An unusual cubic representation problem

David Kurniadi Angdinata

Wednesday, 16 January 2019

An unusual cubic representation problem

$\mathbf{9 5 \%}$ of people cannot solve this!

Can you find positive whole values for Q, \mathcal{B}, and

An unusual cubic representation problem

$\mathbf{9 5 \%}$ of people cannot solve this!

Can you find positive whole values

APPLE $=154476802108746166441951315019919837485664325669565431700026634898253202035277999$
BANANA $=36875131794129999827197811565225474825492979968971970996283137471637224634055579$
PINEAPPLE $=4373612677928697257861252602371390152816537558161613618621437993378423467772036$

A trivial cubic representation problem

95% of people cannot solve this!

Can you find values
for $Q, \&$, and

A trivial cubic representation problem

95% of people cannot solve this!

Can you find values for E, R, and ?

$$
\mathbb{C}, \mathbb{R}:(a, b, c)=(2+\sqrt{3}, 1,0)
$$

A trivial cubic representation problem

95% of people cannot solve this!

Can you find values for E, \&, and ?

$$
\begin{aligned}
& \mathbb{C}, \mathbb{R}:(a, b, c)=(2+\sqrt{3}, 1,0) \\
& \mathbb{Q}, \mathbb{Z}:(a, b, c)=(11,4,-1)
\end{aligned}
$$

A trivial cubic representation problem

95% of people cannot solve this!

Can you find values for E, R, and?

$$
\begin{aligned}
\mathbb{C}, \mathbb{R}:(a, b, c) & =(2+\sqrt{3}, 1,0) \\
\mathbb{Q}, \mathbb{Z}: \quad(a, b, c) & =(11,4,-1) \\
& =(-11,-4,1)
\end{aligned}
$$

A trivial cubic representation problem

95% of people cannot solve this!

Can you find values for D,E, and ?

$$
\begin{aligned}
\mathbb{C}, \mathbb{R}:(a, b, c) & =(2+\sqrt{3}, 1,0) \\
\mathbb{Q}, \mathbb{Z}: \quad(a, b, c) & =(11,4,-1) \\
& =(-11,-4,1) \\
& =(1,-4,-11) \\
& =\cdots
\end{aligned}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
\begin{gathered}
\left(\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\right)(a+b)(a+c)(b+c) \\
=4(a+b)(a+c)(b+c)
\end{gathered}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
\begin{gathered}
a(a+b)(a+c)+b(a+b)(b+c)+c(a+c)(b+c) \\
=4(a+b)(b+c)(a+c)
\end{gathered}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
\begin{gathered}
a^{3}+a^{2} c+a^{2} b+a b c+a b^{2}+a b c+b^{3}+b^{2} c+a b c+a c^{2}+b c^{2}+c^{3} \\
=4 a^{2} b+4 a b c+4 a^{2} c+4 a c^{2}+4 a b^{2}+4 b^{2} c+4 a b c+4 b c^{2} .
\end{gathered}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0 .
$$

Trivial solutions:

$$
\begin{aligned}
(a, b, c) & =(11,4,-1) \\
& =(-11,-4,1) \\
& =(1,-4,-11) \\
& =\cdots
\end{aligned}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0 .
$$

Trivial solutions:

$$
\begin{aligned}
(a, b, c) & =(11,4,-1) \\
& =(-11,-4,1) \\
& =(1,-4,-11) \\
& =\cdots
\end{aligned}
$$

Invalid solutions:

$$
\begin{aligned}
(a, b, c) & =(1,-1,0) \\
& =(-1,1,0) \\
& =(-1,1,-1) \\
& =\cdots
\end{aligned}
$$

A less unusual cubic representation problem

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=4, \quad a, b, c \in \mathbb{Z}
$$

- Require $a, b, c>0$.

Clear denominators:

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0 .
$$

Trivial solutions:

$$
\begin{aligned}
(a, b, c) & =(11,4,-1) \\
& =(-11,-4,1) \\
& =(1,-4,-11) \\
& =\cdots
\end{aligned}
$$

Invalid solutions:

$$
\begin{aligned}
(a, b, c) & =(1,-1,0) \\
& =(-1,1,0) \\
& =(-1,1,-1) \\
& =\cdots
\end{aligned}
$$

- Require $a+b, a+c, b+c>0$.

Dimensionality of solution space

$a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}$
Definition
A polynomial is homogeneous if all of its monomials have the same total degree.

Dimensionality of solution space

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Definition

A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition

If $\left(a_{0}, b_{0}, c_{0}\right)$ is a solution in \mathbb{Z}, then $\left(\lambda a_{0}, \lambda b_{0}, \lambda c_{0}\right)$ is a solution in \mathbb{Q} for any $\lambda \in \mathbb{Q}^{*}$.

Dimensionality of solution space

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Definition

A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition

If $\left(a_{0}, b_{0}, c_{0}\right)$ is a solution in \mathbb{Z}, then $\left(\lambda a_{0}, \lambda b_{0}, \lambda c_{0}\right)$ is a solution in \mathbb{Q} for any $\lambda \in \mathbb{Q}^{*}$. Define the equivalence relation \sim by
$\left(a_{0}, b_{0}, c_{0}\right) \sim\left(a_{0}^{\prime}, b_{0}^{\prime}, c_{0}^{\prime}\right) \quad \Longleftrightarrow \quad\left(a_{0}, b_{0}, c_{0}\right)=\left(\lambda a_{0}^{\prime}, \lambda b_{0}^{\prime}, \lambda c_{0}^{\prime}\right)$ for some $\lambda \in \mathbb{Q}^{*}$.
Write the equivalence class as $\left[a_{0}, b_{0}, c_{0}\right]$.

Dimensionality of solution space

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Definition

A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition

If $\left(a_{0}, b_{0}, c_{0}\right)$ is a solution in \mathbb{Z}, then $\left(\lambda a_{0}, \lambda b_{0}, \lambda c_{0}\right)$ is a solution in \mathbb{Q} for any $\lambda \in \mathbb{Q}^{*}$. Define the equivalence relation \sim by
$\left(a_{0}, b_{0}, c_{0}\right) \sim\left(a_{0}^{\prime}, b_{0}^{\prime}, c_{0}^{\prime}\right) \quad \Longleftrightarrow \quad\left(a_{0}, b_{0}, c_{0}\right)=\left(\lambda a_{0}^{\prime}, \lambda b_{0}^{\prime}, \lambda c_{0}^{\prime}\right)$ for some $\lambda \in \mathbb{Q}^{*}$.
Write the equivalence class as $\left[a_{0}, b_{0}, c_{0}\right]$.

- Modulo \sim, the space of solutions to the equation is only two-dimensional.

Dimensionality of solution space

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Definition

A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition

If $\left(a_{0}, b_{0}, c_{0}\right)$ is a solution in \mathbb{Z}, then $\left(\lambda a_{0}, \lambda b_{0}, \lambda c_{0}\right)$ is a solution in \mathbb{Q} for any $\lambda \in \mathbb{Q}^{*}$.
Define the equivalence relation \sim by
$\left(a_{0}, b_{0}, c_{0}\right) \sim\left(a_{0}^{\prime}, b_{0}^{\prime}, c_{0}^{\prime}\right) \quad \Longleftrightarrow \quad\left(a_{0}, b_{0}, c_{0}\right)=\left(\lambda a_{0}^{\prime}, \lambda b_{0}^{\prime}, \lambda c_{0}^{\prime}\right)$ for some $\lambda \in \mathbb{Q}^{*}$.
Write the equivalence class as $\left[a_{0}, b_{0}, c_{0}\right]$.

- Modulo \sim, the space of solutions to the equation is only two-dimensional.

Proposition

If $c \neq 0$, the equation is equivalent to

$$
a^{3}+b^{3}+1-5 a b-3\left(a^{2} b+a b^{2}+a^{2}+a+b^{2}+b\right)=0, \quad a, b \in \mathbb{Q} .
$$

Dimensionality of solution space

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Definition

A polynomial is homogeneous if all of its monomials have the same total degree.

Proposition

If $\left(a_{0}, b_{0}, c_{0}\right)$ is a solution in \mathbb{Z}, then $\left(\lambda a_{0}, \lambda b_{0}, \lambda c_{0}\right)$ is a solution in \mathbb{Q} for any $\lambda \in \mathbb{Q}^{*}$.
Define the equivalence relation \sim by
$\left(a_{0}, b_{0}, c_{0}\right) \sim\left(a_{0}^{\prime}, b_{0}^{\prime}, c_{0}^{\prime}\right) \quad \Longleftrightarrow \quad\left(a_{0}, b_{0}, c_{0}\right)=\left(\lambda a_{0}^{\prime}, \lambda b_{0}^{\prime}, \lambda c_{0}^{\prime}\right)$ for some $\lambda \in \mathbb{Q}^{*}$.
Write the equivalence class as $\left[a_{0}, b_{0}, c_{0}\right]$.

- Modulo \sim, the space of solutions to the equation is only two-dimensional.

Proposition

If $c \neq 0$, the equation is equivalent to

$$
a^{3}+b^{3}+1-5 a b-3\left(a^{2} b+a b^{2}+a^{2}+a+b^{2}+b\right)=0, \quad a, b \in \mathbb{Q} .
$$

- Modulo \sim, the equation is cubic of two variables.

Elliptic curves: informally

$$
y^{2}=x^{3}-x \quad y^{2}=x^{3}-x+1
$$

An elliptic curve is the space of solutions to a cubic equation

$$
y^{2}=x^{3}+A x+B
$$

where A and B are in some field such that $4 A^{3}+27 B^{2} \neq 0$.

- Simplest non-trivial structures in algebraic geometry.
- Topic of the Birch and Swinnerton-Dyer conjecture.
- Tool in Wiles' proof of Fermat's last theorem.
- Methods for primality testing and integer factorisation.
- Applications in elliptic curve cryptography.

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks
- genus one: degree three

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks
- genus one: degree three
- K-rational base point: K coordinates

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks
- genus one: degree three
- K-rational base point: K coordinates
- flex: tangent has intersection multiplicity three

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks
- genus one: degree three
- K-rational base point: K coordinates
- flex: tangent has intersection multiplicity three
- perfect field: every algebraic extension is separable

Elliptic curves: formally

Definition

An elliptic curve over a perfect field K is a smooth projective plane algebraic curve E of genus one with a flex K-rational base point \mathcal{O}_{E}.

- algebraic curve: space of solutions to equation
- plane: two variables
- projective: consider equivalence classes of solutions
- smooth: no kinks
- genus one: degree three
- K-rational base point: K coordinates
- flex: tangent has intersection multiplicity three
- perfect field: every algebraic extension is separable

Theorem

An elliptic curve over \mathbb{Q} is of the form

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\},
$$

for some $A, B \in \mathbb{Q}$ such that $4 A^{3}+27 B^{2} \neq 0$, where $\mathcal{O}=[0,1,0]$.

Weierstrass representations

$a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+109 x^{2}+224 x\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+109 x^{2}+224 x\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}-\frac{11209}{48} x+\frac{1185157}{864}\right.\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+109 x^{2}+224 x\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}-\frac{11209}{48} x+\frac{1185157}{864}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}-302643 x+63998478\right\} \cup\{\mathcal{O}\}$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+109 x^{2}+224 x\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}-\frac{11209}{48} x+\frac{1185157}{864}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}-302643 x+63998478\right\} \cup\{\mathcal{O}\}$.

Let $A=-302643$ and $B=63998478$.

Weierstrass representations

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Proposition

The curve given by the equation is isomorphic to the following elliptic curves.

- $\left\{(x, y) \in \mathbb{Q}^{2} \mid 6 y^{2}+6 x y+6 y=-91 x^{3}+141 x^{2}+15 x-1\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}+x y-\frac{91}{6} y=x^{3}+\frac{47}{2} x^{2}-\frac{455}{12} x-\frac{8281}{216}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}+x y+y=x^{3}-234 x+1352\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}+\frac{1}{4} x^{2}-\frac{467}{2} x+\frac{5409}{4}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+109 x^{2}+224 x\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \left\lvert\, y^{2}=x^{3}-\frac{11209}{48} x+\frac{1185157}{864}\right.\right\} \cup\{\mathcal{O}\}$.
- $\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}-302643 x+63998478\right\} \cup\{\mathcal{O}\}$.

Let $A=-302643$ and $B=63998478$. Overall invertible transformations:

$$
\left\{\begin{array} { l }
{ a = \frac { 1 } { 7 2 } x + \frac { 1 } { 2 1 6 } y - \frac { 2 7 7 } { 2 4 } } \\
{ b = \frac { 1 } { 7 2 } x - \frac { 1 } { 2 1 6 } y - \frac { 2 7 7 } { 2 4 } } \\
{ c = \frac { 1 } { 6 } x - \frac { 9 5 } { 2 } }
\end{array} \quad \left\{\begin{array}{l}
x=\frac{1710 a+1710 b-831 c}{6 a+6 b-c} \\
y=\frac{-9828 a+9828 b}{6 a+6 b-c}
\end{array}\right.\right.
$$

A group law

$E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$

Theorem
E is an abelian group $(E,+)$.

A group law

$E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$

Theorem
E is an abelian group $(E,+)$.

- The identity point is $\mathcal{O} \in E$.

A group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.

- The identity point is $\mathcal{O} \in E$.
- The inverse of a point is obtained by reflecting the point about the x-axis.

$$
-(x, y)=(x,-y) .
$$

A group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.

- The identity point is $\mathcal{O} \in E$.
- The inverse of a point is obtained by reflecting the point about the x-axis.

$$
-(x, y)=(x,-y) .
$$

- The sum of two points is obtained by inverting the third point of intersection between the curve and the line joining the two points.

$$
\begin{gathered}
P+Q= \begin{cases}S & P=(x, y), Q=\left(x^{\prime}, y^{\prime}\right), x \neq x^{\prime} \\
R & P=Q=(x, y), y \neq 0 \\
P & Q=\mathcal{O} \\
\mathcal{O} & P=Q=(x, 0)\end{cases} \\
S=\left(\frac{\left(A+x x^{\prime}\right)\left(x+x^{\prime}\right)+2\left(B-y y^{\prime}\right)}{\left(x-x^{\prime}\right)^{2}}, \frac{\left(A y^{\prime}-x^{\prime 2} y\right)\left(3 x+x^{\prime}\right)+\left(x^{2} y^{\prime}-A y\right)\left(x+3 x^{\prime}\right)-4 B\left(y-y^{\prime}\right)}{\left(x-x^{\prime}\right)^{3}}\right), \\
R=\left(\frac{x^{4}-2 A x^{2}-8 B x+A^{2}}{4 y^{2}}, \frac{x^{6}+5 A x^{4}+20 B x^{3}-5 A^{2} x^{2}-4 A B x-A^{3}-8 B^{2}}{8 y^{3}}\right) .
\end{gathered}
$$

Proof of the group law

$E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}$

Theorem
E is an abelian group $(E,+)$.

Proof of the group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.
Lemma (Bézout's theorem)
Let C and D be projective algebraic curves over an algebraically closed field \bar{K}. Then C and D intersect at exactly $\operatorname{deg} C \operatorname{deg} D$ points counted with intersection multiplicity.

Proof of the group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.
Lemma (Bézout's theorem)
Let C and D be projective algebraic curves over an algebraically closed field \bar{K}. Then C and D intersect at exactly $\operatorname{deg} C \operatorname{deg} D$ points counted with intersection multiplicity.

Lemma (Cayley-Bacharach theorem)
Let C, D, E be projective algebraic cubic curves over an algebraically closed field \bar{K} such that

$$
C \cap E=\left\{P_{1}, \ldots, P_{8}, Q\right\}, \quad D \cap E=\left\{P_{1}, \ldots, P_{8}, R\right\},
$$

counted with intersection multiplicity. Then $Q=R$.

Proof of the group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.
Lemma (Bézout's theorem)
Let C and D be projective algebraic curves over an algebraically closed field \bar{K}. Then C and D intersect at exactly $\operatorname{deg} C \operatorname{deg} D$ points counted with intersection multiplicity.

Lemma (Cayley-Bacharach theorem)

Let C, D, E be projective algebraic cubic curves over an algebraically closed field \bar{K} such that

$$
C \cap E=\left\{P_{1}, \ldots, P_{8}, Q\right\}, \quad D \cap E=\left\{P_{1}, \ldots, P_{8}, R\right\},
$$

counted with intersection multiplicity. Then $Q=R$.

- Well-definition of addition in K holds by explicit equations.

Proof of the group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.
Lemma (Bézout's theorem)
Let C and D be projective algebraic curves over an algebraically closed field \bar{K}. Then C and D intersect at exactly $\operatorname{deg} C \operatorname{deg} D$ points counted with intersection multiplicity.

Lemma (Cayley-Bacharach theorem)

Let C, D, E be projective algebraic cubic curves over an algebraically closed field \bar{K} such that

$$
C \cap E=\left\{P_{1}, \ldots, P_{8}, Q\right\}, \quad D \cap E=\left\{P_{1}, \ldots, P_{8}, R\right\},
$$

counted with intersection multiplicity. Then $Q=R$.

- Well-definition of addition in K holds by explicit equations.
- Commutativity of addition holds by symmetry.

Proof of the group law

$$
E=\left\{(x, y) \in \mathbb{Q}^{2} \mid y^{2}=x^{3}+A x+B\right\} \cup\{\mathcal{O}\}
$$

Theorem
E is an abelian group $(E,+)$.
Lemma (Bézout's theorem)
Let C and D be projective algebraic curves over an algebraically closed field \bar{K}. Then C and D intersect at exactly $\operatorname{deg} C \operatorname{deg} D$ points counted with intersection multiplicity.

Lemma (Cayley-Bacharach theorem)

Let C, D, E be projective algebraic cubic curves over an algebraically closed field \bar{K} such that

$$
C \cap E=\left\{P_{1}, \ldots, P_{8}, Q\right\}, \quad D \cap E=\left\{P_{1}, \ldots, P_{8}, R\right\},
$$

counted with intersection multiplicity. Then $Q=R$.

- Well-definition of addition in K holds by explicit equations.
- Commutativity of addition holds by symmetry.
- Associativity of addition holds by intimidation.

Procedure

Algorithm
Generate new solutions from old solutions.

Procedure

Algorithm

Generate new solutions from old solutions.

- Choose an initial solution for

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

Procedure

Algorithm

Generate new solutions from old solutions.

- Choose an initial solution for

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
x=\frac{1710 a+1710 b-831 c}{6 a+6 b-c} \\
y=\frac{-9828 a+9828 b}{6 a+6 b-c}
\end{array}\right.
$$

Procedure

Algorithm

Generate new solutions from old solutions.

- Choose an initial solution for

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
x=\frac{1710 a+1710 b-831 c}{6 a+6 b-c} \\
y=\frac{-9828 a+9828 b}{6 a+6 b-c}
\end{array}\right.
$$

- Compute multiples of point in

$$
y^{2}=x^{3}+A x+B, \quad(x, y) \in \mathbb{Q}^{2}
$$

Procedure

Algorithm

Generate new solutions from old solutions.

- Choose an initial solution for

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
x=\frac{1710 a+1710 b-831 c}{6 a+6 b-c} \\
y=\frac{-9828 a+9828 b}{6 a+6 b-c}
\end{array}\right.
$$

- Compute multiples of point in

$$
y^{2}=x^{3}+A x+B, \quad(x, y) \in \mathbb{Q}^{2}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
a=\frac{1}{72} x+\frac{1}{216} y-\frac{277}{24} \\
b=\frac{1}{72} x-\frac{1}{216} y-\frac{277}{24} \\
c=\frac{1}{6} x-\frac{95}{2}
\end{array}\right.
$$

Procedure

Algorithm

Generate new solutions from old solutions.

- Choose an initial solution for

$$
a^{3}+b^{3}+c^{3}-5 a b c-3\left(a^{2} b+a b^{2}+a^{2} c+a c^{2}+b^{2} c+b c^{2}\right)=0, \quad a, b, c \in \mathbb{Z}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
x=\frac{1710 a+1710 b-831 c}{6 a+6 b-c} \\
y=\frac{-9828 a+9828 b}{6 a+6 b-c}
\end{array}\right.
$$

- Compute multiples of point in

$$
y^{2}=x^{3}+A x+B, \quad(x, y) \in \mathbb{Q}^{2}
$$

- Apply the change of variables:

$$
\left\{\begin{array}{l}
a=\frac{1}{72} x+\frac{1}{216} y-\frac{277}{24} \\
b=\frac{1}{72} x-\frac{1}{216} y-\frac{277}{24} \\
c=\frac{1}{6} x-\frac{95}{2}
\end{array}\right.
$$

- Terminate or repeat.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1)
$$

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656) .
$$

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.
- $3(x, y)=(327,0)$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.
- $3(x, y)=(327,0)$.
- $4(x, y)=(363,-1404)$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.
- $3(x, y)=(327,0)$.
- $4(x, y)=(363,-1404)$.
- $5(x, y)=(831,-19656)$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.
- $3(x, y)=(327,0)$.
- $4(x, y)=(363,-1404)$.
- $5(x, y)=(831,-19656)$.
- $6(x, y)=\mathcal{O}$.

Computation: failure

Choose an invalid solution:

$$
(a, b, c)=(-1,1,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(831,19656)
$$

Compute multiples of point:

- $1(x, y)=(831,19656)$.
- $2(x, y)=(363,1404)$.
- $3(x, y)=(327,0)$.
- $4(x, y)=(363,-1404)$.
- $5(x, y)=(831,-19656)$.
- $6(x, y)=\mathcal{O}$.

This is a cyclic subgroup of order six.

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1)
$$

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(291,-756)
$$

Compute multiples of point:

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(291,-756)
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.
$-2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1)
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.
- $2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(-8784,5165,9499) .
$$

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1)
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.
$-2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(-8784,5165,9499) .
$$

- $3(x, y)=\left(-\frac{2694138}{11881},-\frac{14243306490}{1295029}\right)$.

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1)
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.
- $2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(-8784,5165,9499) .
$$

- $3(x, y)=\left(-\frac{2694138}{11881},-\frac{14243306490}{1295029}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(679733219,-375326521,883659076) .
$$

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1) .
$$

- Apply the change of variables:

$$
(x, y)=(291,-756) .
$$

Compute multiples of point:

- $1(x, y)=(291,-756)$.
- $2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(-8784,5165,9499) .
$$

- $3(x, y)=\left(-\frac{2694138}{11881},-\frac{14243306490}{1295029}\right)$.
- Apply the change of variables:

$$
(a, b, c)=(679733219,-375326521,883659076) .
$$

- $9(x, y)=\left(\frac{3823387580080160076063605209061052603963389916327719142}{13514400292716288512070907945002943352692578000406921}\right.$,
$\left.-\frac{1587622549247318249299172296638373895912313166958011719500537215259315694916502670}{1571068668597978434556364707291896268838086945430031322196754390420280407346469}\right)$.

Computation: success

Choose a trivial solution:

$$
(a, b, c)=(11,4,-1)
$$

- Apply the change of variables:

$$
(x, y)=(291,-756)
$$

Compute multiples of point:
$-1(x, y)=(291,-756)$.
$-2(x, y)=\left(\frac{22107}{49},-\frac{1506492}{343}\right)$.

- Apply the change of variables:

$$
(a, b, c)=(-8784,5165,9499)
$$

$-3(x, y)=\left(-\frac{2694138}{11881},-\frac{14243306490}{1295029}\right)$.

- Apply the change of variables:

$$
(a, b, c)=(679733219,-375326521,883659076) .
$$

$-9(x, y)=\left(\frac{3823387580080160076063605209061052603963389916327719142}{13514400292716288512070907945002943352692578000406921}\right.$,
$\left.-\frac{1587622549247318249299172296638373895912313166958011719500537215259315694916502670}{1571068668597978434556364707291896268838086945430031322196754390420280407346469}\right)$.

- Apply the change of variables:

$$
(a, b, c)=(\text { APPLE }, \text { BANANA, PINEAPPLE })
$$

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array} \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is (a, b, c) =(APPLE, BANANA, PINEAPPLE).

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is (a, b, c) = (APPLE, BANANA, PINEAPPLE).
- Proof by heights.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.
- More than the twenty volume second edition of the Oxford English Dictionary.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.
- More than the twenty volume second edition of the Oxford English Dictionary.
- There are no solutions for N is odd.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.
- More than the twenty volume second edition of the Oxford English Dictionary.
- There are no solutions for N is odd.
- Proof by congruences.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.
- More than the twenty volume second edition of the Oxford English Dictionary.
- There are no solutions for N is odd.
- Proof by congruences.
- There may also be no solutions if N is even.

Further facts

The general equation is

$$
\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}=N, \quad a, b, c \in \mathbb{N}^{*}, \quad N \in \mathbb{Z}
$$

- The curve is

$$
E \cong \mathbb{Z}^{r} \oplus\left\{\begin{array}{ll}
\mathbb{Z} / 2 \mathbb{Z} \oplus \mathbb{Z} / 6 \mathbb{Z} & N=2 \\
\mathbb{Z} / 6 \mathbb{Z} & \text { otherwise }
\end{array}, \quad r \in \mathbb{N}^{*}\right.
$$

- The curve for $N=4$ has $r=1$.
- The smallest solution for $N=4$ is $(a, b, c)=($ apple, BANANA, PINEAPPLE).
- Proof by heights.
- The smallest solution for $N=178$ has four hundred million digits.
- More than the twenty volume second edition of the Oxford English Dictionary.
- There are no solutions for N is odd.
- Proof by congruences.
- There may also be no solutions if N is even.
- There are infinitely many even N with solutions.

Further references

A Amit's 2017 Quora answer on How do you find the positive integer solutions to

$$
\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=4 ?
$$

A Bremner and A Macleod's 2014 paper on An unusual cubic representation problem

J Silverman's 1986 book on The arithmetic of elliptic curves

R Hartshorne's 1977 book on Algebraic geometry

N Duif's 2011 implementation on Transforming a general cubic elliptic curve equation to Weierstrass form

M Laska's 1982 paper on An algorithm for finding a minimal weierstrass equation for an elliptic curve

