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Some motivation

What are elliptic curves?

» Solutions to y? = x3 4 ax + b for rational numbers a and b.

A
M

What are they used for?
» Number theory.
» Cryptography.
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Some motivation

What do we know?
» It is a group.
» It has a rank.
What do we not know?
» What is the average rank?
> Probably 1.
» How large can the rank be?
> At least 28.
» [s the rank bounded?
> Maybe?
What can we do?

» Study Selmer groups and Tate-Shafarevich groups.

» Neither are easy to study.
» Study models for them instead.
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Framework and overview
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Framework and overview
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Framework and overview

“Modelling the Selmer group, the Tate—-Shafarevich group, and the
Mordell-Weil rank of elliptic curves over number fields”

Theorem (1) (idea)

The n-Selmer group is usually the intersection of two Lagrangian spaces.

Theorem (2) (idea)

The intersection of two Lagrangian spaces should have average size o1(n).

“All but finitely many rational elliptic curves have rank at most 21"
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Preliminary background

Let E be an elliptic curve defined over a number field K.
» K is a finite extension of Q with a fixed algebraic closure K.

» E = E(K) is a smooth projective plane curve of genus one with a
distinguished point O € E(K).
» Gal(K/K) acts on E with invariants E(K).

Theorem (Mordell-Weil)
E(K) is a finitely generated abelian group.

There is an isomorphism
E(K) = tor(E/K) x Z™E/K),

The Mordell-Weil rank is rk(E/K).
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Preliminary background

Let E be an elliptic curve defined over a number field K.

Multiplying by n € N7,
OHE[H]%Eﬂ)E%O.

Applying Gal(K/K) cohomology,

0 — E(K)[n] — E(K) — E(K)

HY(K, E[n]) + HY(K,E) » HY(K,E) » ....

Truncating at H(K, E[n]),

0 — E(K)/n — HY(K, E[n]) —— HY(K, E)[n] — O.
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Preliminary background

Let E be an elliptic curve defined over a number field K.

There is a short exact sequence
0 — E(K)/n— HY(K, E[n]) = HY(K, E)[n] — 0.
Let K, be a completion of K with respect to a norm |- |,. Similarly,

0—>HE /n_>HH1 K., E[n]) —>HH1 K,, E)[n] — 0.

There is a row-exact commutative diagram

0 — E(K)/n —— HY(K, E[n]) —— HM(K, E)[n] —> 0

.

0+ [[E(K)/n 2 [T H (Ko, Eln]) » ] H*(K., E)ln] » o.
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Preliminary background
Let E be an elliptic curve defined over a number field K.
The n-Selmer group is
Selq(K, E) = ker(o : HY(K, E[n]) — [T, H*(K., E)[n]).
By the first isomorphism theorem,
Sel (K, E)/ker A = imk Nim \.
The Tate—Shafarevich group is
II(K, E) = ker(t : H(K, E) — [], H*(K., E)).
There is an exact sequence

0 — E(K)/n — Selo(K, E) — TII(K, E)[n] — 0.
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Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p¢-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

» Almost all: limiting proportion when ordered by height.

» Quadratic module M: has a quadratic form w : M — Q/Z.

» Non-degenerate M: M = M*.

» Lagrangian submodule N: w(N) =0 and Nt = N.

» [nfinite rank: in terms of generators.
Think of M = (Z/p®)?", equipped with hyperbolic quadratic form

(Xla"'axnayla"'ayn) — inyi,
i=1
with Lagrangian submodule N = (Z/p®)" & 0".
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Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p¢-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

References:

» Colliot-Thélene, Skorobogatov, Swinnerton-Dyer (1998): p® = 2 and
finite-dimensional construction. !

» Bhargava, Kane, Lenstra, Poonen, Rains (2015): general p®,
infinite-rank construction, and generalisations to abelian varieties
with arbitrary isogenies over arbitrary global fields. 2

1J.-L. Colliot-Thelene, A. Skorobogatov and P. Swinnerton-Dyer. ‘Hasse principle
for pencils of curves of genus one whose Jacobians have rational 2-division points’. In:
Invent. Math. 134 (1998)

2M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. ‘Modelling the
distribution of ranks, Selmer groups, and Shafarevich—Tate groups of elliptic curves’.
In: Camb. J. Math. 3 (2015)
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Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p¢-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Sketch of proof.
Recall that Sel,(K, E)/ ker A 2 imk Nim A.
1. Construct the local non-degenerate quadratic module.

> Construct © such that 0 = K, — © — E[n] — 0.
» Define Oby, : H'(K,, E[n]) — Br(K.) — Q/Z.
> Prove (-,-)ob,, = [,"] U, and deduce Oby, is a quadratic form.
» Show non-degeneracy using local duality.
2. Prove imk and im \ are Lagrangian.
» Prove basic properties of Brauer—Severi diagrams to redefine Oby, .
> Define M =[] H' (K., E[n]) and q = 3", invk, o Obk, : M — Q/Z.
» Show im k is Lagrangian using B=S diagrams and local duality.
» Show im X is Lagrangian using class field theory and global duality.
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Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p¢-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic 7./ p®-module of infinite rank.

Sketch of proof.

Recall that Sel,(K, E)/ ker A 2 imk Nim A.
1. Construct the local non-degenerate quadratic module.
2. Prove imk and im A are Lagrangian.
3. Prove im«x and im A are direct summands.

> Use infinite abelian group theory to characterise direct summands in
terms of divisibility-preserving maps and apply global duality.
4. Attain good criterion for ker A = 0 when n = p€.
> Use Chebotarev's density theorem to reduce to HZ(im pgps, E[n]) and
apply inflation-restriction repeatedly to reduce to SL2(Z/n).
» Extract assumption SL»(Z/n) < im pg[, and justify its ubiquity using
Hilbert's irreducibility theorem and division polynomials. [J
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Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands
of the quadratic 7./ p¢-module (Z/p®)*" chosen uniformly at random
tends to the sum of divisors o1 of p as n — oc.

» Theorem (1): the p®-Selmer group is the intersections of two
Lagrangian direct summands in [[ HY(K,, E[p®]).

> Theorem (2): the size of the intersection of two Lagrangian direct
summands in (Z/p®)>° has first moment o1 (p®).

> On the other hand, (Z/p®)> is always free, while [], H*(K,, E[p¢])
is almost never free, by Hilbert's irreducibility theorem.

Reference:
» Poonen, Rains (2012): e=1. 3

3B. Poonen and E. Rains. ‘Random maximal isotropic subspaces and Selmer
groups’. In: J. Amer. Math. Soc 25 (2012)
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Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands
of the quadratic 7./ p¢-module (Z/p®)*" chosen uniformly at random
tends to the sum of divisors o1 of p as n — oc.

Sketch of proof.

1. Linear algebra of (Z/p®)?".

» Show correspondence theorem for direct summands.

» Count number of direct summands of fixed rank.

» Obtain linear algebra for Lagrangian direct summands.
2. Lagrangian direct summands of (Z/p¢)".

» Compute result for n = 1 explicitly.

> Count fibres of L~ (LN N* + N)/N.

> Extract rank one free submodule and apply induction.
3. Average size of L1 N L.

» Count number of injections Z/p® < L;.

» Compute probability that L, contains image of Z/p® — L;.

» Deduce result by telescoping argument. [
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Heuristic consequences

A model for n-Selmer groups.
» For almost all elliptic curves E defined over a number field K,

Sel,(K, E)[p®] = Selp (K, E), p | n.

» Derive linear algebra for Z/n and consider (L3 N Ly)[p®].

A model for Mordell-Weil ranks and Tate—Shafarevich groups.
> Use

0 — E(K) ® Qp/Zp — lim Selye (K, E) — LI(K, E)[p™] — 0.

» Consider

0= (LiNk)®Qp/Zp — (L1 ®Qp/Zp) N (L2 ® Qp/Zp) — T — 0.
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