Imperial College London

Arithmetic Statistics for Elliptic Curves

David Kurniadi Angdinata
MEng Pure Mathematics and Computational Logic

Monday, 22 June 2020

Some motivation

What are elliptic curves?

Some motivation

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+a x+b$ for rational numbers a and b.

Some motivation

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+a x+b$ for rational numbers a and b.

Some motivation

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+a x+b$ for rational numbers a and b.

What are they used for?

Some motivation

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+a x+b$ for rational numbers a and b.

What are they used for?

- Number theory.

Some motivation

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+a x+b$ for rational numbers a and b.

What are they used for?

- Number theory.
- Cryptography.

Some motivation

What do we know?

Some motivation

What do we know?

- It is a group.

Some motivation

What do we know?

- It is a group.
- It has a rank.

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?
- Maybe?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?
- Maybe?

What can we do?

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?
- Maybe?

What can we do?

- Study Selmer groups and Tate-Shafarevich groups.

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?
- Maybe?

What can we do?

- Study Selmer groups and Tate-Shafarevich groups.
- Neither are easy to study.

Some motivation

What do we know?

- It is a group.
- It has a rank.

What do we not know?

- What is the average rank?
- Probably $\frac{1}{2}$.
- How large can the rank be?
- At least 28.
- Is the rank bounded?
- Maybe?

What can we do?

- Study Selmer groups and Tate-Shafarevich groups.
- Neither are easy to study.
- Study models for them instead.

Framework and overview

Framework and overview

Object	prove	Properties of object

Framework and overview

Framework and overview

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Framework and overview

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)
The n-Selmer group is usually the intersection of two Lagrangian spaces.

Framework and overview

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)
The n-Selmer group is usually the intersection of two Lagrangian spaces.
Theorem (2) (idea)
The intersection of two Lagrangian spaces should have average size $\sigma_{1}(n)$.

Framework and overview

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)
The n-Selmer group is usually the intersection of two Lagrangian spaces.
Theorem (2) (idea)
The intersection of two Lagrangian spaces should have average size $\sigma_{1}(n)$.
"All but finitely many rational elliptic curves have rank at most 21 "

Preliminary background

Let E be an elliptic curve defined over a number field K.

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.
- $E=E(\bar{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.
- $E=E(\bar{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- $\operatorname{Gal}(\bar{K} / K)$ acts on E with invariants $E(K)$.

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.
- $E=E(\bar{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- $\operatorname{Gal}(\bar{K} / K)$ acts on E with invariants $E(K)$.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group.

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.
- $E=E(\bar{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- $\operatorname{Gal}(\bar{K} / K)$ acts on E with invariants $E(K)$.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group.

There is an isomorphism

$$
E(K) \cong \operatorname{tors}(E / K) \times \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \bar{K}.
- $E=E(\bar{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- $\operatorname{Gal}(\bar{K} / K)$ acts on E with invariants $E(K)$.

Theorem (Mordell-Weil)
$E(K)$ is a finitely generated abelian group.

There is an isomorphism

$$
E(K) \cong \operatorname{tors}(E / K) \times \mathbb{Z}^{\operatorname{rk}(E / K)}
$$

The Mordell-Weil rank is $\mathrm{rk}(E / K)$.

Preliminary background

Let E be an elliptic curve defined over a number field K.

Preliminary background

Let E be an elliptic curve defined over a number field K. Multiplying by $n \in \mathbb{N}^{+}$,

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K. Multiplying by $n \in \mathbb{N}^{+}$,

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

Applying Gal(\bar{K} / K) cohomology,

$$
\begin{aligned}
0 & \longrightarrow E(K)[n] \longrightarrow E(K) \longrightarrow E(K) \\
& \rightarrow H^{1}(K, E[n]) \rightarrow H^{1}(K, E) \rightarrow H^{1}(K, E) \rightarrow \ldots
\end{aligned}
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
Multiplying by $n \in \mathbb{N}^{+}$,

$$
0 \rightarrow E[n] \rightarrow E \xrightarrow{[n]} E \rightarrow 0 .
$$

Applying Gal(\bar{K} / K) cohomology,

Truncating at $H^{1}(K, E[n])$,

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Let K_{v} be a completion of K with respect to a norm $|\cdot|_{v}$.

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Let K_{v} be a completion of K with respect to a norm $|\cdot|_{v}$.

- K_{v} is one of $K_{\mathfrak{p}}, \mathbb{R}$, or \mathbb{C}.

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Let K_{v} be a completion of K with respect to a norm $|\cdot|_{v}$.

- K_{v} is one of $K_{\mathfrak{p}}, \mathbb{R}$, or \mathbb{C}.

Similarly,

$$
0 \longrightarrow E\left(K_{v}\right) / n \longrightarrow H^{1}\left(K_{v}, E[n]\right) \longrightarrow H^{1}\left(K_{v}, E\right)[n] \longrightarrow 0 .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a short exact sequence

$$
0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 .
$$

Let K_{v} be a completion of K with respect to a norm $|\cdot|_{v}$.

- K_{v} is one of $K_{\mathfrak{p}}, \mathbb{R}$, or \mathbb{C}.

Similarly,

$$
0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0 .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There are short exact sequences

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0, \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0 .
\end{aligned}
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a row-exact commutative diagram

$$
\begin{aligned}
& 0 \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& 0 \rightarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
& \downarrow \\
0 & \downarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The n-Selmer group is

$$
\mathcal{S}_{n}(K, E)=\operatorname{ker}\left(\sigma: H^{1}(K, E[n]) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n]\right) .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
\downarrow & \downarrow \downarrow \prod_{v} E\left(K_{v}\right) / n \rightarrow \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The n-Selmer group is

$$
\mathcal{S}_{n}(K, E)=\operatorname{ker}\left(\sigma: H^{1}(K, E[n]) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n]\right) .
$$

By the first isomorphism theorem,

$$
\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \xrightarrow{\sim} \operatorname{im} \kappa \cap \operatorname{im} \lambda .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
\downarrow & \cdots \prod_{v} E\left(K_{v}\right) / n \rightarrow{ }_{v} \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The Tate-Shafarevich group is

$$
Ш(K, E)=\operatorname{ker}\left(\tau: H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right) .
$$

Preliminary background

Let E be an elliptic curve defined over a number field K.
There is a row-exact commutative diagram

$$
\begin{aligned}
0 & \longrightarrow E(K) / n \longrightarrow H^{1}(K, E[n]) \longrightarrow H^{1}(K, E)[n] \longrightarrow 0 \\
\downarrow & \cdots \prod_{v} E\left(K_{v}\right) / n \vec{k} \prod_{v} H^{1}\left(K_{v}, E[n]\right) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)[n] \rightarrow 0
\end{aligned}
$$

The Tate-Shafarevich group is

$$
\amalg(K, E)=\operatorname{ker}\left(\tau: H^{1}(K, E) \rightarrow \prod_{v} H^{1}\left(K_{v}, E\right)\right)
$$

There is an exact sequence

$$
0 \rightarrow E(K) / n \rightarrow \mathcal{S}_{n}(K, E) \rightarrow \amalg(K, E)[n] \rightarrow 0 .
$$

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M : has a quadratic form $\omega: M \rightarrow \mathbb{Q} / \mathbb{Z}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M : has a quadratic form $\omega: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Non-degenerate $M: M \cong M^{\star}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M : has a quadratic form $\omega: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Non-degenerate $M: M \cong M^{\star}$.
- Lagrangian submodule $N: \omega(N)=0$ and $N^{\perp}=N$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M : has a quadratic form $\omega: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Non-degenerate $M: M \cong M^{\star}$.
- Lagrangian submodule $N: \omega(N)=0$ and $N^{\perp}=N$.
- Infinite rank: in terms of generators.

Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M : has a quadratic form $\omega: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Non-degenerate $M: M \cong M^{\star}$.
- Lagrangian submodule $N: \omega(N)=0$ and $N^{\perp}=N$.
- Infinite rank: in terms of generators.

Think of $M=\left(\mathbb{Z} / p^{e}\right)^{2 n}$, equipped with hyperbolic quadratic form

$$
\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) \mapsto \sum_{i=1}^{n} x_{i} y_{i}
$$

with Lagrangian submodule $N=\left(\mathbb{Z} / p^{e}\right)^{n} \oplus 0^{n}$.

Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

References:

- Colliot-Thélène, Skorobogatov, Swinnerton-Dyer (1998): $p^{e}=2$ and finite-dimensional construction. ${ }^{1}$
- Bhargava, Kane, Lenstra, Poonen, Rains (2015): general p^{e}, infinite-rank construction, and generalisations to abelian varieties with arbitrary isogenies over arbitrary global fields. ${ }^{2}$

[^0]
Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Define $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) /$ ker $\lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Define $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.
- Prove $\langle\cdot, \cdot\rangle\rangle_{\mathrm{o}_{k_{v}}}=[\cdot, \cdot] \circ \cup$, and deduce $\mathrm{Ob}_{\kappa_{v}}$ is a quadratic form.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

- Construct Θ such that $0 \rightarrow{\overline{K_{v}}}^{\times} \rightarrow \Theta \rightarrow E[n] \rightarrow 0$.
- Define $\mathrm{Ob}_{K_{v}}: H^{1}\left(K_{v}, E[n]\right) \rightarrow \operatorname{Br} K_{v} \hookrightarrow \mathbb{Q} / \mathbb{Z}$.
- Prove $\langle\cdot, \cdot\rangle\rangle_{\mathrm{ob}_{\mathrm{v}}}=[\cdot, \cdot] \circ \cup$, and deduce $\mathrm{Ob}_{\kappa_{v}}$ is a quadratic form.
- Show non-degeneracy using local duality.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are Lagrangian.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are Lagrangian.

- Prove basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are Lagrangian.

- Prove basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.
- Define $M=\bar{\prod}_{v} H^{1}\left(K_{v}, E[n]\right)$ and $\mathfrak{q}=\sum_{v} \operatorname{inv}_{K_{v}} \circ \mathrm{Ob}_{K_{v}}: M \rightarrow \mathbb{Q} / \mathbb{Z}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are Lagrangian.

- Prove basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.
- Define $M=\bar{\prod}_{v} H^{1}\left(K_{v}, E[n]\right)$ and $\mathfrak{q}=\sum_{v} \operatorname{inv}_{K_{v}} \circ \mathrm{Ob}_{K_{v}}: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Show $\operatorname{im} \kappa$ is Lagrangian using B-S diagrams and local duality.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are Lagrangian.

- Prove basic properties of Brauer-Severi diagrams to redefine $\mathrm{Ob}_{K_{v}}$.
- Define $M=\bar{\prod}_{v} H^{1}\left(K_{v}, E[n]\right)$ and $\mathfrak{q}=\sum_{v} \operatorname{inv}_{K_{v}} \circ \mathrm{Ob}_{K_{v}}: M \rightarrow \mathbb{Q} / \mathbb{Z}$.
- Show $\operatorname{im} \kappa$ is Lagrangian using B-S diagrams and local duality.
- Show $\operatorname{im} \lambda$ is Lagrangian using class field theory and global duality.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are Lagrangian.
3. Prove im κ and $\operatorname{im} \lambda$ are direct summands.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are Lagrangian.
3. Prove $\operatorname{im} \kappa$ and $\operatorname{im} \lambda$ are direct summands.

- Use infinite abelian group theory to characterise direct summands in terms of divisibility-preserving maps and apply global duality.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.
Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are Lagrangian.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for $\operatorname{ker} \lambda=0$ when $n=p^{e}$.

Arithmetic of Selmer groups

Theorem (1)
For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and $\operatorname{im} \lambda$ are Lagrangian.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for $\operatorname{ker} \lambda=0$ when $n=p^{e}$.

- Use Chebotarev's density theorem to reduce to $H_{c}^{1}\left(\operatorname{im} \rho_{E[n]}, E[n]\right)$ and apply inflation-restriction repeatedly to reduce to $\mathrm{SL}_{2}(\mathbb{Z} / n)$.

Arithmetic of Selmer groups

Theorem (1)

For almost all elliptic curves defined over a number field, the p^{e}-Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z} / p^{e}-module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_{n}(K, E) / \operatorname{ker} \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.
2. Prove im κ and im λ are Lagrangian.
3. Prove im κ and im λ are direct summands.
4. Attain good criterion for $\operatorname{ker} \lambda=0$ when $n=p^{e}$.

- Use Chebotarev's density theorem to reduce to $H_{c}^{1}\left(\operatorname{im} \rho_{E[n]}, E[n]\right)$ and apply inflation-restriction repeatedly to reduce to $\mathrm{SL}_{2}(\mathbb{Z} / n)$.
- Extract assumption $\mathrm{SL}_{2}(\mathbb{Z} / n) \leq \operatorname{im} \rho_{E[n]}$ and justify its ubiquity using Hilbert's irreducibility theorem and division polynomials.

Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

- Theorem (1): the p^{e}-Selmer group is the intersections of two Lagrangian direct summands in $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

- Theorem (1): the p^{e}-Selmer group is the intersections of two Lagrangian direct summands in $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$.
- Theorem (2): the size of the intersection of two Lagrangian direct summands in $\left(\mathbb{Z} / p^{e}\right)^{\infty}$ has first moment $\sigma_{1}\left(p^{e}\right)$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

- Theorem (1): the p^{e}-Selmer group is the intersections of two Lagrangian direct summands in $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$.
- Theorem (2): the size of the intersection of two Lagrangian direct summands in $\left(\mathbb{Z} / p^{e}\right)^{\infty}$ has first moment $\sigma_{1}\left(p^{e}\right)$.
- On the other hand, $\left(\mathbb{Z} / p^{e}\right)^{\infty}$ is always free, while $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$ is almost never free, by Hilbert's irreducibility theorem.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

- Theorem (1): the p^{e}-Selmer group is the intersections of two Lagrangian direct summands in $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$.
- Theorem (2): the size of the intersection of two Lagrangian direct summands in $\left(\mathbb{Z} / p^{e}\right)^{\infty}$ has first moment $\sigma_{1}\left(p^{e}\right)$.
- On the other hand, $\left(\mathbb{Z} / p^{e}\right)^{\infty}$ is always free, while $\prod_{v} H^{1}\left(K_{v}, E\left[p^{e}\right]\right)$ is almost never free, by Hilbert's irreducibility theorem.

Reference:

- Poonen, Rains (2012): e $=1 .^{1}$

[^1]
Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

Model for Selmer groups

Theorem (2)
The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Show correspondence theorem for direct summands.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Show correspondence theorem for direct summands.
- Count number of direct summands of fixed rank.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Show correspondence theorem for direct summands.
- Count number of direct summands of fixed rank.
- Obtain linear algebra for Lagrangian direct summands.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Compute result for $n=1$ explicitly.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Compute result for $n=1$ explicitly.
- Count fibres of $L \mapsto\left(L \cap N^{\perp}+N\right) / N$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.
Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.

- Compute result for $n=1$ explicitly.
- Count fibres of $L \mapsto\left(L \cap N^{\perp}+N\right) / N$.
- Extract rank one free submodule and apply induction.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
3. Average size of $L_{1} \cap L_{2}$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.

Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
3. Average size of $L_{1} \cap L_{2}$.

- Count number of injections $\mathbb{Z} / p^{e} \hookrightarrow L_{1}$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.
Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
3. Average size of $L_{1} \cap L_{2}$.

- Count number of injections $\mathbb{Z} / p^{e} \hookrightarrow L_{1}$.
- Compute probability that L_{2} contains image of $\mathbb{Z} / p^{e} \hookrightarrow L_{1}$.

Model for Selmer groups

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z} / p^{e}-module $\left(\mathbb{Z} / p^{e}\right)^{2 n}$ chosen uniformly at random tends to the sum of divisors σ_{1} of p^{e} as $n \rightarrow \infty$.
Sketch of proof.
Crucial assumption of direct summands.

1. Linear algebra of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
2. Lagrangian direct summands of $\left(\mathbb{Z} / p^{e}\right)^{2 n}$.
3. Average size of $L_{1} \cap L_{2}$.

- Count number of injections $\mathbb{Z} / p^{e} \hookrightarrow L_{1}$.
- Compute probability that L_{2} contains image of $\mathbb{Z} / p^{e} \hookrightarrow L_{1}$.
- Deduce result by telescoping argument. \square

Heuristic consequences

A model for n-Selmer groups.

Heuristic consequences

A model for n-Selmer groups.

- For almost all elliptic curves E defined over a number field K,

$$
\mathcal{S}_{n}(K, E)\left[p^{e}\right] \cong \mathcal{S}_{p^{e}}(K, E), \quad p^{e} \mid n .
$$

Heuristic consequences

A model for n-Selmer groups.

- For almost all elliptic curves E defined over a number field K,

$$
\mathcal{S}_{n}(K, E)\left[p^{e}\right] \cong \mathcal{S}_{p^{e}}(K, E), \quad p^{e} \mid n .
$$

- Derive linear algebra for \mathbb{Z} / n and consider $\left(L_{1} \cap L_{2}\right)\left[p^{e}\right]$.

Heuristic consequences

A model for n-Selmer groups.

- For almost all elliptic curves E defined over a number field K,

$$
\mathcal{S}_{n}(K, E)\left[p^{e}\right] \cong \mathcal{S}_{p^{e}}(K, E), \quad p^{e} \mid n .
$$

- Derive linear algebra for \mathbb{Z} / n and consider $\left(L_{1} \cap L_{2}\right)\left[p^{e}\right]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

Heuristic consequences

A model for n-Selmer groups.

- For almost all elliptic curves E defined over a number field K,

$$
\mathcal{S}_{n}(K, E)\left[p^{e}\right] \cong \mathcal{S}_{p^{e}}(K, E), \quad p^{e} \mid n .
$$

- Derive linear algebra for \mathbb{Z} / n and consider $\left(L_{1} \cap L_{2}\right)\left[p^{e}\right]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

- Use

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(K, E) \rightarrow \amalg(K, E)\left[p^{\infty}\right] \rightarrow 0 .
$$

Heuristic consequences

A model for n-Selmer groups.

- For almost all elliptic curves E defined over a number field K,

$$
\mathcal{S}_{n}(K, E)\left[p^{e}\right] \cong \mathcal{S}_{p^{e}}(K, E), \quad p^{e} \mid n .
$$

- Derive linear algebra for \mathbb{Z} / n and consider $\left(L_{1} \cap L_{2}\right)\left[p^{e}\right]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

- Use

$$
0 \rightarrow E(K) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow \underset{e}{\lim } \mathcal{S}_{p^{e}}(K, E) \rightarrow Ш(K, E)\left[p^{\infty}\right] \rightarrow 0 .
$$

- Consider

$$
0 \rightarrow\left(L_{1} \cap L_{2}\right) \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p} \rightarrow\left(L_{1} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \cap\left(L_{2} \otimes \mathbb{Q}_{p} / \mathbb{Z}_{p}\right) \rightarrow T \rightarrow 0
$$

THANK YOU

[^0]: $1_{\text {J.-L. Colliot-Thelene, A. Skorobogatov and P. Swinnerton-Dyer. 'Hasse principle for pencils of curves of genus one whose Jacobians }}$ have rational 2-division points'. In: Invent. Math. 134 (1998)
 ${ }^{2}$ M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015)

[^1]:

