

Arithmetic Statistics for Elliptic Curves

David Kurniadi Angdinata MEng Pure Mathematics and Computational Logic

Monday, 22 June 2020

イロト イヨト イヨト イヨト 三日

1/106

What are elliptic curves?

What are elliptic curves?

Solutions to $y^2 = x^3 + ax + b$ for rational numbers *a* and *b*.

What are elliptic curves?

Solutions to $y^2 = x^3 + ax + b$ for rational numbers *a* and *b*.

What are elliptic curves?

Solutions to $y^2 = x^3 + ax + b$ for rational numbers *a* and *b*.

What are they used for?

What are elliptic curves?

Solutions to $y^2 = x^3 + ax + b$ for rational numbers *a* and *b*.

What are they used for?

Number theory.

What are elliptic curves?

Solutions to $y^2 = x^3 + ax + b$ for rational numbers *a* and *b*.

What are they used for?

Number theory.

Cryptography.

What do we know?

What do we know?

▶ It is a group.

What do we know?

- It is a group.
- It has a rank.

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

How large can the rank be?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

How large can the rank be?

イロト イヨト イヨト イヨト 三日

15 / 106

At least 28.

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

- How large can the rank be?
 - At least 28.

Is the rank bounded?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

How large can the rank be?

イロト イヨト イヨト イヨト 三日

17 / 106

- At least 28.
- Is the rank bounded?
 - Maybe?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

How large can the rank be?

イロト イヨト イヨト イヨト 三日

18 / 106

- At least 28.
- Is the rank bounded?
 - Maybe?

What can we do?

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

- How large can the rank be?
 - At least 28.
- Is the rank bounded?
 - Maybe?

What can we do?

Study Selmer groups and Tate-Shafarevich groups.

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

- How large can the rank be?
 - At least 28.
- Is the rank bounded?
 - Maybe?

What can we do?

Study Selmer groups and Tate-Shafarevich groups.

(日) (部) (注) (注) (三)

20 / 106

Neither are easy to study.

What do we know?

- It is a group.
- It has a rank.

What do we not know?

What is the average rank?

• Probably $\frac{1}{2}$.

- How large can the rank be?
 - At least 28.
- Is the rank bounded?
 - Maybe?

What can we do?

- Study Selmer groups and Tate-Shafarevich groups.
- Neither are easy to study.
- Study models for them instead.

Object

< □ > < 部 > < E > < E > E の Q (~ 23/106

イロト イポト イヨト イヨト ヨー のへで 24/106

<ロト < 部ト < 差ト < 差ト 差 の Q (や 27 / 106

<ロト < 部ト < 差ト < 差ト 差 の Q (や 31 / 106

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)

The n-Selmer group is usually the intersection of two Lagrangian spaces.

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)

The n-Selmer group is usually the intersection of two Lagrangian spaces.

Theorem (2) (idea)

The intersection of two Lagrangian spaces should have average size $\sigma_1(n)$.

"Modelling the Selmer group, the Tate-Shafarevich group, and the Mordell-Weil rank of elliptic curves over number fields"

Theorem (1) (idea)

The n-Selmer group is usually the intersection of two Lagrangian spaces.

Theorem (2) (idea)

The intersection of two Lagrangian spaces should have average size $\sigma_1(n)$.

"All but finitely many rational elliptic curves have rank at most 21"

Preliminary background

Let E be an *elliptic curve* defined over a *number field* K.
Let E be an *elliptic curve* defined over a *number field* K.

• K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .

Let E be an *elliptic curve* defined over a *number field* K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .
- $E = E(\overline{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.

Let E be an *elliptic curve* defined over a *number field* K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .
- ► $E = E(\overline{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- Gal (\overline{K}/K) acts on *E* with invariants E(K).

Let E be an *elliptic curve* defined over a *number field* K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .
- ► $E = E(\overline{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- Gal(\overline{K}/K) acts on *E* with invariants *E*(*K*).

Theorem (Mordell-Weil)

E(K) is a finitely generated abelian group.

Let E be an *elliptic curve* defined over a *number field* K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .
- ► $E = E(\overline{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- Gal(\overline{K}/K) acts on E with invariants E(K).

Theorem (Mordell-Weil)

E(K) is a finitely generated abelian group.

There is an isomorphism

$$E(K) \cong \operatorname{tors}(E/K) \times \mathbb{Z}^{\operatorname{rk}(E/K)}.$$

Let E be an *elliptic curve* defined over a *number field* K.

- K is a finite extension of \mathbb{Q} with a fixed algebraic closure \overline{K} .
- ► $E = E(\overline{K})$ is a smooth projective plane curve of genus one with a distinguished point $\mathcal{O} \in E(K)$.
- Gal(\overline{K}/K) acts on *E* with invariants *E*(*K*).

Theorem (Mordell-Weil)

E(K) is a finitely generated abelian group.

There is an isomorphism

$$E(K) \cong \operatorname{tors}(E/K) \times \mathbb{Z}^{\operatorname{rk}(E/K)}.$$

イロト イヨト イヨト イヨト 三日

42 / 106

The **Mordell-Weil rank** is rk(E/K).

Let E be an elliptic curve defined over a number field K.

Let *E* be an elliptic curve defined over a number field *K*. Multiplying by $n \in \mathbb{N}^+$,

$$0 \to E[n] \to E \xrightarrow{[n]} E \to 0.$$

Let *E* be an elliptic curve defined over a number field *K*. Multiplying by $n \in \mathbb{N}^+$,

$$0 \to E[n] \to E \xrightarrow{[n]} E \to 0.$$

Applying $Gal(\overline{K}/K)$ cohomology,

Let *E* be an elliptic curve defined over a number field *K*. Multiplying by $n \in \mathbb{N}^+$,

$$0 \to E[n] \to E \xrightarrow{[n]} E \to 0.$$

Applying $Gal(\overline{K}/K)$ cohomology,

Truncating at $H^1(K, E[n])$,

 $0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$.

Let E be an elliptic curve defined over a number field K. There is a short exact sequence

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$$
.

Let E be an elliptic curve defined over a number field K. There is a short exact sequence

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0 \ .$$

Let K_v be a *completion* of K with respect to a norm $|\cdot|_v$.

Let E be an elliptic curve defined over a number field K. There is a short exact sequence

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$$
.

Let K_v be a *completion* of K with respect to a norm $|\cdot|_v$.

• K_v is one of K_p , \mathbb{R} , or \mathbb{C} .

Let E be an elliptic curve defined over a number field K. There is a short exact sequence

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$$
.

Let K_v be a *completion* of K with respect to a norm $|\cdot|_v$.

•
$$K_v$$
 is one of K_p , \mathbb{R} , or \mathbb{C} .

Similarly,

$$0 \longrightarrow E(K_{\nu})/n \longrightarrow H^{1}(K_{\nu}, E[n]) \longrightarrow H^{1}(K_{\nu}, E)[n] \longrightarrow 0$$
.

Let E be an elliptic curve defined over a number field K. There is a short exact sequence

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$$
.

Let K_v be a *completion* of K with respect to a norm $|\cdot|_v$.

•
$$K_v$$
 is one of K_p , \mathbb{R} , or \mathbb{C} .

Similarly,

$$0 \rightarrow \prod_{\nu} E(K_{\nu})/n \rightarrow \prod_{\nu} H^{1}(K_{\nu}, E[n]) \rightarrow \prod_{\nu} H^{1}(K_{\nu}, E)[n] \rightarrow 0 .$$

Let E be an elliptic curve defined over a number field K. There are short exact sequences

$$0 \longrightarrow E(K)/n \longrightarrow H^1(K, E[n]) \longrightarrow H^1(K, E)[n] \longrightarrow 0$$
,

$$0 \rightarrow \prod_{\nu} E(K_{\nu})/n \rightarrow \prod_{\nu} H^{1}(K_{\nu}, E[n]) \rightarrow \prod_{\nu} H^{1}(K_{\nu}, E)[n] \rightarrow 0 .$$

Let E be an elliptic curve defined over a number field K. There is a row-exact commutative diagram

$$\begin{array}{cccc} 0 & \longrightarrow & E(K)/n & \longrightarrow & H^{1}(K, E[n]) & \longrightarrow & H^{1}(K, E)[n] & \longrightarrow & 0 \\ & & & \downarrow & & \downarrow & & \downarrow \\ 0 & \to & \prod_{v} & E(K_{v})/n & \to & \prod_{v} & H^{1}(K_{v}, E[n]) & \to & \prod_{v} & H^{1}(K_{v}, E)[n] & \to & 0 \end{array}$$

•

Let E be an elliptic curve defined over a number field K. There is a row-exact commutative diagram

The *n*-Selmer group is

$$\mathcal{S}_n(K, E) = \ker(\sigma : H^1(K, E[n]) \to \prod_v H^1(K_v, E)[n]).$$

٠

Let E be an elliptic curve defined over a number field K. There is a row-exact commutative diagram

The *n*-Selmer group is

$$\mathcal{S}_n(K, E) = \ker(\sigma : H^1(K, E[n]) \to \prod_v H^1(K_v, E)[n]).$$

By the first isomorphism theorem,

$$\mathcal{S}_n(K, E) / \ker \lambda \xrightarrow{\sim} \operatorname{im} \kappa \cap \operatorname{im} \lambda.$$

55 / 106

イロト イヨト イヨト イヨト 三日

٠

Let E be an elliptic curve defined over a number field K. There is a row-exact commutative diagram

The Tate-Shafarevich group is

$$\operatorname{III}(K, E) = \operatorname{ker}(\tau : H^1(K, E) \to \prod_{\nu} H^1(K_{\nu}, E)).$$

٠

Let E be an elliptic curve defined over a number field K. There is a row-exact commutative diagram

The Tate-Shafarevich group is

$$\operatorname{III}(K, E) = \operatorname{ker}(\tau : H^1(K, E) \to \prod_{\nu} H^1(K_{\nu}, E)).$$

There is an exact sequence

$$0 \to E(K)/n \to S_n(K, E) \to \operatorname{III}(K, E)[n] \to 0.$$

57 / 106

٠

イロト イヨト イヨト イヨト 二日

Theorem (1)

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Almost all: limiting proportion when ordered by height.

Theorem (1)

- Almost all: limiting proportion when ordered by height.
- Quadratic module M: has a quadratic form $\omega: M \to \mathbb{Q}/\mathbb{Z}$.

Theorem (1)

- Almost all: limiting proportion when ordered by height.
- Quadratic module M: has a quadratic form $\omega : M \to \mathbb{Q}/\mathbb{Z}$.
- ▶ Non-degenerate M: $M \cong M^*$.

Theorem (1)

- Almost all: limiting proportion when ordered by height.
- Quadratic module M: has a quadratic form $\omega : M \to \mathbb{Q}/\mathbb{Z}$.
- ▶ Non-degenerate M: $M \cong M^*$.
- Lagrangian submodule N: $\omega(N) = 0$ and $N^{\perp} = N$.

Theorem (1)

- Almost all: limiting proportion when ordered by height.
- Quadratic module M: has a quadratic form $\omega: M \to \mathbb{Q}/\mathbb{Z}$.
- ▶ Non-degenerate M: $M \cong M^*$.
- Lagrangian submodule N: $\omega(N) = 0$ and $N^{\perp} = N$.
- Infinite rank: in terms of generators.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

- Almost all: limiting proportion when ordered by height.
- Quadratic module M: has a quadratic form $\omega: M \to \mathbb{Q}/\mathbb{Z}$.
- ▶ Non-degenerate M: $M \cong M^*$.
- Lagrangian submodule N: $\omega(N) = 0$ and $N^{\perp} = N$.
- Infinite rank: in terms of generators.

Think of $M = (\mathbb{Z}/p^e)^{2n}$, equipped with hyperbolic quadratic form

$$(x_1,\ldots,x_n,y_1,\ldots,y_n)\mapsto \sum_{i=1}^n x_iy_i,$$

with Lagrangian submodule $N = (\mathbb{Z}/p^e)^n \oplus 0^n$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

References:

- Colliot-Thélène, Skorobogatov, Swinnerton-Dyer (1998): p^e = 2 and finite-dimensional construction.¹
- Bhargava, Kane, Lenstra, Poonen, Rains (2015): general p^e, infinite-rank construction, and generalisations to abelian varieties with arbitrary isogenies over arbitrary global fields.²

¹ J.-L. Colliot-Thelene, A. Skorobogatov and P. Swinnerton-Dyer. 'Hasse principle for pencils of curves of genus one whose Jacobians have rational 2-division points'. In: Invent. Math. 134 (1998)

²M. Bhargava, D. Kane, H. Lenstra, B. Poonen and E. Rains. 'Modelling the distribution of ranks, Selmer groups, and Shafarevich-Tate groups of elliptic curves'. In: Camb. J. Math. 3 (2015) ← □ → < 合 → < ≥ → < ≥ → <

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

1. Construct the local non-degenerate quadratic module.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
 - Construct Θ such that $0 \to \overline{K_v}^{\times} \to \Theta \to E[n] \to 0$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
 - Construct Θ such that $0 \to \overline{K_v}^{\times} \to \Theta \to E[n] \to 0$.
 - Define $Ob_{K_v} : H^1(K_v, E[n]) \to Br K_v \hookrightarrow \mathbb{Q}/\mathbb{Z}$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
 - Construct Θ such that $0 \to \overline{K_v}^{\times} \to \Theta \to E[n] \to 0$.
 - Define $Ob_{K_v} : H^1(K_v, E[n]) \to Br K_v \hookrightarrow \mathbb{Q}/\mathbb{Z}$.
 - ▶ Prove $\langle \cdot, \cdot \rangle_{\mathsf{Ob}_{K_{\nu}}} = [\cdot, \cdot] \circ \cup$, and deduce $\mathsf{Ob}_{K_{\nu}}$ is a quadratic form.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
 - Construct Θ such that $0 \to \overline{K_v}^{\times} \to \Theta \to E[n] \to 0$.
 - Define $Ob_{K_v} : H^1(K_v, E[n]) \to Br K_v \hookrightarrow \mathbb{Q}/\mathbb{Z}$.
 - ▶ Prove $\langle \cdot, \cdot \rangle_{\mathsf{Ob}_{K_v}} = [\cdot, \cdot] \circ \cup$, and deduce Ob_{K_v} is a quadratic form.
 - Show non-degeneracy using local duality.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $\mathcal{S}_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
 - Prove basic properties of Brauer-Severi diagrams to redefine Ob_{Kv}.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
 - Prove basic properties of Brauer-Severi diagrams to redefine Ob_{Kv}.
 - ▶ Define $M = \overline{\prod_{v}} H^1(K_v, E[n])$ and $\mathfrak{q} = \sum_{v} \operatorname{inv}_{K_v} \circ \operatorname{Ob}_{K_v} : M \to \mathbb{Q}/\mathbb{Z}$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
 - Prove basic properties of Brauer-Severi diagrams to redefine Ob_{Kv}.
 - ▶ Define $M = \overline{\prod_{\nu}} H^1(K_{\nu}, E[n])$ and $\mathfrak{q} = \sum_{\nu} \operatorname{inv}_{K_{\nu}} \circ \operatorname{Ob}_{K_{\nu}} : M \to \mathbb{Q}/\mathbb{Z}$.
 - Show im κ is Lagrangian using B-S diagrams and local duality.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
 - Prove basic properties of Brauer-Severi diagrams to redefine Ob_{Kv}.
 - ▶ Define $M = \overline{\prod_{\nu}} H^1(K_{\nu}, E[n])$ and $\mathfrak{q} = \sum_{\nu} \operatorname{inv}_{K_{\nu}} \circ \operatorname{Ob}_{K_{\nu}} : M \to \mathbb{Q}/\mathbb{Z}$.
 - Show im κ is Lagrangian using B-S diagrams and local duality.
 - Show im λ is Lagrangian using class field theory and global duality.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
- 3. Prove im κ and im λ are direct summands.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
- 3. Prove im κ and im λ are direct summands.
 - Use infinite abelian group theory to characterise direct summands in terms of divisibility-preserving maps and apply global duality.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
- 3. Prove im κ and im λ are direct summands.
- 4. Attain good criterion for ker $\lambda = 0$ when $n = p^e$.

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
- 3. Prove im κ and im λ are direct summands.
- 4. Attain good criterion for ker $\lambda = 0$ when $n = p^e$.
 - Use Chebotarev's density theorem to reduce to H¹_c(im ρ_{E[n]}, E[n]) and apply inflation-restriction repeatedly to reduce to SL₂(Z/n).

イロト イヨト イヨト イヨト 三日

Theorem (1)

For almost all elliptic curves defined over a number field, the p^e -Selmer group is the intersection of two Lagrangian direct summands in a non-degenerate quadratic \mathbb{Z}/p^e -module of infinite rank.

Sketch of proof.

Recall that $S_n(K, E) / \ker \lambda \cong \operatorname{im} \kappa \cap \operatorname{im} \lambda$.

- 1. Construct the local non-degenerate quadratic module.
- 2. Prove im κ and im λ are Lagrangian.
- 3. Prove im κ and im λ are direct summands.
- 4. Attain good criterion for ker $\lambda = 0$ when $n = p^e$.
 - ► Use Chebotarev's density theorem to reduce to H¹_c(im ρ_{E[n]}, E[n]) and apply inflation-restriction repeatedly to reduce to SL₂(Z/n).
 - Extract assumption SL₂(ℤ/n) ≤ im ρ_{E[n]} and justify its ubiquity using Hilbert's irreducibility theorem and division polynomials. □

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

► Theorem (1): the p^e-Selmer group is the intersections of two Lagrangian direct summands in <u>Π</u>_vH¹(K_v, E[p^e]).

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

- ► Theorem (1): the p^e-Selmer group is the intersections of two Lagrangian direct summands in <u>Π</u>_vH¹(K_v, E[p^e]).
- Theorem (2): the size of the intersection of two Lagrangian direct summands in (ℤ/p^e)[∞] has first moment σ₁(p^e).

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

- ► Theorem (1): the p^e-Selmer group is the intersections of two Lagrangian direct summands in <u>Π</u>_vH¹(K_v, E[p^e]).
- Theorem (2): the size of the intersection of two Lagrangian direct summands in (ℤ/p^e)[∞] has first moment σ₁(p^e).
- On the other hand, $(\mathbb{Z}/p^e)^{\infty}$ is always free, while $\overline{\prod_{\nu}} H^1(K_{\nu}, E[p^e])$ is almost never free, by Hilbert's irreducibility theorem.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

- ► Theorem (1): the p^e-Selmer group is the intersections of two Lagrangian direct summands in <u>Π</u>_vH¹(K_v, E[p^e]).
- Theorem (2): the size of the intersection of two Lagrangian direct summands in (ℤ/p^e)[∞] has first moment σ₁(p^e).
- On the other hand, $(\mathbb{Z}/p^e)^{\infty}$ is always free, while $\overline{\prod_{\nu}} H^1(K_{\nu}, E[p^e])$ is almost never free, by Hilbert's irreducibility theorem.

Reference:

▶ Poonen, Rains (2012): *e* = 1. ¹

¹ B. Poonen and E. Rains. 'Random maximal isotropic subspaces and Selmer groups'. In: J.: Amer: Math. So 🖅 (2012) 🕨 🚊 🚽 🔍 🔍

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

Crucial assumption of direct summands.

1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
 - Show correspondence theorem for direct summands.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
 - Show correspondence theorem for direct summands.
 - Count number of direct summands of fixed rank.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
 - Show correspondence theorem for direct summands.
 - Count number of direct summands of fixed rank.
 - Obtain linear algebra for Lagrangian direct summands.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
 - Compute result for n = 1 explicitly.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
 - Compute result for n = 1 explicitly.
 - Count fibres of $L \mapsto (L \cap N^{\perp} + N)/N$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
 - Compute result for n = 1 explicitly.
 - Count fibres of $L \mapsto (L \cap N^{\perp} + N)/N$.
 - Extract rank one free submodule and apply induction.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
- 3. Average size of $L_1 \cap L_2$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

(日) (部) (注) (注) (三)

97 / 106

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
- 3. Average size of $L_1 \cap L_2$.
 - Count number of injections $\mathbb{Z}/p^e \hookrightarrow L_1$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
- 3. Average size of $L_1 \cap L_2$.
 - Count number of injections $\mathbb{Z}/p^e \hookrightarrow L_1$.
 - Compute probability that L_2 contains image of $\mathbb{Z}/p^e \hookrightarrow L_1$.

Theorem (2)

The average size of the intersection of two Lagrangian direct summands of the quadratic \mathbb{Z}/p^e -module $(\mathbb{Z}/p^e)^{2n}$ chosen uniformly at random tends to the sum of divisors σ_1 of p^e as $n \to \infty$.

Sketch of proof.

- 1. Linear algebra of $(\mathbb{Z}/p^e)^{2n}$.
- 2. Lagrangian direct summands of $(\mathbb{Z}/p^e)^{2n}$.
- 3. Average size of $L_1 \cap L_2$.
 - Count number of injections $\mathbb{Z}/p^e \hookrightarrow L_1$.
 - Compute probability that L_2 contains image of $\mathbb{Z}/p^e \hookrightarrow L_1$.
 - Deduce result by telescoping argument.

A model for *n*-Selmer groups.

A model for *n*-Selmer groups.

For almost all elliptic curves E defined over a number field K,

 $\mathcal{S}_n(K, E)[p^e] \cong \mathcal{S}_{p^e}(K, E), \qquad p^e \mid n.$

A model for *n*-Selmer groups.

For almost all elliptic curves E defined over a number field K,

$$\mathcal{S}_n(K,E)[p^e] \cong \mathcal{S}_{p^e}(K,E), \qquad p^e \mid n.$$

▶ Derive linear algebra for \mathbb{Z}/n and consider $(L_1 \cap L_2)[p^e]$.

A model for *n*-Selmer groups.

For almost all elliptic curves E defined over a number field K,

$$\mathcal{S}_n(K, E)[p^e] \cong \mathcal{S}_{p^e}(K, E), \qquad p^e \mid n.$$

▶ Derive linear algebra for \mathbb{Z}/n and consider $(L_1 \cap L_2)[p^e]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

A model for *n*-Selmer groups.

For almost all elliptic curves E defined over a number field K,

$$\mathcal{S}_n(K, E)[p^e] \cong \mathcal{S}_{p^e}(K, E), \qquad p^e \mid n.$$

▶ Derive linear algebra for \mathbb{Z}/n and consider $(L_1 \cap L_2)[p^e]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

Use

$$0 \to E(K) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \varinjlim_e \mathcal{S}_{p^e}(K, E) \to \operatorname{III}(K, E)[p^{\infty}] \to 0.$$

A model for *n*-Selmer groups.

For almost all elliptic curves E defined over a number field K,

$$\mathcal{S}_n(K, E)[p^e] \cong \mathcal{S}_{p^e}(K, E), \qquad p^e \mid n.$$

▶ Derive linear algebra for \mathbb{Z}/n and consider $(L_1 \cap L_2)[p^e]$.

A model for Mordell-Weil ranks and Tate-Shafarevich groups.

Use

$$0 \to E(K) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to \varinjlim_e \mathcal{S}_{p^e}(K, E) \to \mathrm{III}(K, E)[p^{\infty}] \to 0.$$

Consider

 $0 \to (L_1 \cap L_2) \otimes \mathbb{Q}_p / \mathbb{Z}_p \to (L_1 \otimes \mathbb{Q}_p / \mathbb{Z}_p) \cap (L_2 \otimes \mathbb{Q}_p / \mathbb{Z}_p) \to T \to 0.$

THANK YOU

< □ > < ⑦ > < ≧ > < ≧ > < ≧ > 106/106