) \neq 1$.

Proof of Lemma (A).

Let
$$f = p + qY$$
 for $p, q \in F[X]$. Then

$$Nm(f) \equiv det \begin{pmatrix} p & q \\ q(X^3 + a_2X^2 + a_4X + a_6) & p - q(a_1X + a_3) \end{pmatrix}$$

$$= p^2 - pq(a_1X + a_3) - q^2(X^3 + a_2X^2 + a_4X + a_6).$$
Then $deg(Nm(f)) = max(2 deg(p), 2 deg(q) + 3).$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \det([\cdot f])$.

Lemma (B)

If $f \in F[E]$, then deg(Nm(f)) = dim_F(F[E]/\langle f \rangle).

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \operatorname{det}([\cdot f])$.

Lemma (B)

If
$$f \in F[E]$$
, then deg(Nm(f)) = dim_F(F[E]/\langle f \rangle).

Proof of Lemma (B).

Multiplication by f has Smith normal form

$$[\cdot f] \sim egin{pmatrix} p & 0 \ 0 & q \end{pmatrix}, \qquad p,q \in F[X].$$

- Taking determinants gives Nm(f) = pq.
- Taking quotients gives $F[E]/\langle f \rangle \cong F[X]/\langle p \rangle \oplus F[X]/\langle q \rangle$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \operatorname{det}([\cdot f])$.

Proof of Theorem.

Suffices to show if $(x, y) \in E(F)$, then $\langle X - x, Y - y \rangle$ is not principal.

伺 ト イヨ ト イヨ ト

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \operatorname{det}([\cdot f])$.

Proof of Theorem.

Suffices to show if $(x, y) \in E(F)$, then $\langle X - x, Y - y \rangle$ is not principal.

Suppose otherwise that $\langle X - x, Y - y \rangle = \langle f \rangle$ for some $f \in F[E]$. Then

$$F \stackrel{1^{\rm st}_{\rm iso}}{\cong} F[X,Y]/\langle X-x,Y-y\rangle \stackrel{3^{\rm rd}_{\rm iso}}{\cong} F[E]/\langle X-x,Y-y\rangle = F[E]/\langle f\rangle.$$

くぼう くほう くほう

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \operatorname{det}([\cdot f])$.

Proof of Theorem.

Suffices to show if $(x, y) \in E(F)$, then $\langle X - x, Y - y \rangle$ is not principal.

Suppose otherwise that $\langle X - x, Y - y \rangle = \langle f \rangle$ for some $f \in F[E]$. Then

$$F \stackrel{1^{\rm st}_{\rm iso}}{\cong} F[X,Y]/\langle X-x,Y-y\rangle \stackrel{3^{\rm rd}_{\rm iso}}{\cong} F[E]/\langle X-x,Y-y\rangle = F[E]/\langle f\rangle.$$

Taking dimensions gives

$$1 = \dim_{F}(F) = \dim_{F}(F[E]/\langle f \rangle) \stackrel{(B)}{=} \deg(\operatorname{Nm}(f)) \stackrel{(A)}{\neq} 1$$

< 回 > < 三 > < 三 > -

Theorem (Xu, 2022)

The function point.to_class is injective.

Key: $F[E] = F[X, Y]/\langle E(X, Y) \rangle$ is free over F[X] with basis $\{1, Y\}$, so it has a norm $\operatorname{Nm} : F[E] \to F[X]$ given by $\operatorname{Nm}(f) := \operatorname{det}([\cdot f])$.

Proof of Theorem.

Suffices to show if $(x, y) \in E(F)$, then $\langle X - x, Y - y \rangle$ is not principal.

Suppose otherwise that $\langle X - x, Y - y \rangle = \langle f \rangle$ for some $f \in F[E]$. Then

$$F \stackrel{1^{\rm st}_{\rm iso}}{\cong} F[X,Y]/\langle X-x,Y-y\rangle \stackrel{3^{\rm rd}_{\rm iso}}{\cong} F[E]/\langle X-x,Y-y\rangle = F[E]/\langle f\rangle.$$

Taking dimensions gives

$$1 = \dim_{F}(F) = \dim_{F}(F[E]/\langle f \rangle) \stackrel{(B)}{=} \deg(\operatorname{Nm}(f)) \stackrel{(A)}{\neq} 1.$$

Contradiction!

・ 同 ト ・ ヨ ト ・ ヨ ト

Concluding retrospectives

Some thoughts:

- proof works for nonsingular points of Weierstrass curves
- formalisation encouraged proof accessible to undergraduates
- heavy use of linear algebra and ring theory in mathlib
- fully integrated to mathlib and even ported to mathlib4

글 🖌 🔺 글 🛌

Concluding retrospectives

Some thoughts:

- proof works for nonsingular points of Weierstrass curves
- formalisation encouraged proof accessible to undergraduates
- heavy use of linear algebra and ring theory in mathlib
- fully integrated to mathlib and even ported to mathlib4

Some projects:

- division polynomials, torsion subgroups, and Tate modules
- elliptic curves over discrete valuation rings and the reduction map
- verification of computational algorithms and cryptographic protocols
- equivalence with scheme-theoretic definitions via Riemann-Roch
- elliptic curves over specific fields: finite fields, local fields, number fields, global function fields, complete fields

글 🖌 🔺 글 🕨

Concluding retrospectives

Some thoughts:

- proof works for nonsingular points of Weierstrass curves
- formalisation encouraged proof accessible to undergraduates
- heavy use of linear algebra and ring theory in mathlib
- fully integrated to mathlib and even ported to mathlib4

Some projects:

- division polynomials, torsion subgroups, and Tate modules
- elliptic curves over discrete valuation rings and the reduction map
- verification of computational algorithms and cryptographic protocols
- equivalence with scheme-theoretic definitions via Riemann-Roch
- elliptic curves over specific fields: finite fields, local fields, number fields, global function fields, complete fields

Thank you!

э