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Notation

K a number field of degree n, such that r := #VE > 32

E an elliptic curve y? = (x — a1)(x — a2)(x — a3) over K of root
number 1, such that —1,a; — a5,a; — a3, a, — a3 € K* are linearly
independent as elements of K> /(K*)?

T a finite set of places of K that includes the 2-adic primes, the 3-adic
primes, the primes of bad reduction for E, and the archimedean
places, such that [K(T): K(VZ)] > 2"

70 six places in Vi, such that

T1(33) > 7'1(31) > 7’1(.32)7 7'2(33) > 7'2(22) > 7'2(31),
7'3(31) > ’7'3(83) > ’7'3(«32)7 T4(82) > T4(33) > 7'4(31),
75(a3) > 75(a1) > 75(a2), Te(as) > 16(a2) > 76(a1)
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A suitable twist

Recall that t € KX /(K*)? is a suitable twist if it satisfies the following.
P1 The quadratic character ¢ is trivial at the places in T.

P2 There is some x € K*/(K*)? whose quadratic character 1, is
ramified at some primes p1,...,ps of K and satisfies

%: = ¢H + wa + qu + ¢q3 + ¢q47

for some primes g1, g2, g3, gs of K notin T":= T U {ps,...,ps}.
P3 There is a basis (z1, 2), ..., (211, z12) of Selg, (K, E[2]) such that

-1 if (i,j) =(1,1),(5,2),(9,3),
H (zi, qj)V = (4’ 1)7 (872)7 (12’3)7

veT’ 1 otherwise.

P4 The rank of E~f(K) is positive.
Given a suitable twist t, the ranks of E*(K) and E*(K(/)) can be shown

to be equal and positive, which proves that Ok is Diophantine over Oygy.
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An auxiliary twist

It turns out that constructing a suitable twist reduces to constructing an
auxiliary twist k € K> /(K*)? satisfying the following.
K1 The quadratic character ¢ is

» a unit at the 2-adic primes of K,
» unramified at the odd primes in T, and
» trivial at 71, 72, 73 and non-trivial at 74, 75, 76.

K2 There is a basis (z1, 2), .. ., (211, z12) of Selz, . (K, E[2]) such that

- if (’.76) = (1’1)7(533)’(975)a
Sgn(Tg(Z,')) = (4,2),(8,4),(1276),
+ otherwise,

for some tuple m = (71, ..., ms) of primes of K.
Given an auxiliary twist x, a generalisation of the Green—Tao theorem by
Kai says that a generic family of polynomials L;(X, Y) € Ok[X, Y]
admits simultaneously prime values g; that satisfy certain congruence
conditions. Then /{Hj q; will turn out to be a suitable twist.
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The four bivariate polynomials

Let m € Ok be a generator of the ideal

g [ »*C0.

peT odd

Assume that k € O is coprime to m, which is possible by K1 and strong
approximation. Let A € Ok be an inverse of k modulo m coprime to .

Let c(X) := m?*sX + 1 and d(Y) := m?s(m?kY + )), and define
Li(X,Y) == c(X) + ard(Y), Ly(X,Y) := c(X) + a2d(Y),
L3(X,Y) == c(X) + azd(Y), La(X,Y):=d(Y)/m’k.
Kai's theorem will give infinitely many quadruples (g1, 92, g3, g4) of

primes of K such that L;j(x,y) = g; for each j = 1,2, 3,4 for some
x,y € Ok, so that t := kq192q3q4 clearly satisfies P2.
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Point of infinite order

For t to satisfy P4, observe that E~" is given by
dy?
—(c+ a1d)(c + a2d)(c + a3d)—

— = (x —a1)(x — a2)(x — a3),

for some ¢, d € Ok, which always has a rational point

- (55)

It then suffices to show that P; is almost always non-torsion.

Lemma (3.2)
For all but finitely many d € K* /(K*)?,

EY(K)tor = {0, (a1,0), (a2, 0), (a3,0)}.

Proof.
If E9(K)[p] is non-trivial for some prime p > 2, then 5 , factors through
the quadratic character 14, but pg , is almost always irreducible. O
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Signs for the polynomials

For t to satisfy P1 and P3, g; need to satisfy additional conditions at the
real places ¢ € T, obtained from enforcing the signs

- if j=1and o =71, 7,
j=2and o =m,7,73,Ta,
sgn(a(Lj(X,Y))) = j=3and o = 73,75, s,
sgn(o(k)) ifj=4and o #1,...,76,
+ otherwise.

Along with K1, these conditions force t to be trivial at o.
> If £ =1,2,3, then 7¢(g16293) > 0, 7¢(qs) > 0, and 74(k) > 0.
> If £ =4,5,6, then 7(q16293) < 0, 7¢(qa) > 0, and 7(x) < 0.
» Otherwise, 0(q19293) > 0 and o(qak) > 0.

Furthermore, g1 = g =g3 =1 mod mk and g4« = Ak =1 mod m, so
that t is trivial at the primes in T, and hence t satisfies P1.
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Computation of Hilbert symbols

Finally, since o(q1),0(q2),0(g3) > 0 at the real places 0 # 7,...,76
and since 1 = g = g3 =1 mod mx,

(Ziiqj)V:17 i:17"'712u j:17273’

for the places v € T’ \ {7,..., 76}, so that

6
H(Ziaqj)v:H(Ziaqj)Tm i:17"'7127 J:17273
veT! =1
Now (zj, gj)-, = —1 precisely if 74(z;), 7¢(q;) < 0, which occur when

(i,j,0)=(1,1,1),(1,2,1),(4,1,2),(4,2,2),(5,2,3),
(5,3,3),(8,2,4),(9,3,5),(12,3,6).

These are precisely the Hilbert symbol conditions enforced in P3, noting
that it does not enforce conditions for (i, /) = (1,2), (4,2), (5, 3).
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Admissibility of the polynomials

Observe that Lj(X, Y) form an admissible family, in the sense that they
satisfy the analogue of Bunyakovsky's property in Dickson's conjecture.
Lemma (5.5)

For any prime p of K, there are x,y € Ok such that

p 'f Ll(X7y)LQ(va)L3(Xay)L4(X7Y)'

Proof.

If p | mk, then L1(0,0) = L»(0,0) = L3(0,0) = 1, and L4(0,0) = A is
coprime to mk. Otherwise p { mk, then there is some y € Ok such that
ptm2ky + ), so that p{ Ly(x,y) for any x € Ok. On the other hand,
#(Ok/p) > 5 since p 16, so that there is some x € Ok such that

—a1d(y) =1 —axd(y) -1 —a3d(y) -1
m2k ’ m2k ’ m2k

X #

and hence p t L1(x, y)La(x, y)Ls(x, y). O

mod p,
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Statement of Kai's theorem

A version of Kai's theorem can be stated as follows.

Theorem (A.8)

Let ¢1,...,¢x : Z9 — Ok be affine linear forms for some d € N+ such
that the restriction of ¢; to the kernel of ¢;» has finite cokernel whenever
j# ', and let Q C RY be a convex region such that the volume of

Qn :=QN[-N,N]? is asymptotically N¢. Then

> TIMert) ~ — 1<K Hﬂpa

)?EQNﬁZd Jj=1

where A := N o Nmy q is the von Mangoldt function for K and

B " k.#{)?EIF pTHJ1¢J()fora//p|p}
O = <#(0K/(p)> ) b |

Note that the full version considers affine linear forms Z9 — I with a
uniformity condition over all fractional ideals / of K.
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Assumptions in Kai's theorem

For each j = 1,2, 3,4, the 1-homogeneous part of L;j(X, Y') defines an
affine linear form ¢; : Z?" — Ok by fixing a basis of Ok over Z. If j # j/,
then ¢;(X,y) = 0 implies that ¢; (X, ¥) # 0 since a; # aj/, or in other
words that the restriction of ¢; to the kernel of ¢;/ has finite cokernel.

The signs enforced on o(L;(X, Y)) define a convex region Q C R?".

Lemma (5.6, 5.7)
The volume of Qy is asymptotically N°".

Sketch of proof.

For a surjective linear operator T : R?" — R?", the volume of

2r
T! (H(Xg, oo)) N [=N, N>, (x1,...,x) € R*

(=1

is asymptotically N?". While Q is defined by 4r embeddings, the signs
enforced on o(L;(X, Y)) and o(aj) reduce this to 2r embeddings. O
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Intuition for Kai's theorem

Assume now that the coefficients of ¢; : Z9 — Ok are fixed. If ¢;(x) is
prime for some X € Qu N Z9, then Ak(¢;(X)) ~ log dN, since composite
prime powers are asymptotically negligible compared to primes. Thus

k
> I Ax(@i(%) ~ #Sn - log" dN,
xeQunzd j=1

where Sy is the set of X € Qy N Z such that ¢1(X), ..., ¢.(xX) are
simultaneously prime. Kai's theorem then says #Sy > 0 whenever
Hp Bp > 0, which is equivalent to the admissibility of ¢;.

Note that when K = Q, this says that

)

Nd p \* #{XeFL: ptI, (%)}
#SNngde'l;[(p—l) ' pd

which is simply a multivariate version of the Hardy—Littlewood conjecture.
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