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Notation

K a number field of degree n, such that r := #V R
K ≥ 32

E an elliptic curve y2 = (x − a1)(x − a2)(x − a3) over K of root
number 1, such that −1, a1 − a2, a1 − a3, a2 − a3 ∈ K× are linearly
independent as elements of K×/(K×)2

T a finite set of places of K that includes the 2-adic primes, the 3-adic
primes, the primes of bad reduction for E , and the archimedean
places, such that [K (T ) : K (V R

K )] ≥ 2r

τℓ six places in V R
K , such that

τ1(a3) > τ1(a1) > τ1(a2), τ2(a3) > τ2(a2) > τ2(a1),

τ3(a1) > τ3(a3) > τ3(a2), τ4(a2) > τ4(a3) > τ4(a1),

τ5(a3) > τ5(a1) > τ5(a2), τ6(a3) > τ6(a2) > τ6(a1)
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A suitable twist

Recall that t ∈ K×/(K×)2 is a suitable twist if it satisfies the following.

P1 The quadratic character ψt is trivial at the places in T .

P2 There is some κ ∈ K×/(K×)2 whose quadratic character ψκ is
ramified at some primes p1, . . . , ps of K and satisfies

ψt = ψκ + ψq1 + ψq2 + ψq3 + ψq4 ,

for some primes q1, q2, q3, q4 of K not in T ′ := T ∪ {p1, . . . , ps}.
P3 There is a basis (z1, z2), . . . , (z11, z12) of SelLs,t (K ,E [2]) such that

∏
v∈T ′

(zi , qj)v =


−1 if (i , j) = (1, 1), (5, 2), (9, 3),

(4, 1), (8, 2), (12, 3),

1 otherwise.

P4 The rank of E−t(K ) is positive.

Given a suitable twist t, the ranks of E t(K ) and E t(K (i)) can be shown
to be equal and positive, which proves that OK is Diophantine over OK(i).
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An auxiliary twist

It turns out that constructing a suitable twist reduces to constructing an
auxiliary twist κ ∈ K×/(K×)2 satisfying the following.

K1 The quadratic character ψκ is
▶ a unit at the 2-adic primes of K ,
▶ unramified at the odd primes in T , and
▶ trivial at τ1, τ2, τ3 and non-trivial at τ4, τ5, τ6.

K2 There is a basis (z1, z2), . . . , (z11, z12) of SelLs,π (K ,E [2]) such that

sgn(τℓ(zi )) =


− if (i , ℓ) = (1, 1), (5, 3), (9, 5),

(4, 2), (8, 4), (12, 6),

+ otherwise,

for some tuple π = (π1, . . . , πs) of primes of K .

Given an auxiliary twist κ, a generalisation of the Green–Tao theorem by
Kai says that a generic family of polynomials Lj(X ,Y ) ∈ OK [X ,Y ]
admits simultaneously prime values qj that satisfy certain congruence
conditions. Then κ

∏
j qj will turn out to be a suitable twist.
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The four bivariate polynomials

Let m ∈ OK be a generator of the ideal

8
∏

p∈T odd

p#Cl(K).

Assume that κ ∈ OK is coprime to m, which is possible by K1 and strong
approximation. Let λ ∈ OK be an inverse of κ modulo m coprime to κ.

Let c(X ) := m2κX + 1 and d(Y ) := m2κ(m2κY + λ), and define

L1(X ,Y ) := c(X ) + a1d(Y ), L2(X ,Y ) := c(X ) + a2d(Y ),

L3(X ,Y ) := c(X ) + a3d(Y ), L4(X ,Y ) := d(Y )/m2κ.

Kai’s theorem will give infinitely many quadruples (q1, q2, q3, q4) of
primes of K such that Lj(x , y) = qj for each j = 1, 2, 3, 4 for some
x , y ∈ OK , so that t := κq1q2q3q4 clearly satisfies P2.

5 / 12



Point of infinite order

For t to satisfy P4, observe that E−t is given by

−(c + a1d)(c + a2d)(c + a3d)
dy2

m2
= (x − a1)(x − a2)(x − a3),

for some c , d ∈ OK , which always has a rational point

Pt :=
(
− c

d
,
m

d2

)
.

It then suffices to show that Pt is almost always non-torsion.

Lemma (3.2)
For all but finitely many d ∈ K×/(K×)2,

E d(K )tors = {O, (a1, 0), (a2, 0), (a3, 0)}.

Proof.
If E d(K )[p] is non-trivial for some prime p > 2, then ρE ,p factors through
the quadratic character ψd , but ρE ,p is almost always irreducible.
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Signs for the polynomials

For t to satisfy P1 and P3, qj need to satisfy additional conditions at the
real places σ ∈ T , obtained from enforcing the signs

sgn(σ(Lj(X ,Y ))) =



− if j = 1 and σ = τ1, τ2,

j = 2 and σ = τ1, τ2, τ3, τ4,

j = 3 and σ = τ3, τ5, τ6,

sgn(σ(κ)) if j = 4 and σ ̸= τ1, . . . , τ6,

+ otherwise.

Along with K1, these conditions force t to be trivial at σ.

▶ If ℓ = 1, 2, 3, then τℓ(q1q2q3) > 0, τℓ(q4) > 0, and τℓ(κ) > 0.

▶ If ℓ = 4, 5, 6, then τℓ(q1q2q3) < 0, τℓ(q4) > 0, and τℓ(κ) < 0.

▶ Otherwise, σ(q1q2q3) > 0 and σ(q4κ) > 0.

Furthermore, q1 ≡ q2 ≡ q3 ≡ 1 mod mκ and q4κ ≡ λκ ≡ 1 mod m, so
that t is trivial at the primes in T , and hence t satisfies P1.
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Computation of Hilbert symbols

Finally, since σ(q1), σ(q2), σ(q3) > 0 at the real places σ ̸= τ1, . . . , τ6
and since q1 ≡ q2 ≡ q3 ≡ 1 mod mκ,

(zi , qj)v = 1, i = 1, . . . , 12, j = 1, 2, 3,

for the places v ∈ T ′ \ {τ1, . . . , τ6}, so that

∏
v∈T ′

(zi , qj)v =
6∏

ℓ=1

(zi , qj)τℓ , i = 1, . . . , 12, j = 1, 2, 3.

Now (zi , qj)τℓ = −1 precisely if τℓ(zi ), τℓ(qj) < 0, which occur when

(i , j , ℓ) = (1, 1, 1), (1, 2, 1), (4, 1, 2), (4, 2, 2), (5, 2, 3),

(5, 3, 3), (8, 2, 4), (9, 3, 5), (12, 3, 6).

These are precisely the Hilbert symbol conditions enforced in P3, noting
that it does not enforce conditions for (i , j) = (1, 2), (4, 2), (5, 3).
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Admissibility of the polynomials

Observe that Lj(X ,Y ) form an admissible family, in the sense that they
satisfy the analogue of Bunyakovsky’s property in Dickson’s conjecture.

Lemma (5.5)
For any prime p of K , there are x , y ∈ OK such that

p ∤ L1(x , y)L2(x , y)L3(x , y)L4(x , y).

Proof.
If p | mκ, then L1(0, 0) = L2(0, 0) = L3(0, 0) = 1, and L4(0, 0) = λ is
coprime to mκ. Otherwise p ∤ mκ, then there is some y ∈ OK such that
p ∤ m2κy + λ, so that p ∤ L4(x , y) for any x ∈ OK . On the other hand,
#(OK/p) ≥ 5 since p ∤ 6, so that there is some x ∈ OK such that

x ̸≡ −a1d(y)− 1

m2κ
,
−a2d(y)− 1

m2κ
,
−a3d(y)− 1

m2κ
mod p,

and hence p ∤ L1(x , y)L2(x , y)L3(x , y).

9 / 12



Statement of Kai’s theorem

A version of Kai’s theorem can be stated as follows.

Theorem (A.8)
Let ϕ1, . . . , ϕk : Zd → OK be affine linear forms for some d ∈ N>1 such
that the restriction of ϕj to the kernel of ϕj′ has finite cokernel whenever
j ̸= j ′, and let Ω ⊆ Rd be a convex region such that the volume of
ΩN := Ω ∩ [−N,N]d is asymptotically Nd . Then

∑
x⃗∈ΩN∩Zd

k∏
j=1

ΛK (ϕj(x⃗)) ∼
Nd

ress=1 ζK (s)k
·
∏
p

βp,

where ΛK := Λ ◦ NmK/Q is the von Mangoldt function for K and

βp :=

(
pn

#(OK/⟨p⟩)×

)k

·
#{x⃗ ∈ Fd

p : p ∤
∏k

j=1 ϕj(x⃗) for all p | p}
pd

.

Note that the full version considers affine linear forms Zd → I with a
uniformity condition over all fractional ideals I of K .
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Assumptions in Kai’s theorem

For each j = 1, 2, 3, 4, the 1-homogeneous part of Lj(X ,Y ) defines an
affine linear form ϕj : Z2n → OK by fixing a basis of OK over Z. If j ̸= j ′,
then ϕj(x⃗ , y⃗) = 0 implies that ϕj′(x⃗ , y⃗) ̸≡ 0 since aj ̸= aj′ , or in other
words that the restriction of ϕj to the kernel of ϕj′ has finite cokernel.

The signs enforced on σ(Lj(X ,Y )) define a convex region Ω ⊆ R2n.

Lemma (5.6, 5.7)
The volume of ΩN is asymptotically N2n.

Sketch of proof.
For a surjective linear operator T : R2n → R2r , the volume of

T−1

(
2r∏
ℓ=1

(xℓ,∞)

)
∩ [−N,N]2n, (x1, . . . , x2r ) ∈ R2r

is asymptotically N2n. While Ω is defined by 4r embeddings, the signs
enforced on σ(Lj(X ,Y )) and σ(aj) reduce this to 2r embeddings.
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Intuition for Kai’s theorem

Assume now that the coefficients of ϕj : Zd → OK are fixed. If ϕj(x⃗) is
prime for some x⃗ ∈ ΩN ∩ Zd , then ΛK (ϕj(x⃗)) ∼ log dN, since composite
prime powers are asymptotically negligible compared to primes. Thus

∑
x⃗∈ΩN∩Zd

k∏
j=1

ΛK (ϕj(x⃗)) ∼ #SN · logk dN,

where SN is the set of x⃗ ∈ ΩN ∩ Zd such that ϕ1(x⃗), . . . , ϕr (x⃗) are
simultaneously prime. Kai’s theorem then says #SN > 0 whenever∏

p βp > 0, which is equivalent to the admissibility of ϕj .

Note that when K = Q, this says that

#SN ∼ Nd

logk dN
·
∏
p

(
p

p − 1

)k

·
#{x⃗ ∈ Fd

p : p ∤
∏k

j=1 ϕj(x⃗)}
pd

,

which is simply a multivariate version of the Hardy–Littlewood conjecture.
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