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Introduction

Elliptic curves are algebraic curves given by cubic equations.

Their set of points can be endowed with a group law.
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Motivation

Why should we care about elliptic curves?

They are prevalent in modern number theory.

▶ Wiles proved Fermat’s last theorem by drawing a correspondence
between certain elliptic curves and certain modular forms.

▶ The Birch and Swinnerton-Dyer conjecture predicts the arithmetic
behaviour of elliptic curves based on their L-functions.

They see many computational applications.

▶ Intractability of the discrete logarithm problem for elliptic curves
forms the basis behind many public key cryptographic protocols.

▶ The Atkin–Morain primality test and Lenstra’s factorisation method
use elliptic curves and are two of the fastest known algorithms.

Formalising the theory of elliptic curves would be great!
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History

There is much previous work in various interactive theorem provers.

▶ Anthony Fox, Mike Gordon, and Joe Hurd (2006) formalised a
definition of an elliptic curve in HOL4 over an arbitrary field F .

▶ Laurent Théry (2007) formalised a direct proof of the group law on
an elliptic curve in Coq, assuming char(F ) ̸= 2, 3.

▶ Evmorfia-Iro Bartzia and Pierre-Yves Strub (2014) formalised a
conceptual proof of the group law in Coq, assuming char(F ) ̸= 2, 3.

▶ Thomas Hales and Rodrigo Raya (2020) formalised a direct proof of
the group law in Isabelle, assuming char(F ) ̸= 2.

▶ Junyan Xu and I (2023) formalised a novel conceptual proof of the
group law in Lean, with no assumptions on char(F ).

▶ Junyan Xu and I (2024) discovered gaps in the standard proof of the
multiplication-by-n formula on an elliptic curve, filled them in with
novel arguments, and formalised the entire proof in Lean.
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Elliptic curves

An elliptic curve over a field F is a smooth projective curve E over F of
genus one, equipped with a distinguished point O defined over F .

These are all notions from modern algebraic geometry.

▶ A curve is a variety 1 of dimension one as a topological space.

▶ Projective means there is a closed immersion E ↪→ Proj(F [Xi ]).

▶ Smooth essentially means all OE ,x are regular local rings.

▶ Genus is the dimension of H1(E ,OE ) as an F -vector space.

In mathlib, we have schemes (Aug 2020), integral schemes (Dec 2021),
projective schemes (Apr 2022), finite type morphisms (Oct 2022), Krull
dimensions (May 2023), separated morphisms (Jun 2024), smooth
morphisms (Jul 2024), and sheaf cohomology (Jul 2024).

Thanks to the work of Andrew Yang, Christian Merten, Joël Riou, and
others, we can almost formalise the definition of elliptic curves in Lean!

1integral separated scheme of finite type over Spec(F )
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Elliptic curves in mathlib

Corollary (of the Riemann–Roch theorem)
The set of points of an elliptic curve over F is the vanishing locus of

E := Y 2 + a1XY + a3Y − (X 3 + a2X
2 + a4X + a6),

for some ai ∈ F such that ∆ ̸= 0, 2 with an extra point at infinity O.

In other words, there is an equivalence of categories

{elliptic curves over F} ∼= {(a1, a2, a3, a4, a6) ∈ F 5 such that ∆ ̸= 0}.

In mathlib, an elliptic curve E over a ring R is the data of tuples
(a1, a2, a3, a4, a6) ∈ R5 and a proof that ∆ ∈ R×. A point on E is then a
sum type of O and affine points (x , y) ∈ R2 such that E(x , y) = 0.

The arithmetic can be formalised independently of the algebraic geometry.

2
∆ := −(a21+4a2)

2(a21a6+4a2a6−a1a3a4+a2a
2
3−a24)−8(2a4+a1a3)

3−27(a23+4a6)
2+9(a21+4a2)(2a4+a1a3)(a

2
3+4a6)
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The group law

The set of points E (F ) can be endowed with a geometric addition law.

Theorem (the group law)
This addition law makes E (F ) an abelian group with identity O.
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The group law in mathlib

In mathlib, the addition law is given by explicit rational functions.

For instance, (x1, y1) + (x2, y2) := (x3, y3), where

x3 := λ2 + a1λ− a2 − x1 − x2,

y3 := −λ(x3 − x1)− y1 − a1x3 − a3.

Here, the slope λ is given by

λ :=



y1 − y2
x1 − x2

x1 ̸= x2

3x21 + 2a2x1 + a4 − a1y1
2y1 + a1x + a3

y1 ̸= −y1 − a1x − a3

∞ otherwise

.

All of the axioms for an abelian group are easy except for associativity.

21 / 60



The group law in mathlib

In mathlib, the addition law is given by explicit rational functions.

For instance, (x1, y1) + (x2, y2) := (x3, y3), where

x3 := λ2 + a1λ− a2 − x1 − x2,

y3 := −λ(x3 − x1)− y1 − a1x3 − a3.

Here, the slope λ is given by

λ :=



y1 − y2
x1 − x2

x1 ̸= x2

3x21 + 2a2x1 + a4 − a1y1
2y1 + a1x + a3

y1 ̸= −y1 − a1x − a3

∞ otherwise

.

All of the axioms for an abelian group are easy except for associativity.

22 / 60



The group law in mathlib

In mathlib, the addition law is given by explicit rational functions.

For instance, (x1, y1) + (x2, y2) := (x3, y3), where

x3 := λ2 + a1λ− a2 − x1 − x2,

y3 := −λ(x3 − x1)− y1 − a1x3 − a3.

Here, the slope λ is given by

λ :=



y1 − y2
x1 − x2

x1 ̸= x2

3x21 + 2a2x1 + a4 − a1y1
2y1 + a1x + a3

y1 ̸= −y1 − a1x − a3

∞ otherwise

.

All of the axioms for an abelian group are easy except for associativity.

23 / 60



Associativity

Associativity is the statement that, for all P,Q,R ∈ E (F ),

(P + Q) + R = P + (Q + R).

In the generic case, 3 checking that their X -coordinates are equal is an
equality of multivariate polynomials with 26,082 terms!

When char(F ) ̸= 2, 3, a linear change of variables reduces E to

E ′ := Y 2 − (X 3 + aX + b),

for some a, b ∈ F such that −16(4a3 + 27b2) ̸= 0.

This computation reduces to an equality of polynomials with 2,636 terms.

Automation in an interactive theorem prover enables manipulation of
multivariate polynomials with at most 5,000 terms.

3P, Q, R, P + Q, P + R, and Q + R are not O and have distinct X -coordinates
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A complex uniformisation

Why should there be a group law in the first place?

Over F = C, an elliptic curve is just a complex torus C/ΛE .

There is an explicit bijection from E (C) to C/ΛE that preserves the
addition law, so the group law on C/ΛE can be pulled back to E (C).
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An algebraic variant

In general, Riemann–Roch gives an explicit bijection from E (F ) to the
degree-zero divisor class group Pic0F (E ) that preserves the addition law.
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O 7−→ [⟨1⟩]

(x , y) 7−→ [⟨X − x ,Y − y⟩]
,

where D is the integral domain F [X ,Y ]/⟨E⟩.

Theorem (Xu)
Proving that this map is injective only needs linear algebra.

4group of invertible fractional ideals of D
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Multiplication by n

For each n ∈ Z and each point P ∈ E (F ), define [n](P) := P + · · ·+ P︸ ︷︷ ︸
n

.

How many points P ∈ E (C) are there such that [n](P) = O?
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The n-torsion subgroup

For each n ∈ Z, define EF [n] := {P ∈ E (F ) : [n](P) = O}.

Theorem (the n-torsion subgroup structure)
If char(F ) ∤ n, then EF [n] is isomorphic to (Z/n)2.
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If char(F ) ∤ n, then EF [n] is isomorphic to (Z/n)2.

When char(F ) ̸= p,

the p-adic Tate module TpEF sits in the diagram

TpEF := lim←−
(

. . . EF [p
3] EF [p

2] EF [p]

)

Z2
p := lim←−

(

. . . (Z/p3)2 (Z/p2)2 (Z/p)2

)

[p] [p]

∼

[p]

∼ ∼

mod p3 mod p2 mod p

.
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[p] [p]

∼

[p]

∼ ∼

mod p3 mod p2 mod p

.

This makes TpEF a two-dimensional p-adic Galois representation. 5

5crucial in the Mordell–Weil theorem, Tate’s isogeny theorem, Serre’s open image
theorem, Wiles’s modularity theorem, the Birch and Swinnerton-Dyer conjecture, etc.
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An infamous exercise

The Arithmetic of Elliptic Curves by Silverman gives a formula for [n](P).

Exercise (3.7(d))
Let n ∈ Z. Prove that for any affine point (x , y) ∈ E (F ),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

Silverman gives definitions for ϕn, ωn ∈ F [X ,Y ] in terms of certain
division polynomials ψn ∈ F [X ,Y ], which feature in Schoof’s algorithm.

Conjecture
No one has done Exercise 3.7(d) purely algebraically.

This formula does not account for affine points (x , y) ∈ E (F ) such that
ψn(x , y) = 0, which occurs precisely when [n]((x , y)) = O.
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Projective coordinates

In projective coordinates, the multiplication-by-n formula becomes

[n]((x , y)) = [(ϕn(x , y)ψn(x , y), ωn(x , y), ψn(x , y)
3)].

In mathlib, a projective point is a class of (x , y , z) ∈ F 3 such that

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The point at infinity becomes [(0, 1, 0)].

More naturally, in projective coordinates with weights (2, 3, 1),

[n]((x , y)) = [(ϕn(x , y), ωn(x , y), ψn(x , y))].

In mathlib, a Jacobian point is a class of (x , y , z) ∈ F 3 such that

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6.

The point at infinity becomes [(1, 1, 0)].
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The polynomials ψn

For any ring R, the n-th division polynomial ψn ∈ R[X ,Y ] is given by

ψ0 := 0,

ψ1 := 1,

ψ2 := 2Y + a1X + a3,

ψ3 := 3X 4+(a21+4a2)X
3+3(2a4+a1a3)X

2+3(a23+4a6)X+(a21a6+4a2a6−a1a3a4+a2a
2
3−a24),

ψ4 := ψ2

(
2X6+(a21+4a2)X

5+5(2a4+a1a3)X
4+10(a23+4a6)X

3+10(a21a6+4a2a6−a1a3a4+a2a
2
3−a24)X

2

+((a21+4a2)(a
2
1a6+4a2a6−a1a3a4+a2a

2
3−a24)−(2a4+a1a3)(a

2
3+4a6))X

+((2a4+a1a3)(a
2
1a6+4a2a6−a1a3a4+a2a

2
3−a24)−(a23+4a6)

2)

)
,

ψ2n+1 := ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2n :=
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
,

ψ−n := −ψn.

In mathlib, ψn is defined in terms of some polynomial Ψn ∈ R[X ] such
that ψn = Ψn when n is odd and ψn = ψ2Ψn when n is even.
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The polynomials ϕn
The polynomial ϕn ∈ R[X ,Y ] is given by

ϕn := Xψ2
n − ψn+1ψn−1.

In mathlib, ϕn is defined in terms of some polynomial Φn ∈ R[X ], since

ψ2
2 = (2Y + a1X + a3)

2

= 4(Y 2 + a1XY + a3Y ) + a21X
2 + 2a1a3X + a23

≡ 4X 3 + b2X
2 + 2b4X + b6 mod E ,

so ψ2
n and ψn+1ψn−1 are congruent to polynomials in R[X ].

Exercise (3.7(c))
Let n ∈ Z. Prove that ϕn and ψ2

n have no common roots.

This needs Exercise 3.7(d) and the assumption that ∆ ̸= 0.
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The polynomials ωn

The polynomial ωn ∈ R[X ,Y ] is given by

ωn :=
1

2

(
ψ2n

ψn
− a1ϕnψn − a3ψ

3
n

)
.

Lemma (Xu)
Let n ∈ Z. Then ψ2n/ψn − a1ϕnψn − a3ψ

3
n is divisible by 2 in Z[ai ,X ,Y ].

Example (a1 = a3 = 0)

ω2 =
2X6+4a2X

5+10a4X
4+40a6X

3+10(4a2a6−a24)X
2+(4a2(4a2a6−a24)−8a4a6)X+(2a4(4a2a6−a24)−16a26)

2
.

Define ωn as the image of the quotient under Z[ai ,X ,Y ]→ R[X ,Y ].

When n = 4, this quotient has 15,049 terms.
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Elliptic divisibility sequences

Integrality relies on the fact that ψn is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r ∈ Z, prove that ψn | ψnm and

ES(n,m, r) : ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

Note that ES(n + 1, n, 1) gives ψ2n+1 and ES(n + 1, n − 1, 1) gives ψ2n.

Surprisingly, this needs the stronger result that ψn is an elliptic net.

Theorem (Xu)
Let n,m, r , s ∈ Z. Then

EN(n,m, r , s) : ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s

− ψm+rψm−rψn+sψn−s .

Xu gave an elegant proof of this on Math Stack Exchange.
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Ellipticity of ψn

It suffices to prove EN(n,m, r , s) by strong induction on n assuming that
n,m, r , s ∈ N 6 such that n > m > r > s.

Firstly,

EN(n,m, 1, 0) = EN( n+m+1
2 , n+m−1

2 , n−m+1
2 , n−m−1

2 ).

If n = m + 1, then EN(m + 1,m, 1, 0) holds by definition of ψ2n+1.
Otherwise n > m+ 1, then inductive hypothesis applies since n+m+1

2 < n.
This gives EN(n,m, 1, 0) for all n,m > 1. Furthermore,

EN(n,m,r ,0)= ψ2
r ·EN(n,m,1,0)− ψ2

m·EN(n,r ,1,0)+ ψ2
n·EN(m,r ,1,0),

EN(n,m,r ,1)=ψr+1ψr−1·EN(n,m,1,0)−ψm+1ψm−1·EN(n,r ,1,0)+ψn+1ψn−1·EN(m,r ,1,0).

This gives EN(n,m, r , 0) and EN(n,m, r , 1) for all n,m, r > 1. Finally,

EN(n,m,r ,s) = ψ2
m·EN(n,r ,s,1) + ψm+1ψm−1·EN(n,r ,s,0) + ψm+rψm−r ·EN(n,s,1,0)

− ψ2
r ·EN(n,m,s,1) − ψr+1ψr−1·EN(n,m,s,0) − ψm+sψm−s ·EN(n,r ,1,0)

+ ψ2
s ·EN(n,m,r ,1) + ψs+1ψs−1·EN(n,m,r ,0) + ψr+sψr−s ·EN(n,m,1,0)

− 2ψ2
n·EN(m,r ,s,1) .

This gives EN(n,m, r , s) for all n,m, r , s > 1.

6the complete proof also needs the case when n,m, r , s ∈ 1
2
N \ N
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Blueprint for TpEF

Defintion of ψn (3.7(a))

Definition of ϕn (3.7(a))

deg(ϕ2n) = n2 (3.7(b))

Definition of ωn (3.7(a))

[n]((x, y)) = . . . (3.7(d))

(ϕ2n, ψn) = 1 (3.7(c))

#E
F
[n] = n2 (3.7(e))

E
F
[n] ∼= (Z/n)2

TpEF
∼= Z2p

Elliptic nets (3.7(g))

Projective coordinates

Assumption ∆ ̸= 0

Finite abelian groups

Inverse limits
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Future projects

Projects without algebraic geometry:

▶ algorithms that only use the group law

▶ finite fields: the Hasse–Weil bound, the Weil conjectures

▶ local fields: the reduction homomorphism, Tate’s algorithm, the
Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function

▶ number fields: Neron-Tate heights, the Mordell–Weil theorem,
Tate–Shafarevich groups, the Birch and Swinnerton-Dyer conjecture

▶ complete fields: complex uniformisation, p-adic uniformisation

Projects with algebraic geometry:

▶ elliptic curves over global function fields

▶ the projective scheme associated to an elliptic curve

▶ integral models and finite flat group schemes

▶ divisors on curves and the Riemann–Roch theorem

▶ modular curves and Mazur’s theorem
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