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Abstract

This short note recounts a recent result of Hirakawa and Matsumura.

Theorem (Hirakawa–Matsumura1). Up to similarity, there is a unique pair of a rational right triangle
R0 := (135, 352, 377) and a rational isosceles triangle I0 := (132, 366, 366) with equal perimeter and area.

Integral right triangles are parameterised by Pythagorean triples (2kmn, k(m2 − n2), k(m2 + n2)) for
some k,m, n ∈ N. By setting q := n/m, this also parameterises rational right triangles by

R = (2rq, r(1− q2), r(1 + q2)), q, r ∈ Q.

This has perimeter 2r(1+ q) and area r2q(1− q2). On the other hand, every rational isosceles triangle is the
union of two identical right triangles, glued along a side adjacent to their right angles. If this adjacent side
were parameterised by 2wx for some w, x ∈ Q, then the corresponding rational triangle is given by

I = (2w(1− x2), w(1 + x2), w(1 + x2)), w, x ∈ Q.

This has perimeter 4w and area 2w2x(1− x2). Otherwise, this adjacent side is necessarily parameterised by
u(1− v2) for some u, v ∈ Q, and the corresponding rational isosceles triangle is given by

(4uv, u(1 + v2), u(1 + v2)), u, v ∈ Q.

However, this can also be recovered from I by setting w := u(1 + v)2/2 and x := |(1 − v)/(1 + v)|, so it
suffices to consider pairs of triangles (R, I). By setting z := r/w and equating the perimeters and areas,

z(1 + q) = 2, z2q(1− q2) = 2x(1− x2).

The first equation says q = 2/z−1, so substituting it into the second gives 2z2− (x3−x+6)z+4 = 0. Since
z ∈ Q, the discriminant of 2z2 − (x3 − x+ 6)z + 4 as a polynomial in z is a square, or in other words that

y2 = (x3 − x+ 6)2 − 32, y ∈ Q.

This equation cuts out an affine curve, and its non-singular compactification defines a hyperelliptic curve of
genus two. In general, a nice curve C over a field F will be a smooth proper geometrically integral scheme of
dimension one over F , and its genus gC ∈ N is the dimension of the first cohomology group of its structure
sheaf as a vector space over F . A nice curve C over F is hyperelliptic if it admits a degree two morphism to
the projective line, so it is the union of the affine curve y2 = f(x) for some square-free polynomial f(x) ∈ F [x]
of degree d ∈ {2gC + 1, 2gC + 2}, and the curve at infinity v2 = u2gC+2f(1/u) glued along x = 1/u and
y = v/ugC+1. By the Riemann–Roch theorem, every nice curve of genus two is hyperelliptic.

Now let C be a nice curve over Q with gC > 1. Via the Abel–Jacobi map, C embeds naturally into its
Jacobian variety JC , which is an abelian variety of dimension gC defined as the moduli space of degree zero
divisors on C up to linear equivalence. By the Mordell–Weil theorem, its group of rational points JC(Q) is
finitely generated, so it has a finite torsion subgroup TC and a rank rC ∈ N such that JC(Q) ∼= TC ⊕ ZrC ,
so in particular JC(Q)/2 ∼= TC [2]⊕ FrC

2 . This in turn injects into the 2-Selmer group S2(JC(Q)), which is a
finite-dimensional vector space over F2 that is computable in principle.
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Let p ∈ N be a prime. It turns out that the base change Cp of C to Qp has a unique minimal model
Cp over Zp. This is a flat proper regular scheme over Zp whose base change to Qp is Cp, and it is minimal
with respect to the partial ordering induced by morphisms of models over Zp. Then C is said to have good

reduction at p if the base change C̃p of Cp to Fp is a nice curve over Fp. If C happens to be cut out by a

polynomial over Z, then C̃p can be obtained from C simply by reducing its coefficients modulo p. For instance,
if C is hyperelliptic given by an equation y2 = f(x) for some f(x) ∈ Z[x], then C has good reduction at
p > 2 precisely if it does not divide the discriminant of f(x).

Mordell conjectured that its set of rational points C(Q) is finite, and this was subsequently proved by
Faltings using deep results in algebraic geometry. However, his proof is ineffective, in the sense that it does
not give a recipe to determine C(Q). Coleman, building upon the work of Chabauty, proved an effective
version of Mordell’s conjecture under certain assumptions.

Theorem (Chabauty–Coleman2). Let C be a nice curve over Q with gC > 1 and gC > rC such that C has

good reduction at some prime p > 2gC . Then #C(Q) ≤ #C̃p(Fp) + (2gC − 2).

The key idea is that C(Q) can be embedded into the compact space JCp
(Qp) in two ways. On one hand,

it can be embedded into JC(Q), whose p-adic closure in JCp(Qp) defines a p-adic submanifold of dimension
at most rC . On the other hand, it can be embedded into Cp(Qp), whose inclusion into JCp(Qp) via the
Abel–Jacobi map defines a one-dimensional p-adic submanifold. In particular, their intersection in a p-adic
manifold of dimension gC > rC should be discrete, which was what Chabauty proved, and hence finite.

Coleman refined this idea by introducing a theory of p-adic integration. Let ω be a non-zero differential
form on C that reduces to a non-zero differential form on C̃p. By the theory of Newton polygons, any point

P ∈ C̃p(Fp) in C(Q) has at most 1 + ordP ω preimages in C(Q) whenever C has good reduction at some
prime p > 2 + ordP ω, so that by the Riemann–Roch theorem,

#C(Q) ≤
∑

P∈C̃p(Fp)

(1 + ordP ω) ≤ #C̃p(Fp) + (2gC − 2).

The assumption p > 2 + ordP ω then holds precisely because p > 2gC .
Now let C be the hyperelliptic curve over Q with gC = 2 defined as the union of the affine curve C0 given

by y2 = f(x) := (x3 − x+ 6)2 − 32, and the curve at infinity C∞ given by v2 = (1− u+ 6u3)2 − 32u6. By
setting u = 0, there are only two points ∞+ := (0, 1) and ∞− := (0,−1) in C∞ \ C0, and there are eight
obvious points in C0 that can be computed by searching in a bounded box, which are tabulated as follows.

(x, y) R I (x̃, ỹ)
(0, 2) (0, 2, 2) (2, 1, 1) (0, 2)
(0,−2) (2, 0, 2) (2, 1, 1) (0, 3)
(1, 2) (0, 2, 2) (0, 2, 2) (1, 2)
(1,−2) (2, 0, 2) (0, 2, 2) (1, 3)
(−1, 2) (0, 2, 2) (4, 2, 2) (4, 2)
(−1,−2) (2, 0, 2) (4, 2, 2) (4, 3)(
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The first six points do not correspond to well-defined triangles, as in each case R has a side with zero length,
while the final two points correspond to triangles similar to R0 = (135, 352, 377) and I0 = (132, 366, 366).

Now the discriminant of f(x) computes to be 227 · 47, so C has good reduction at 5 > 2gC . The obvious

points in C0 reduce to six distinct points in the affine curve of C̃5 tabulated above as (x̃, ỹ), while ∞± reduce

to two distinct points in the curve at infinity of C̃5, and these are all of C̃5(F5). Furthermore, TC [2] contains
a point corresponding to the degree zero divisor

[(−1 +
√
2, 0)] + [(−1−

√
2, 0)]− [∞1]− [∞2],

and S2(JC(Q)) can be computed to be F2 ⊕ F2, so rC ≤ 2 − 1 < gC . In particular, the assumptions of the
Chabauty–Coleman theorem hold, so #C(Q) ≤ (6 + 2) + (2(2) − 2) = 10. Thus the ten aforementioned
points in C(Q) are complete, which proves the Hirakawa–Matsumura theorem.
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