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An unusual cubic representation problem
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A trivial cubic representation problem

C,R : (a, b, c) =
(

2 +
√

3, 1, 0
)

Q,Z : (a, b, c) = (11, 4,−1)
= (−11,−4, 1)
= (1,−4,−11)
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Dimensionality of solution space

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Definition
A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition
If (a0, b0, c0) is a solution in Z, then (λa0, λb0, λc0) is a solution in Q for any λ ∈ Q∗.
Define the equivalence relation ∼ by

(a0, b0, c0) ∼
(
a′0, b

′
0, c
′
0

)
⇐⇒ (a0, b0, c0) =

(
λa′0, λb

′
0, λc

′
0

)
for some λ ∈ Q∗.

Write the equivalence class as [a0, b0, c0].

I Modulo ∼, the space of solutions to the equation is only two-dimensional.

Proposition
If c 6= 0, the equation is equivalent to

a3 + b3 + 1− 5ab − 3
(
a2b + ab2 + a2 + a + b2 + b

)
= 0, a, b ∈ Q.

I Modulo ∼, the equation is cubic of two variables.
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Elliptic curves: informally

An elliptic curve is the space of solutions to a cubic equation

y2 = x3 + Ax + B,

where A and B are in some field such that 4A3 + 27B2 6= 0.

I Simplest non-trivial structures in algebraic geometry.

I Topic of the Birch and Swinnerton-Dyer conjecture.

I Tool in Wiles’ proof of Fermat’s last theorem.

I Methods for primality testing and integer factorisation.

I Applications in elliptic curve cryptography.



Elliptic curves: formally

Definition
An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E
of genus one with a flex K -rational base point OE .

I algebraic curve: space of solutions to equation

I plane: two variables

I projective: consider equivalence classes of solutions

I smooth: no kinks

I genus one: degree three

I K -rational base point: K coordinates

I flex : tangent has intersection multiplicity three

I perfect field : every algebraic extension is separable
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Definition
An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E
of genus one with a flex K -rational base point OE .

I algebraic curve: space of solutions to equation

I plane: two variables

I projective: consider equivalence classes of solutions

I smooth: no kinks

I genus one: degree three

I K -rational base point: K coordinates

I flex : tangent has intersection multiplicity three

I perfect field : every algebraic extension is separable

Theorem
An elliptic curve over Q is of the form

E =
{

(x , y) ∈ Q2 | y2 = x3 + Ax + B
}
∪ {O} ,

for some A,B ∈ Q such that 4A3 + 27B2 6= 0, where O = [0, 1, 0].



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.

Let A = −302643 and B = 63998478.



Weierstrass representations

a3 + b3 + c3 − 5abc − 3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z

Proposition
The curve given by the equation is isomorphic to the following elliptic curves.

I
{

(x , y) ∈ Q2 | 6y2 + 6xy + 6y = −91x3 + 141x2 + 15x − 1
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy − 91
6
y = x3 + 47

2
x2 − 455

12
x − 8281

216

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 + xy + y = x3 − 234x + 1352
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 1
4
x2 − 467

2
x + 5409

4

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 + 109x2 + 224x
}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 11209
48

x + 1185157
864

}
∪ {O}.

I
{

(x , y) ∈ Q2 | y2 = x3 − 302643x + 63998478
}
∪ {O}.

Let A = −302643 and B = 63998478. Overall invertible transformations:
a = 1

72
x + 1

216
y − 277

24

b = 1
72
x − 1

216
y − 277

24

c = 1
6
x − 95

2


x =
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A group law

E =
{

(x , y) ∈ Q2 | y2 = x3 + Ax + B
}
∪ {O}

Theorem
E is an abelian group (E ,+).

I The identity point is O ∈ E .

I The inverse of a point is obtained by reflecting the point about the x-axis.

− (x , y) = (x ,−y) .

I The sum of two points is obtained by inverting the third point of intersection
between the curve and the line joining the two points.

P + Q =


S P = (x , y) , Q = (x ′, y ′) , x 6= x ′

R P = Q = (x , y) , y 6= 0

P Q = O
O P = Q = (x , 0)

,

S =

(
(A+xx′)(x+x′)+2(B−yy′)

(x−x′)2 ,
(Ay′−x′2y)(3x+x′)+(x2y′−Ay)(x+3x′)−4B(y−y′)

(x−x′)3

)
,

R =
(

x4−2Ax2−8Bx+A2

4y2 , x
6+5Ax4+20Bx3−5A2x2−4ABx−A3−8B2

8y3

)
.
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Proof of the group law

E =
{

(x , y) ∈ Q2 | y2 = x3 + Ax + B
}
∪ {O}

Theorem
E is an abelian group (E ,+).

Lemma (Bézout’s theorem)
Let C and D be projective algebraic curves over an algebraically closed field K . Then
C and D intersect at exactly deg C deg D points counted with intersection multiplicity.

Lemma (Cayley-Bacharach theorem)
Let C ,D,E be projective algebraic cubic curves over an algebraically closed field K
such that

C ∩ E = {P1, . . . ,P8,Q} , D ∩ E = {P1, . . . ,P8,R} ,

counted with intersection multiplicity. Then Q = R.

I Well-definition of addition in K holds by explicit equations.

I Commutativity of addition holds by symmetry.

I Associativity of addition holds by intimidation.
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Procedure

Algorithm
Generate new solutions from old solutions.

I Choose an initial solution for

a3 +b3 +c3−5abc−3
(
a2b + ab2 + a2c + ac2 + b2c + bc2

)
= 0, a, b, c ∈ Z.

I Apply the change of variables:
x =

1710a + 1710b − 831c

6a + 6b − c

y =
−9828a + 9828b

6a + 6b − c

.

I Compute multiples of point in

y2 = x3 + Ax + B, (x , y) ∈ Q2.

I Apply the change of variables:
a = 1

72
x + 1

216
y − 277

24

b = 1
72
x − 1

216
y − 277

24

c = 1
6
x − 95

2

.

I Terminate or repeat.
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Computation: failure

Choose an invalid solution:

(a, b, c) = (−1, 1,−1) .

I Apply the change of variables:

(x , y) = (831, 19656) .

Compute multiples of point:

I 1 (x , y) = (831, 19656).

I 2 (x , y) = (363, 1404).

I 3 (x , y) = (327, 0).

I 4 (x , y) = (363,−1404).

I 5 (x , y) = (831,−19656).

I 6 (x , y) = O.
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This is a cyclic subgroup of order six.



Computation: success

Choose a trivial solution:
(a, b, c) = (11, 4,−1) .

I Apply the change of variables:

(x , y) = (291,−756) .

Compute multiples of point:

I 1 (x , y) = (291,−756).
I 2 (x , y) =

(
22107

49
,− 1506492

343

)
.

I Apply the change of variables:

(a, b, c) = (−8784, 5165, 9499) .

I 3 (x , y) =
(
− 2694138

11881
,− 14243306490

1295029

)
.

I Apply the change of variables:

(a, b, c) = (679733219,−375326521, 883659076) .

I 9 (x , y) = ( 3823387580080160076063605209061052603963389916327719142
13514400292716288512070907945002943352692578000406921

,

− 1587622549247318249299172296638373895912313166958011719500537215259315694916502670
1571068668597978434556364707291896268838086945430031322196754390420280407346469

).

I Apply the change of variables:

(a, b, c) = (apple, banana, pineapple) .
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Further facts

The general equation is

a

b + c
+

b

a + c
+

c

a + b
= N, a, b, c ∈ N∗, N ∈ Z.

I The curve is

E ∼= Zr ⊕
{
Z/2Z⊕ Z/6Z N = 2

Z/6Z otherwise
, r ∈ N∗.

I The curve for N = 4 has r = 1.

I The smallest solution for N = 4 is (a, b, c) = (apple, banana, pineapple).

I Proof by heights.

I The smallest solution for N = 178 has four hundred million digits.

I More than the twenty volume second edition of the Oxford English Dictionary.

I There are no solutions for N is odd.

I Proof by congruences.

I There may also be no solutions if N is even.

I There are infinitely many even N with solutions.
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