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Framework and overview

“Modelling the Selmer group, the Tate-Shafarevich group, and the
Mordell-Weil rank of elliptic curves over number fields”

Theorem (1) (idea)
The n-Selmer group is usually the intersection of two Lagrangian spaces.

Theorem (2) (idea)
The intersection of two Lagrangian spaces should have average size σ1(n).

“All but finitely many rational elliptic curves have rank at most 21”
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Let E be an elliptic curve defined over a number field K .

I K is a finite extension of Q with a fixed algebraic closure K .

I E = E (K ) is a smooth projective plane curve of genus one with a
distinguished point O ∈ E (K ).

I Gal(K/K ) acts on E with invariants E (K ).

Theorem (Mordell-Weil)
E (K ) is a finitely generated abelian group.

There is an isomorphism

E (K ) ∼= tors(E/K )× Zrk(E/K).

The Mordell-Weil rank is rk(E/K ).
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Let E be an elliptic curve defined over a number field K .
Multiplying by n ∈ N+,

0→ E [n]→ E
[n]−→ E → 0.

Applying Gal(K/K ) cohomology,

0 E (K )[n] E (K ) E (K )

H1(K ,E [n]) H1(K ,E ) H1(K ,E ) . . . .

δ

Truncating at H1(K ,E [n]),

0 −→ E (K )/n H1(K ,E [n]) H1(K ,E )[n] −→ 0 .
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Let E be an elliptic curve defined over a number field K .
There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

.

53 / 106



Preliminary background

Let E be an elliptic curve defined over a number field K .
There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

σ
.

The n-Selmer group is

Sn(K ,E ) = ker(σ : H1(K ,E [n])→
∏

v H
1(Kv ,E )[n]).

54 / 106



Preliminary background

Let E be an elliptic curve defined over a number field K .
There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

λ
σ

κ

.

The n-Selmer group is

Sn(K ,E ) = ker(σ : H1(K ,E [n])→
∏

v H
1(Kv ,E )[n]).

By the first isomorphism theorem,

Sn(K ,E )/ ker λ
∼−→ imκ ∩ imλ.

55 / 106



Preliminary background

Let E be an elliptic curve defined over a number field K .
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Let E be an elliptic curve defined over a number field K .
There is a row-exact commutative diagram

0 E (K )/n H1(K ,E [n]) H1(K ,E )[n] 0

0
∏
v

E (Kv )/n
∏
v

H1(Kv ,E [n])
∏
v

H1(Kv ,E )[n] 0

λ
σ

τ [n]

κ

.

The Tate-Shafarevich group is

X(K ,E ) = ker(τ : H1(K ,E )→
∏

v H
1(Kv ,E )).

There is an exact sequence

0→ E (K )/n→ Sn(K ,E )→X(K ,E )[n]→ 0.

57 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
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Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

I Almost all: limiting proportion when ordered by height.

I Quadratic module M: has a quadratic form ω : M → Q/Z.

I Non-degenerate M: M ∼= M?.

I Lagrangian submodule N: ω(N) = 0 and N⊥ = N.

I Infinite rank: in terms of generators.

Think of M = (Z/pe)2n, equipped with hyperbolic quadratic form

(x1, . . . , xn, y1, . . . , yn) 7→
n∑

i=1

xiyi ,

with Lagrangian submodule N = (Z/pe)n ⊕ 0n.
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Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

References:

I Colliot-Thélène, Skorobogatov, Swinnerton-Dyer (1998): pe = 2 and
finite-dimensional construction. 1

I Bhargava, Kane, Lenstra, Poonen, Rains (2015): general pe ,
infinite-rank construction, and generalisations to abelian varieties
with arbitrary isogenies over arbitrary global fields. 2

1
J.-L. Colliot-Thelene, A. Skorobogatov and P. Swinnerton-Dyer. ’Hasse principle for pencils of curves of genus one whose Jacobians

have rational 2-division points’. In: Invent. Math. 134 (1998)
2
M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. ’Modelling the distribution of ranks, Selmer groups, and

Shafarevich-Tate groups of elliptic curves’. In: Camb. J. Math. 3 (2015)
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Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .
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Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.
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I Define M =
∏

vH
1(Kv ,E [n]) and q =

∑
v invKv ◦ObKv : M → Q/Z.

I Show imκ is Lagrangian using B-S diagrams and local duality.
I Show imλ is Lagrangian using class field theory and global duality.
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4. Attain good criterion for ker λ = 0 when n = pe .

74 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.
I Prove basic properties of Brauer-Severi diagrams to redefine ObKv .
I Define M =

∏
vH

1(Kv ,E [n]) and q =
∑

v invKv ◦ObKv : M → Q/Z.
I Show imκ is Lagrangian using B-S diagrams and local duality.

I Show imλ is Lagrangian using class field theory and global duality.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .

75 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.
I Prove basic properties of Brauer-Severi diagrams to redefine ObKv .
I Define M =

∏
vH

1(Kv ,E [n]) and q =
∑

v invKv ◦ObKv : M → Q/Z.
I Show imκ is Lagrangian using B-S diagrams and local duality.
I Show imλ is Lagrangian using class field theory and global duality.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .

76 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .

77 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.

3. Prove imκ and imλ are direct summands.
I Use infinite abelian group theory to characterise direct summands in

terms of divisibility-preserving maps and apply global duality.

4. Attain good criterion for ker λ = 0 when n = pe .

78 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .

79 / 106



Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the pe-Selmer
group is the intersection of two Lagrangian direct summands in a
non-degenerate quadratic Z/pe-module of infinite rank.

Sketch of proof.
Recall that Sn(K ,E )/ ker λ ∼= imκ ∩ imλ.

1. Construct the local non-degenerate quadratic module.

2. Prove imκ and imλ are Lagrangian.

3. Prove imκ and imλ are direct summands.

4. Attain good criterion for ker λ = 0 when n = pe .
I Use Chebotarev’s density theorem to reduce to H1

c (im ρE [n],E [n]) and
apply inflation-restriction repeatedly to reduce to SL2(Z/n).

I Extract assumption SL2(Z/n) ≤ im ρE [n] and justify its ubiquity using
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Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands
of the quadratic Z/pe-module (Z/pe)2n chosen uniformly at random
tends to the sum of divisors σ1 of pe as n→∞.
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of the quadratic Z/pe-module (Z/pe)2n chosen uniformly at random
tends to the sum of divisors σ1 of pe as n→∞.

I Theorem (1): the pe-Selmer group is the intersections of two
Lagrangian direct summands in

∏
vH

1(Kv ,E [pe ]).

I Theorem (2): the size of the intersection of two Lagrangian direct
summands in (Z/pe)∞ has first moment σ1(pe).

I On the other hand, (Z/pe)∞ is always free, while
∏

vH
1(Kv ,E [pe ])

is almost never free, by Hilbert’s irreducibility theorem.
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I On the other hand, (Z/pe)∞ is always free, while
∏

vH
1(Kv ,E [pe ])

is almost never free, by Hilbert’s irreducibility theorem.

Reference:

I Poonen, Rains (2012): e = 1. 1

1
B. Poonen and E. Rains. ’Random maximal isotropic subspaces and Selmer groups’. In: J. Amer. Math. Soc 25 (2012)
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Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands
of the quadratic Z/pe-module (Z/pe)2n chosen uniformly at random
tends to the sum of divisors σ1 of pe as n→∞.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of (Z/pe)2n.

2. Lagrangian direct summands of (Z/pe)2n.

3. Average size of L1 ∩ L2.
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Sn(K ,E )[pe ] ∼= Spe (K ,E ), pe | n.

I Derive linear algebra for Z/n and consider (L1 ∩ L2)[pe ].
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