=IAdjoint

Industrial Placement Presentation

David Kurniadi Angdinata
MEng Mathematics and Computer Science 4

Friday, 04 October 2019

Company profile

Company profile

Company profile

Company profile

Company profile

Company profile

Company profile

Insight \& Control over your corporate accounts
 Adjoint Treasury is a real-time payments and settlement platform for corporate treasury

Uplink: The distributed ledger for finance
Adjoint delivers enterprise applications for both finance professionals and technical adminstrators. We continually push the envelope to achieve excellence in security and privacy. Our technology is designed to support your ever-changing business needs.

Organisation roles

Organisation roles

Organisation roles

Organisation roles

Organisation roles

Organisation roles

Adjoint

Adjoint builds financial workflow tools to simplify and control enterprise processes．
\odot London，UK Bhttp：／／adjoint．io info＠adjoint．io Verified

园 Repositories 54 （T）Packages \＆People 6 III Projects

Pinned repositories

fcl
A runtime for secure multiparty computation
Haskell $\$ 22$

园 bulletproofs

```
Bulletproofs are short non－interactive zero－
knowledge proofs that require no trusted setup
－Haskell \(422 \quad 821\)
```

```
pairing
Optimal ate pairing over Barreto-Naehrig curves
* Haskell $ % % 
```


国 sonic

Zero－Knowledge SNARKs from Linear－Size Universal and Updatable Structured Reference Strings

Haskell 24

```
uplink
A database for secure multiparty computation
- Haskell \ $ % 178 19
```

```
| elliptic-curve
Elliptic Curves
Haskell * & % %
```


Cryptography roadmap

Cryptography roadmap

Cryptography roadmap

GALOIS FIELDS

MACHINE OPTIMISATIONS

Cryptography roadmap

ELLIPTIC CURVES

GALOIS FIELDS

MACHINE OPTIMISATIONS

Cryptography roadmap

Cryptography roadmap

Cryptography roadmap

Cryptography roadmap

Cryptography roadmap

bulletproofs
SECP256K1 curve operations
SECP256K1 field arithmetic

Cryptography roadmap

bulletproofs
SECP256K1 curve operations
SECP256K1 field arithmetic

An efficient library of Galois fields

An efficient library of Galois fields

galois-field: Galois field library

[cryptography, library, mit] [Propose Tags]
An efficient implementation of Galois fields used in cryptography research
[Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Field
Data.Field.Galois

Versions [faq]

0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 1.0.0

Change log

ChangeLog.md

Dependencies

base (>=4.10 \& \& <5), groups, integer-gmp, MonadRandom, poly $\left(>=0.3 .2\right.$), protolude ($==0.2 .^{*}$), semirings $(>=0.5$),
tasty-quickcheck, vector, wl-pprint-text [details]

License

MIT

An efficient library of Galois fields

galois-field: Galois field library

[cryptography, Library, mit] [Propose Tags]

An efficient implementation of Galois fields used in cryptography research [Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Field
Data.Field.Galois

Versions [faq]
0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 1.0.0

Change log

ChangeLog.md
Dependencies
base ($>=4.10$ \& \& <5), groups, integer-gmp, MonadRandom,
poly $(>=0.3 .2)$, protolude $\left(==0.2 .^{\dagger}\right)$, semirings $(>=0.5)$,
tasty-quickcheck, vector, wl-pprint-text [details]

License

MIT

- Prime fields and extension fields

An efficient library of Galois fields

An efficient library of Galois fields

galois-field: Galois field library
[cryptography, library, mit] [Propose Tags]
An efficient implementation of Galois fields used in cryptography research
[Skip to Readme]
Modules
[Index] [Quick Jump]
Data
Field
Data.Field.Galois

Versions [faq]
0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 1.0.0

Change log
ChangeLog.md
Dependencies
base (>=4.10 \& \& <5), groups, integer-gmp, MonadRandom,
poly $(>=0.3 .2)$, protolude $\left(==0.2 .^{*}\right)$, semirings $(\nu=0.5)$,
tasty-quickcheck, vector, wl-pprint-text [details]
License
MIT

- Prime fields and extension fields
- Extensive usage of type system
- Slow performance of binary fields

An efficient library of Galois fields

```
galois-field: Galois field library
[ cryptography, library, mit ] [ Propose Tags ]
An efficient implementation of Galois fields used in cryptography research
[Skip to Readme]
Modules
[Index] [Quick Jump]
Data
    Field
    Data.Field.Galois
```


Versions [faq]

0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 1.0.0

Change log
ChangeLog.md
Dependencies
base (>=4.10 \& \& <5), groups, integer-gmp, MonadRandom,
poly ($>=0.3 .2$), protolude $\left(==0.2 .^{*}\right)$, semirings $(>=0.5)$,
tasty-quickcheck, vector, wi-pprint-text [details]
License
MIT

```
- Prime fields and extension fields
- Extensive usage of type system
- Slow performance of binary fields
- Square roots and scalar multiplication
```


An efficient library of Galois fields

```
galois-field: Galois field library
[ cryptography, library,mit ] [ Propose Tags ]
An efficient implementation of Galois fields used in cryptography research
[Skip to Readme]
Modules
[Index] [Quick Jump]
Data
    Field
    Data.Field.Galois
```


Versions [faq]

0.1.0, 0.2.0, 0.2.1, 0.3.0, 0.4.0, 0.4.1, 1.0.0

Change log
ChangeLog.md
Dependencies
base (>=4.10 \& \& <5), groups, integer-gmp, MonadRandom,
poly ($>=0.3 .2$), protolude $\left(==0.2 .^{*}\right)$, semirings $(>=0.5)$,
tasty-quickcheck, vector, wl-pprint-text [details]
License
MIT

```
- Prime fields and extension fields
- Extensive usage of type system
- Slow performance of binary fields
- Square roots and scalar multiplication
- Heavy compile-time and run-time optimisations
```


An efficient library of Galois fields

An efficient library of Galois fields

An efficient library of Galois fields

A universal library of elliptic curves

A universal library of elliptic curves

elliptic-curve: Elliptic curve library

[cryptography, library, mit] [Propose Tags]

An extensible library of elliptic curves used in cryptography research
[Skip to Readme]

Modules

[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2 Data.Curve.Binary.SECT131R1 Data.Curve.Binary.SECT131R2 Data.Curve.Binary.SECT163K1 Data.Curve.Binary.SECT163R1

Versions [faq]
0.1.0, 0.2.1, 0.2.2, 0.3.0

Change log

ChangeLog.md
Dependencies
base ($>=4.10$ \&\& <5), galois-field ($==1 .^{*}$), groups, MonadRandom,
protolude ($==0.2 . .^{*}$), tasty-quickcheck, text, wl-pprint-text [details]

License

MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography

A universal library of elliptic curves

elliptic-curve: Elliptic curve library
[cryptography, library, mit] [Propose Tags]

An extensible library of elliptic curves used in cryptography research
[Skip to Readme]

Modules

[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2
Data.Curve.Binary.SECT131R1
Data.Curve.Binary.SECT131R2
Data.Curve.Binary.SECT163K1
Data.Curve.Binary.SECT163R1

Versions [faq]
0.1.0, 0.2.1, 0.2.2, 0.3.0

Change log

ChangeLog.md
Dependencies
base ($>=4.10$ \&\& <5), galois-field ($==1$. *), groups, MonadRandom, protolude ($==0.2$. . $^{\prime}$, tasty-quickcheck, text, wl-pprint-text [details]
License
MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography

- Eighty elliptic curve domain parameters

A universal library of elliptic curves

elliptic-curve: Elliptic curve library
[cryptography, library, mit] [Propose Tags]

An extensible library of elliptic curves used in cryptography research
[Skip to Readme]
Modules
[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2
Data.Curve.Binary.SECT131R1
Data.Curve.Binary.SECT131R2
Data.Curve.Binary.SECT163K1
Data.Curve.Binary.SECT163R1

Versions [faq]
0.1.0, 0.2.1, 0.2.2, 0.3.0

Change log
ChangeLog.md
Dependencies
base ($>=4.10$ \&\& <5), galois-field ($==1$. *), groups, MonadRandom,
protolude ($==0.2$. . $^{\prime}$, tasty-quickcheck, text, wl-pprint-text [details]
License
MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography

- Eighty elliptic curve domain parameters
- Elliptic curve multi-parameter type class

A universal library of elliptic curves

elliptic-curve: Elliptic curve library
[cryptography, library, mit] [Propose Tags]
An extensible library of elliptic curves used in cryptography research
[Skip to Readme]

Modules
[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2
Data.Curve.Binary.SECT131R1
Data.Curve.Binary.SECT131R2
Data.Curve.Binary.SECT163K1
Data.Curve.Binary.SECT163R1

```
Versions [faq]
    0.1.0, 0.2.1, 0.2.2, 0.3.0
Change log
ChangeLog.md
Dependencies
base ( \(>=4.10\) \&\& \(<5\) ), galois-field ( \(==1\). \(^{*}\) ), groups, MonadRandom,
protolude ( \(==0.2 .7\).), tasty-quickcheck, text, wl-pprint-text [details]
License
MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography
```

- Eighty elliptic curve domain parameters
- Elliptic curve multi-parameter type class
- Elliptic curve point associated type

A universal library of elliptic curves

elliptic-curve: Elliptic curve library
[cryptography, library, mit] [Propose Tags]
An extensible library of elliptic curves used in cryptography research
[Skip to Readme]

Modules
[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2
Data.Curve.Binary.SECT131R1
Data.Curve.Binary.SECT131R2
Data.Curve.Binary.SECT163K1
Data.Curve.Binary.SECT163R1

```
Versions [faq]
    0.1.0, 0.2.1, 0.2.2, 0.3.0
Change log
ChangeLog.md
Dependencies
base ( \(>=4.10\) \&\& \(<5\) ), galois-field ( \(==1\). \(^{*}\) ), groups, MonadRandom,
protolude ( \(==0.2 .7\).), tasty-quickcheck, text, wl-pprint-text [details]
License
MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography
```

- Eighty elliptic curve domain parameters
- Elliptic curve multi-parameter type class
- Elliptic curve point associated type
- Elliptic curve point addition formulas

A universal library of elliptic curves

elliptic-curve: Elliptic curve library
[cryptography, library, mit] [Propose Tags]

An extensible library of elliptic curves used in cryptography research
[Skip to Readme]

Modules
[Index] [Ouick Jump]
Data
Data.Curve
Data.Curve.Binary
Data.Curve.Binary.SECT113R1
Data.Curve.Binary.SECT113R2
Data.Curve.Binary.SECT131R1
Data.Curve.Binary.SECT131R2
Data.Curve.Binary.SECT163K1
Data.Curve.Binary.SECT163R1

Versions [faq]
0.1.0, 0.2.1, 0.2.2, 0.3.0

Change log
ChangeLog.md
Dependencies
base ($>=4.10$ \&\& <5), galois-field ($==1 .^{*}$), groups, MonadRandom,
protolude ($==0.2$. .' $^{\prime}$, tasty-quickcheck, text, wl-pprint-text [details]
License
MIT
Author
Maintainer
Adjoint Inc (info@adjoint.io)
Category
Cryptography

- Eighty elliptic curve domain parameters
- Elliptic curve multi-parameter type class
- Elliptic curve point associated type
- Elliptic curve point addition formulas
- Elliptic curve source code generator

A universal library of elliptic curves

A universal library of elliptic curves

A universal library of elliptic curves

A polymorphic library of bilinear pairings

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, library, mit] [Propose Tags]
Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]
Versions [faq]
$0.1 .0,0.1 .1,0.1 .2,0.1 .3,0.1 .4,0.2,0.3 .0,0.3 .1,0.4 .1,0.4 .2,0.5 .0$, 1.0.0

Modules

[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

Change log

ChangeLog.md

Dependencies

base ($>=4.10 \& \&<5$), bytestring, elliptic-curve ($==0.3 .^{\prime}$), errors, galois-field (==1.'), groups, MonadRandom, protolude ($=0.2$. $^{\prime}$), tasty-quickcheck [details]

License

MIT

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, Library, mit] [Propose Tags]

Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

```
Versions [faq]
    0.1.0,0.1.1, 0.1.2,0.1.3,0.1.4,0.2,0.3.0,0.3.1,0.4.1, 0.4.2, 0.5.0,
    1.0.0
```


Change log

```
ChangeLog.md
```


Dependencies

```
base ( \(>=4.10\) \&\& \(<5\) ), bytestring, elliptic-curve ( \(==0.3^{\prime}\) '), errors, galois-field ( \(==1 . .^{*}\) ), groups, MonadRandom, protolude ( \(==0.2\).'), tasty-quickcheck [details]
```


License

```
MIT
```

- Pairing for BN and BLS

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, library, mit] [Propose Tags]

Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

```
Versions [faq]
    0.1.0, 0.1.1,0.1.2,0.1.3, 0.1.4, 0.2,0.3.0,0.3.1,0.4.1, 0.4.2,0.5.0,
    1.0.0
Change log
    ChangeLog.md
Dependencies
base ( \(>=4.10\) \&\& \(<5\) ), bytestring, elliptic-curve ( \(==0.3^{\prime}\) '), errors, galois-field ( \(==1 . .^{*}\) ), groups, MonadRandom, protolude ( \(==0.2\).'), tasty-quickcheck [details]
```


License

```
MIT
```

- Pairing for BN and BLS
- General bilinear pairing type class

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, library, mit] [Propose Tags]

Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

```
Versions [faq]
    0.1.0,0.1.1, 0.1.2, 0.1.3,0.1.4, 0.2,0.3.0,0.3.1,0.4.1, 0.4.2, 0.5.0,
    1.0.0
Change log
    ChangeLog.md
Dependencies
base ( \(>=4.10 \& \&<5\) ), bytestring, elliptic-curve ( \(==0.3 .^{\prime}\) ), errors, galois-field (==1.'), groups, MonadRandom, protolude ( \(=0.2\). \(^{\prime}\) ), tasty-quickcheck [details]
License
MIT
```

- Pairing for BN and BLS
- General bilinear pairing type class
- General optimal ate pairing algorithm

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, library, mit] [Propose Tags]

Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]

Modules

[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

Versions [faq]

$0.1 .0,0.1 .1,0.1 .2,0.1 .3,0.1 .4,0.2,0.3 .0,0.3 .1,0.4 .1,0.4 .2,0.5 .0$, 1.0.0

Change log
ChangeLog.md
Dependencies
base ($>=4.10 \& \&<5$), bytestring, elliptic-curve ($==0.3 .^{\prime}$), errors,
galois-field (==1.'), groups, MonadRandom, protolude ($==0.2 .^{\prime}$),
tasty-quickcheck [details]
License
MIT

- Pairing for BN and BLS
- General bilinear pairing type class
- General optimal ate pairing algorithm
- Seven elliptic curve bilinear pairings

A polymorphic library of bilinear pairings

pairing: Bilinear pairings

[cryptography, Library, mit] [Propose Tags]

Optimal Ate pairing over Barreto-Naehrig curves
[Skip to Readme]
Modules
[Index] [Quick Jump]
Data
Data.Pairing
Data.Pairing.Ate
Data.Pairing.BLS12381
Data.Pairing.BN254

Versions [faq]
$0.1 .0,0.1 .1,0.1 .2,0.1 .3,0.1 .4,0.2,0.3 .0,0.3 .1,0.4 .1,0.4 .2,0.5 .0$, 1.0.0

Change log
ChangeLog.md
Dependencies
base ($>=4.10$ \&\& <5), bytestring, elliptic-curve ($==0.3^{\prime}$ '), errors,
galois-field (==1.'), groups, MonadRandom, protolude ($=0.2$. $^{\prime}$),
tasty-quickcheck [details]
License
MIT

- Pairing for BN and BLS
- General bilinear pairing type class
- General optimal ate pairing algorithm
- Seven elliptic curve bilinear pairings
- BN elliptic curve hashing function

A polymorphic library of bilinear pairings

A polymorphic library of bilinear pairings

Conclusion

Conclusion

Powerful type system in Haskell

Conclusion

Powerful type system in Haskell

Crucial performance optimisations in Haskell

Conclusion

Powerful type system in Haskell

Crucial performance optimisations in Haskell

Mathematical background behind zero-knowledge proofs

Conclusion

Powerful type system in Haskell

Crucial performance optimisations in Haskell

Mathematical background behind zero-knowledge proofs

Cryptographic applications of number theory

Conclusion

Powerful type system in Haskell

Crucial performance optimisations in Haskell

Mathematical background behind zero-knowledge proofs

Cryptographic applications of number theory

Collaborative communication and productivity management

=Adjoint

THANK YOU

