Computing Dirichlet L-functions over global function fields

Young Researchers in Algebraic Number Theory

David Kurniadi Angdinata

London School of Geometry and Number Theory

Thursday, 4 September 2025

Dirichlet characters and L-functions over $\mathbb{F}_p(t)$

A Dirichlet character of modulus $m \in \mathbb{Z}$ is a map $\chi_m : (\mathbb{Z}/m)^{\times} \to \mathbb{C}^{\times}$.

For a fixed ring of integers $\mathbb{F}_p[t]$ of $\mathbb{F}_p(t)$, a **Dirichlet character of modulus** $m \in \mathbb{F}_p[t]$ is a map $\chi_m : (\mathbb{F}_p[t]/m)^{\times} \to \mathbb{C}^{\times}$.

In both cases, their (incomplete) Dirichlet L-function is

$$L(\chi_m,s):=\prod_{v\nmid m}(1-\chi_m(v)p_v^{-s\deg v})^{-1}.$$

Conjecture (Generalised extended Riemann hypothesis)

The non-trivial zeroes of $L(\chi_m, s)$ have real part equal to $\frac{1}{2}$.

Frustration: there are many implementations of Dirichlet characters and L-functions over number fields, but none over global function fields!

Structure of units over Q

For a modulus m in either $R=\mathbb{Q}$ or $R=\mathbb{F}_p[t]$, writing $m=m_1^{e_1}\cdot \cdot \cdot \cdot \cdot m_r^{e_r}$ as a product of prime powers gives an isomorphism of abelian groups

$$\mathsf{Hom}((R/m)^{\times},\mathbb{C}^{\times})\cong\prod_{k=1}^{r}\mathsf{Hom}((R/m_{k}^{e_{k}})^{\times},\mathbb{C}^{\times}),$$

so it suffices to consider χ_{m^e} when $m \in R$ is prime.

Lemma

Let $m \in \mathbb{Z}$ be prime. Then

$$(\mathbb{Z}/m^e)^{\times}\cong egin{cases} C_2 imes C_{2^{e-2}} & \textit{if } m=2 \textit{ and } e\geq 3, \ C_{m^{e-1}(m^e-1)} & \textit{otherwise}. \end{cases}$$

Over \mathbb{Q} , Dirichlet characters are determined by its values on generators.

Structure of units over $\mathbb{F}_p(t)$

When $m \in \mathbb{F}_p[t]$ is prime, $(\mathbb{F}_p[t]/m^e)^{\times}$ is far from cyclic in general.

e	$(\mathbb{F}_2[t]/t^e)^{ imes}$
1	C_1
2	C_2
3	C ₄
4	$C_2 \times C_4$
5	$C_2 \times C_8$
6	$C_2^2 \times C_8$
7	$C_2 \times C_4 \times C_8$
8	$C_2^2 \times C_4 \times C_8$
9	$C_2^2 \times C_4 \times C_{16}$
10	$C_2^{\overline{3}} \times C_4 \times C_{16}$
11	$C_2^{\overline{2}} \times C_4^2 \times C_{16}$
12	$C_2^{\overline{3}} \times C_4^{\overline{2}} \times C_{16}$
13	$C_2^3 \times C_4 \times C_8 \times C_{16}$

e	$(\mathbb{F}_3[t]/t^e)^{ imes}$
1	C_2
2	$C_2 \times C_3$
3	$C_2 \times C_3^2$
4	$C_2 \times C_3 \times C_9$
5	$C_2 \times C_3^2 \times C_9$
6	$C_2 \times C_3^3 \times C_9$
7	$C_2 \times C_3^2 \times C_9^2$
8	$C_2 \times C_3^3 \times C_9^2$
9	$C_2 \times C_3^4 \times C_9^2$
10	$C_2 \times C_3^4 \times C_9 \times C_{27}$
11	$C_2 \times C_2^5 \times C_0 \times C_{27}$
12	$C_2 \times C_3^6 \times C_9 \times C_{27}$
13	$C_2 \times C_3^{5} \times C_9^2 \times C_{27}$

Question: where do these partitions come from?

Decomposition into canonical units

Lemma

Let $m \in \mathbb{F}_p[t]$ be prime of degree f, and let $h \in (\mathbb{F}_p[t]/m)^{\times}$ be fixed generators. Then for any $x \in (\mathbb{F}_p[t]/m^e)^{\times}$, there are unique exponents $1 \leq a \leq p^f - 1$ and $1 \leq b_{i,j} \leq p$ such that

$$x = h^a \cdot \prod_{i=1}^{e-1} \prod_{j=0}^{f-1} (1 + t^j m^i)^{b_{i,j}}.$$

Proof by algorithm.

Apply the division algorithm to give $y\equiv 1 \mod m$ and $z\in (\mathbb{F}_p[t]/m)^{\times}$ such that $x=y\cdot m+z$. Compute $a:=\log_h\omega_p(z)\in\{1,\ldots,p^f-1\}$, which is unique since $(\mathbb{F}_p[t]/m)^{\times}\cong C_{p^f-1}$. Express y in base m:

$$y = 1 + (\sum_{j=0}^{f-1} b_{1,j}t^j)m + (\sum_{j=0}^{f-1} b_{2,j}t^j)m^2 + \dots + (\sum_{j=0}^{f-1} b_{e-1,j}t^j)m^{e-1}.$$

Replace y with $y \cdot \prod_{i=0}^{f-1} (1+t^j m)^{-b_{1,j}} \equiv 1 \mod m^2$ and repeat.

Dirichlet character example

Let $m:=t^2+2\in\mathbb{F}_5[t]$, and let $\chi_{m^4}:(\mathbb{F}_5[t]/m^4)^\times\to\mathbb{C}^\times$ be the (primitive) Dirichlet character given by

noting that $(\mathbb{F}_5[t]/m^4)^{\times}\cong C_{24}\times C_5^6$. To evaluate $\chi_{m^4}(t^7+1)$, compute

$$t^{7} + 1 = (2t + 1) + 2tm + 4tm^{2} + tm^{3}$$

$$= (2t + 1) \cdot (1 + (2 + 3t)m + 4tm^{2} + (4 + 3t)m^{3})$$

$$= (2t + 1) \cdot (1 + m)^{2}(1 + tm)^{3} \cdot (1 + 3tm^{2} + (1 + t)m^{3})$$

$$= (2t + 1) \cdot (1 + m)^{2}(1 + tm)^{3} \cdot (1 + tm^{2})^{3} \cdot (1 + (1 + t)m^{3})$$

$$= (2t + 1) \cdot (1 + m)^{2}(1 + tm)^{3} \cdot (1 + tm^{2})^{3} \cdot (1 + m^{3})(1 + tm^{3}).$$

Then $2t+1 \equiv (t+1)^{22} \mod m$, so $2t+1 \equiv ((t+1)^{5^3})^{22} \mod m^4$, and

$$\chi_{m^4}(t^7+1) = (\zeta_{24}^{5^3})^{22} \cdot \zeta_5^2(\zeta_5^4)^3 \cdot (\zeta_5^3)^3 \cdot \zeta_5^3 \zeta_5^2 = \zeta_{60}^{11}.$$

Dirichlet characters over $\mathbb{F}_q(C)$

In general, a global function field is the function field $\mathbb{F}_q(C)$ of a smooth proper geometrically irreducible curve C of genus g over a finite field \mathbb{F}_q .

A (primitive) Dirichlet character over $\mathbb{F}_q(C)$ of modulus $m\subseteq \mathcal{O}_v$ really should be a complex character of the ray class group modulo m (Weber) idèle class group I trivial on 1+m (Hecke) absolute Galois group $G:=\operatorname{Gal}(\overline{\mathbb{F}_q(C)}/\mathbb{F}_q(C))$ that factors through a finite abelian extension of $\mathbb{F}_q(C)$ defined with the Drinfeld module associated to m (Artin).

In particular, Artin reciprocity gives a map $I \to G$ that sends a place v of $\mathbb{F}_q(C)$ to (a choice of) a geometric Frobenius Fr_v^{-1} in G.

For a Dirichlet character $\chi_m: G \to \mathbb{C}^{\times}$, denote

$$\chi_m(v) := \begin{cases} \chi_m(\operatorname{Fr}_v^{-1}) & \text{if } v \text{ is unramified,} \\ 0 & \text{if } v \text{ is ramified.} \end{cases}$$

Artin conductors over $\mathbb{F}_q(C)$

The **Artin conductor** of $\chi_m: G \to \mathbb{C}^{\times}$ is the effective Weil divisor

$$\mathfrak{f}(\chi_m) := \sum_{\mathbf{v}} \alpha_{\mathbf{v}}(\chi_m)[\mathbf{v}], \qquad \alpha_{\mathbf{v}}(\chi_m) := \sum_{\chi_m(G_{\mathbf{v},i}) \neq 0} \frac{1}{[G_{\mathbf{v},0} : G_{\mathbf{v},i}]} \in \mathbb{N}.$$

where v runs over all of the closed points of C.

When $C=\mathbb{P}^1_{\mathbb{F}_q}$, after fixing a place at infinity ∞ ,

$$\{ \text{closed points of } C \} \quad \leftrightsquigarrow \quad \{ \text{primes of } \mathbb{F}_q[t] \} \cup \{ \infty \}.$$

In fact, it turns out that

$$\alpha_{v}(\chi_{m}) = \begin{cases} v(m) & \text{if } v \in \mathbb{F}_{q}[t], \\ 1 & \text{if } v = \infty \text{ and } \chi_{m}|_{\mathbb{F}_{q}^{\times}} \not\equiv 1, \\ 0 & \text{if } v = \infty \text{ and } \chi_{m}|_{\mathbb{F}_{q}^{\times}} \equiv 1, \end{cases}$$

and in the final case $\chi_m(\infty) = 1$.

Dirichlet L-functions over $\mathbb{F}_q(C)$

The **formal L-function** of $\chi_m: G \to \mathbb{C}^{\times}$ is the power series

$$\mathcal{L}(\chi_m, T) := \prod_{\nu} (1 - \chi_m(\nu) T^{\deg \nu})^{-1} \in \mathbb{C}[[T]],$$

and $L(\chi_m, s) := \mathcal{L}(\chi_m, q^{-s})$ is its (complete) Dirichlet L-function.

If $\{c_{\nu,n}\}_{n=0}^{\infty}$ are the coefficients of $(1-\chi_m(\nu)T^{\deg\nu})^{-1}$, then

$$\mathcal{L}(\chi_m, T) = \prod_{v} \left(\sum_{n=0}^{\infty} c_{v,n} T^{n \deg v} \right)$$
$$= \sum_{n=0}^{\infty} \left(\sum_{\deg D=n} c_D \right) T^n,$$

where $c_D := \prod_v c_{v,n_v}$ for any effective Weil divisor $D = \sum_v n_v[v]$ on C.

Rationality and the functional equation

On the other hand, $\mathcal{L}(\chi_m, T)$ is essentially the ζ -function of C.

Corollary (of the Weil conjectures)

Let $\chi_m: G \to \mathbb{C}^{\times}$ be a Dirichlet character over $\mathbb{F}_q(C)$ that is ramified somewhere. Then $\mathcal{L}(\chi_m, T)$ is a polynomial of degree

$$d(\chi_m) := 2g - 2 + \deg \mathfrak{f}(\chi_m).$$

Furthermore, $\mathcal{L}(\chi_m, T)$ satisfies the functional equation

$$\mathcal{L}(\chi_m, T) = \epsilon(\chi_m) \cdot (\sqrt{q}T)^{d(\chi_m)} \cdot \overline{\mathcal{L}(\chi_m, (qT)^{-1})},$$

for some root number $\epsilon(\chi_m) \in \mathbb{C}^{\times}$ defined with Gauss sums.

The fact that deg $\mathcal{L}(\chi_m, T) = d(\chi_m)$ means that it is determined by its coefficients c_D for all effective Weil divisors D on C with deg $D \leq d(\chi_m)$.

Dirichlet L-function example with rationality

Let $m:=t^3+2t+1\in\mathbb{F}_3[t]$, and let $\chi_m:(\mathbb{F}_3[t]/m)^\times\to\mathbb{C}^\times$ be the (primitive) Dirichlet character given by $t\mapsto\zeta:=\zeta_{26}$. Then

$$\deg \mathcal{L}(\chi_m,T)=d(\chi_m)=2(0)-2+\deg([m]+[\infty])=2.$$

V	$1-\chi_m(v)T$	$1-\chi_{\it m}(\it v) T^{ m deg}^{\it v}$	$(1-\chi_m(v)T^{\deg v})^{-1}$
∞	1	1	1
t	$1-\zeta T$	$1-\zeta T$	$1+\zeta T+\zeta^2 T^2+\dots$
t+1	$1-\zeta^9T$	$1-\zeta^9 T$	$1 + \zeta^9 T + \zeta^{18} T^2 + \dots$
t+2	$1-\zeta^3T$	$1-\zeta^3 T$	$1+\zeta^3T+\zeta^6T^2+\dots$
$t^{2} + 1$	$1-\zeta^{21}T$	$1 - \zeta^{21} T^2$	$1+\zeta^{21}T^2+\dots$
$t^2 + t + 2$	$1-\zeta^{11}T$	$1 - \zeta^{11} T^2$	$1+\zeta^{11}T^2+\dots$
$t^2 + 2t + 2$	$1-\zeta^7T$	$1-\zeta^7 T^2$	$1+\zeta^7T^2+\ldots$

The product of $(1 - \chi_m(v)T^{\deg v})^{-1}$ computes to be

$$1 + (\zeta^9 + \zeta^3 + \zeta)T + (2\zeta^{11} + \zeta^9 - 2\zeta^8 + 2\zeta^7 + \zeta^3 + \zeta - 1)T^2 + \dots$$

Thus $\mathcal{L}(\chi_m, T)$ is just the first three terms!

Application of the functional equation

The functional equation $\mathcal{L}(\chi_m, T) = \epsilon(\chi_m) \cdot (\sqrt{q}T)^{d(\chi_m)} \cdot \overline{\mathcal{L}(\chi_m, (qT)^{-1})}$ reduces the required computation by $|d(\chi_m)/2|$.

If $\{c_n\}_{n=0}^{d(\chi_m)}$ are the coefficients of $\mathcal{L}(\chi_m, T)$, then this says

$$\sum_{n=0}^{d(\chi_m)} (c_n \cdot T^n) = \sum_{n=0}^{d(\chi_m)} (\epsilon(\chi_m) \cdot \sqrt{q}^{d(\chi_m) - 2n} \cdot \overline{c_n} \cdot T^{d(\chi_m) - n})$$

$$= \sum_{n=0}^{d(\chi_m)} (\epsilon(\chi_m) \cdot \sqrt{q}^{2n - d(\chi_m)} \cdot \overline{c_{d(\chi_m) - n}} \cdot T^n).$$

In other words, when $\lceil d(\chi_m)/2 \rceil \leq n \leq d(\chi_m)$,

$$c_n = \epsilon(\chi_m) \cdot \sqrt{q}^{2n-d(\chi_m)} \cdot \overline{c_{d(\chi_m)-n}},$$

so $\mathcal{L}(\chi_m, T)$ is determined by its coefficients c_D for all effective Weil divisors D on C with deg $D \leq \lfloor d(\chi_m)/2 \rfloor$ once $\epsilon(\chi_m)$ is computed.

Dirichlet L-function example with functional equation

Let $m:=t^3+2t+1\in\mathbb{F}_3[t]$, and let $\chi_{m^2}:(\mathbb{F}_3[t]/m^2)^\times\to\mathbb{C}^\times$ be the (primitive) Dirichlet character given by

$$t\mapsto \zeta_{13}, \qquad 1+m\mapsto \zeta_3, \qquad 1+tm\mapsto \zeta_3^2, \qquad 1+t^2m\mapsto \zeta_3,$$

noting that $(\mathbb{F}_3[t]/m^2)^{ imes}\cong \mathcal{C}_{26} imes \mathcal{C}_3^3$ and $\chi_{m^2}(2)=1.$ Then

$$\deg \mathcal{L}(\chi_{m^2}, T) = d(\chi_{m^2}) = 2(0) - 2 + \deg(2[m]) = 4.$$

By a similar computation as before,

$$\mathcal{L}(\chi_{m^2}, T) \equiv 1 + ZT - (Z+1)T^2 \mod T^3,$$

where $Z:=\zeta_{13}^9+\zeta_{13}^3+\zeta_{13}$. This forces $Z+1=\epsilon(\chi_m)\cdot\overline{(Z+1)}!$ Thus

$$\mathcal{L}(\chi_{m^2},T)=1+ZT-(Z+1)T^2+3\epsilon(\chi_m)\overline{Z}T^3+9\epsilon(\chi_m)T^4.$$

Alternatively, $\epsilon(\chi_m)$ can be computed manually, in which case it suffices to determine the first two terms of $\mathcal{L}(\chi_{m^2}, T)$.

Motivic L-functions over $\mathbb{F}_q(C)$

In general, the formal L-function of an almost everywhere unramified ℓ -adic representation $\rho: G \to \operatorname{GL}_n(\overline{\mathbb{Q}_\ell})$ over $\mathbb{F}_q(C)$ is given by

$$\mathcal{L}(
ho, T) := \prod_{\mathbf{v}} \det(1 -
ho^{l_{\mathbf{v}}}(\mathbf{v}) T^{\deg \mathbf{v}})^{-1} \in \overline{\mathbb{Q}_\ell}[[T]].$$

Corollary (of the proof of the Weil conjectures)

Let $\rho: G \to GL_n(\overline{\mathbb{Q}_\ell})$ be an ℓ -adic representation over $\mathbb{F}_q(C)$ that is ramified somewhere. Then $\mathcal{L}(\rho, T)$ is a polynomial of degree

$$d(\rho) := (2g-2)\dim \rho + \deg \mathfrak{f}(\rho).$$

Furthermore, $\mathcal{L}(\rho, T)$ satisfies the functional equation

$$\mathcal{L}(\rho, T) = \epsilon(\rho) \cdot (q^{(w(\rho)+1)/2}T)^{d(\rho)} \cdot \mathcal{L}(\rho, 1/q^{w(\rho)+1}T)^{\sigma(\rho)},$$

where $w(\rho)$ is the weight of ρ and $\sigma(\rho)$ is some automorphism on $\overline{\mathbb{Q}_{\ell}}$.

Concluding remarks

I have implemented Magma intrinsics for computing formal L-functions of general ℓ -adic representations over $\mathbb{F}_q(C)$, including specific examples:

- ▶ Dirichlet characters with semi-efficient root numbers
- elliptic curves with efficient root numbers except when q = 2, 3, which is faster than existing functionality when q = 2, 3, 5, 7
- tensor products with coprime conductors

Theorem

Let $\rho, \sigma: G \to GL_n(\overline{\mathbb{Q}_\ell})$ be ℓ -adic representations over $\mathbb{F}_q(C)$ with coprime conductors. Then $\mathfrak{f}(\rho \otimes \sigma) = \mathfrak{f}(\rho) \dim \sigma + \mathfrak{f}(\sigma) \dim \rho$ and

$$\epsilon(\rho\otimes\sigma)=\epsilon(\rho)^{\dim\sigma}\cdot\epsilon(\sigma)^{\dim\rho}\cdot\frac{\det\sigma(\mathfrak{f}(\rho))}{|\det\sigma(\mathfrak{f}(\rho))|}\cdot\frac{\det\rho(\mathfrak{f}(\sigma))}{|\det\rho(\mathfrak{f}(\sigma))|}.$$

I believe that having a systematic method to compute formal L-functions will be useful in creating databases of motives over global function fields!