

Computing Euler factors

Models of curves and arithmetic applications

David Kurniadi Angdinata

University College London

Wednesday, 2 April 2025

Notation

p an odd prime (of almost good reduction)

C a smooth projective (hyperelliptic) curve of genus g ($= 2$) over \mathbb{Q} (with semistable reduction at p) given by an integral model

$$Y^2 = c \prod_{r \in \mathcal{R}} (X - r), \quad c \in \mathbb{Z}, \quad r \in \overline{\mathbb{Q}}.$$

\mathcal{C} the minimal regular model of C at p

$\tilde{\mathcal{C}}$ the special fibre of \mathcal{C}

\overline{C} the base change of C to $\overline{\mathbb{Q}}$

$\widetilde{\mathcal{C}}$ the base change of $\tilde{\mathcal{C}}$ to $\overline{\mathbb{F}_p}$

L-functions

Recall that the L-function of C is the Euler product

$$L(C, s) := \prod_p \frac{1}{L_p(C, p^{-s})},$$

over all primes p , where the local Euler factor at p is the polynomial

$$L_p(C, T) := \det(1 - T \cdot \text{Fr}_p^{-1} \mid H_{\text{ét}}^1(\overline{C}, \mathbb{Q}_\ell)^{I_p}).$$

When C has semistable reduction at p ,

$$H_{\text{ét}}^1(\overline{C}, \mathbb{Q}_\ell)^{I_p} \cong H_{\text{ét}}^1(\overline{\mathcal{C}}, \mathbb{Q}_\ell),$$

which is an isomorphism of $\text{Gal}(\overline{\mathbb{Q}_p}/\mathbb{Q}_p)$ -representations, so that

$$L_p(C, T) = \det(1 - T \cdot \text{Fr}_p^{-1} \mid H_{\text{ét}}^1(\overline{\mathcal{C}}, \mathbb{Q}_\ell)).$$

This can be extracted from the ζ -function of $\widetilde{\mathcal{C}}$.

ζ -functions

The ζ -function of a projective curve X over \mathbb{F}_p is the rational function

$$\zeta(X, T) := \exp \left(\sum_{k \geq 1} \#X(\mathbb{F}_{p^k}) \frac{T^k}{k} \right) = \frac{P_1(X, T)}{P_0(X, T) \cdot P_2(X, T)},$$

by the Weil conjectures, where

$$P_i(X, T) := \det(1 - T \cdot \text{Fr}_p^{-1} \mid H_{\text{ét}}^i(X, \mathbb{Q}_\ell)), \quad i = 0, 1, 2.$$

When the Jacobian $\text{Jac}(C)$ of C has good reduction at p ,

$$P_0(\tilde{\mathcal{C}}, T) = 1 - T, \quad \deg P_1(\tilde{\mathcal{C}}, T) = 2g, \quad P_2(\tilde{\mathcal{C}}, T) = 1 - pT,$$

so that $L_p(C, T)$ is determined by $\#\tilde{\mathcal{C}}(\mathbb{F}_{p^k})$ for sufficiently many $k \geq 1$.

In general, this requires computing the minimal regular model \mathcal{C} by a resolution of singularities, which is computationally expensive.

Cluster pictures

Instead of computing \mathcal{C} , its special fibre $\widetilde{\mathcal{C}}$ can be recovered from cluster picture machinery, with explicit models for its irreducible components.

Recall that a cluster is a non-empty subset of \mathcal{R} of the form

$$\mathfrak{s} = \{r \in \mathcal{R} : \nu_p(r - z) \geq d\}, \quad z \in \overline{\mathbb{Q}_p}, \quad d \in \mathbb{Q}.$$

The depth $d_{\mathfrak{s}}$ of a cluster \mathfrak{s} is the largest such d , in which case any z with $\nu_p(r - z) = d_{\mathfrak{s}}$ for some $r \in \mathfrak{s}$ is called a centre $z_{\mathfrak{s}}$ of \mathfrak{s} . A child of \mathfrak{s} is a maximal subcluster $\mathfrak{s}' \subsetneq \mathfrak{s}$, and its relative depth $\delta_{\mathfrak{s}'}$ is simply $d_{\mathfrak{s}'} - d_{\mathfrak{s}}$.

A cluster \mathfrak{s} is called odd or even if $|\mathfrak{s}|$ is odd or even respectively. It is called übereven if every child of \mathfrak{s} is even. It is called twin if $|\mathfrak{s}| = 2$, and it is called cotwin if it is not übereven but it has a child \mathfrak{s}' with $|\mathfrak{s}'| = 2g$.

The cluster \mathcal{R} is called principal if it is odd or if it has more than two children. In general, a cluster \mathfrak{s} is called principal when $|\mathfrak{s}| \geq 3$ but has no children \mathfrak{s}' with $|\mathfrak{s}'| = 2g$.

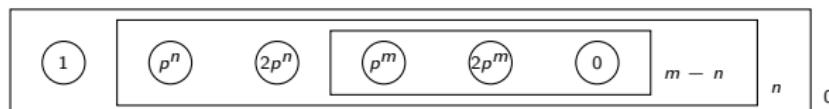
Cluster picture example

Let C be the hyperelliptic curve over \mathbb{Q} given by

$$Y^2 = 2X(X-1)(X-p^n)(X-2p^n)(X-p^m)(X-2p^m),$$

where p is an odd prime and $m \geq n$ are positive integers.

The associated cluster picture is:



The cluster \mathcal{R} is not principal, but it has two principal subclusters.

- ▶ The odd subcluster $\mathfrak{s}_m := \{p^m, 2p^m, 0\}$ has centre $z_{\mathfrak{s}_m} = 0$, depth $d_{\mathfrak{s}_m} = m$ and relative depth $\delta_{\mathfrak{s}_m} = m - n$.
- ▶ The odd subcluster $\mathfrak{s}_n := \{p^n, 2p^n, p^m, 2p^m, 0\}$ has centre $z_{\mathfrak{s}_n} = p^n$, depth $d_{\mathfrak{s}_n} = n$, and relative depth $\delta_{\mathfrak{s}_n} = n$.

Neither subclusters are übereven or cotwin.

Components of special fibres

Theorem (M2D2, Theorem 8.6(1))

Let C be a hyperelliptic curve over \mathbb{Q} given by

$$Y^2 = c \prod_{r \in \mathcal{R}} (X - r), \quad c \in \mathbb{Z}, \quad r \in \overline{\mathbb{Q}}.$$

Assume that C has semistable reduction at some odd prime p , and that $\delta_{\mathfrak{s}} \neq \frac{1}{2}$ for any principal cluster \mathfrak{s} . Then the components of \widetilde{C} consist of the curves $\Gamma_{\mathfrak{s}}$ associated to principal clusters \mathfrak{s} , given by

$$Y^2 = \widetilde{\frac{c}{p^{\nu_p(c)}}} \prod_{r \in \mathcal{R} \setminus \mathfrak{s}} \widetilde{\frac{z_{\mathfrak{s}} - r}{p^{\nu_p(z_{\mathfrak{s}} - r)}}} \prod_{\text{odd } \mathfrak{s}' < \mathfrak{s}} \left(X - \widetilde{\frac{z_{\mathfrak{s}'} - z_{\mathfrak{s}}}{p^{d_{\mathfrak{s}}}}} \right).$$

This is irreducible except when \mathfrak{s} is übereven, in which case it has two irreducible components $\Gamma_{\mathfrak{s}}^+$ and $\Gamma_{\mathfrak{s}}^-$. The remaining components of \widetilde{C} are chains of \mathbb{P}^1 that link $\Gamma_{\mathfrak{s}}$, which are given by the following conditions.

Intersections of special fibres

Theorem (M2D2, Theorem 8.6(1), continued)

- ▶ Assume that $\mathfrak{s}' < \mathfrak{s}$.
 - ▶ When \mathfrak{s}' is principal odd and \mathfrak{s} is principal, then there is a chain from $\Gamma_{\mathfrak{s}'}$ to $\Gamma_{\mathfrak{s}}$ of length $\frac{1}{2}\delta_{\mathfrak{s}'} - 1$.
 - ▶ When \mathfrak{s}' is principal even and \mathfrak{s} is principal, then there are two chains from $\Gamma_{\mathfrak{s}'}^+$ to $\Gamma_{\mathfrak{s}}^+$ and from $\Gamma_{\mathfrak{s}'}^-$ to $\Gamma_{\mathfrak{s}}^-$ each of length $\delta_{\mathfrak{s}'} - 1$.
 - ▶ When \mathfrak{s}' is twin and \mathfrak{s} is principal, then there is a chain from $\Gamma_{\mathfrak{s}}^-$ to $\Gamma_{\mathfrak{s}'}^+$ of length $2\delta_{\mathfrak{s}'} - 1$.
 - ▶ When \mathfrak{s}' is principal and \mathfrak{s} is cotwin, then there is a chain from $\Gamma_{\mathfrak{s}}^-$ to $\Gamma_{\mathfrak{s}'}^+$ of length $2\delta_{\mathfrak{s}'} - 1$.
- ▶ Assume that \mathcal{R} is not principal, but $\mathcal{R} = \mathfrak{s}_1 \sqcup \mathfrak{s}_2$.
 - ▶ When \mathfrak{s}_1 and \mathfrak{s}_2 are principal odd, then there is a chain from $\Gamma_{\mathfrak{s}_1}$ to $\Gamma_{\mathfrak{s}_2}$ of length $\frac{1}{2}(\delta_{\mathfrak{s}_1} + \delta_{\mathfrak{s}_2}) - 1$.
 - ▶ When \mathfrak{s}_1 and \mathfrak{s}_2 are principal even, then there are two chains from $\Gamma_{\mathfrak{s}_1}^+$ to $\Gamma_{\mathfrak{s}_2}^+$ and from $\Gamma_{\mathfrak{s}_1}^-$ to $\Gamma_{\mathfrak{s}_2}^-$ each of length $\delta_{\mathfrak{s}_1} + \delta_{\mathfrak{s}_2} - 1$.
 - ▶ When \mathfrak{s}_1 is principal even and \mathfrak{s}_2 is twin, then there is a chain from $\Gamma_{\mathfrak{s}_1}^-$ to $\Gamma_{\mathfrak{s}_1}^+$ of length $2(\delta_{\mathfrak{s}_1} + \delta_{\mathfrak{s}_2}) - 1$.

Special fibre example

Continuing on the previous example, $\Gamma_{\mathfrak{s}_m}$ computes to be

$$\begin{aligned} Y^2 &= 2 \left(\widetilde{\frac{0-1}{p^{\nu_p(0-1)}}} \right) \left(\widetilde{\frac{0-p^n}{p^{\nu_p(0-p^n)}}} \right) \left(\widetilde{\frac{0-2p^n}{p^{\nu_p(0-2p^n)}}} \right) \\ &\quad \left(X - \widetilde{\frac{p^m-0}{p^m}} \right) \left(X - \widetilde{\frac{2p^m-0}{p^m}} \right) \left(X - \widetilde{\frac{0-0}{p^m}} \right) \\ &= -4X(X-1)(X-2), \end{aligned}$$

and $\Gamma_{\mathfrak{s}_n}$ computes to be

$$\begin{aligned} Y^2 &= 2 \left(\widetilde{\frac{p^n-1}{p^{\nu_p(p^n-1)}}} \right) \left(X - \widetilde{\frac{p^n-p^n}{p^n}} \right) \left(X - \widetilde{\frac{2p^n-p^n}{p^n}} \right) \left(X - \widetilde{\frac{0-p^n}{p^n}} \right) \\ &= -2X(X-1)(X+1). \end{aligned}$$

Furthermore, there is a chain from $\Gamma_{\mathfrak{s}_m}$ to $\Gamma_{\mathfrak{s}_n}$ of length $\frac{1}{2}(m-n) - 1$.

ζ -function example

Recall that to compute $\zeta(\tilde{\mathcal{C}}, T)$, it suffices to compute

$$\#C(\mathbb{F}_{p^k}) = \#\Gamma_{s_m}(\mathbb{F}_{p^k}) + \#\Gamma_{s_n}(\mathbb{F}_{p^k}) + \left(\frac{m-n}{2} - 1\right) \#\mathbb{P}^1(\mathbb{F}_{p^k}) - \frac{m-n}{2},$$

for all $k \geq 1$. For instance, if $p = 5$, then

$$\#\Gamma_{s_m}(\mathbb{F}_{5^k}) = 1 - ((-1 - 2i)^k + (-1 + 2i)^k) + 5^k,$$

$$\#\Gamma_{s_n}(\mathbb{F}_{5^k}) = 1 - ((1 - 2i)^k + (1 + 2i)^k) + 5^k,$$

and if $m = 16$ and $n = 10$, then

$$\#C(\mathbb{F}_{5^k}) = 1 + 4 \cdot 5^k - \sum_{\pm} (\pm 1 \pm 2i)^k,$$

so that

$$\zeta(\tilde{\mathcal{C}}, T) = \frac{\prod_{\pm} (1 - (\pm 1 \pm 2i)T)}{(1 - T)(1 - 5T)^4} = \frac{(1 - 2T + 5T^2)(1 + 2T + 5T^2)}{(1 - T)(1 - 5T)^4}.$$

Almost good primes

Unlike elliptic curves, there are higher genus curves C over \mathbb{Q} with primes p that divide its minimal discriminant Δ_C but do not divide its conductor f_C , such as when $\text{Jac}(C)$ reduces to a product of elliptic curves over \mathbb{F}_p . These primes p are called primes of **almost good reduction** for C .

For instance, the genus two curve over \mathbb{Q} given by

$$\begin{aligned} Y^2 + (X^3 + X^2 + X)Y = & -144061786290072X^6 - 23062462482396X^5 \\ & - 1266273619292236X^4 - 3052943051575761X^3 \\ & + 3989955132045666X^2 + 3438312415pX - 1707513566p \end{aligned}$$

has $f_C = 270761$ but $\Delta_C = 270761p^{22}$ where $p = 14556001$.

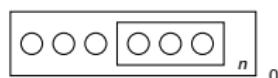
Maistret and Sutherland were motivated to expand the LMFDB, which currently contains 66158 genus two curves C over \mathbb{Q} with $\Delta_C \leq 10^6$, to over $5 \cdot 10^6$ genus two curves C over \mathbb{Q} with $f_C \leq 2^{20} \approx 10^6$.

Cluster pictures at almost good primes

The prime of almost good reduction forces the existence of a subcluster of size 3, all subclusters to be odd, and specific conditions on their depths.

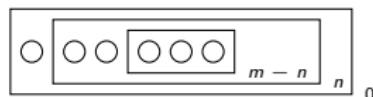
Theorem (MS25, Corollaries 3.5/7/10/11)

Let C be a hyperelliptic curve over \mathbb{Q} given by $Y^2 = \sum_{i=0}^6 c_i X^i \in \mathbb{Z}[X]$ such that $d_R = 0$ and $\nu_p(c_6) = \min_i \nu_p(c_i) \leq 1$ at some odd prime p of almost good reduction. Then its cluster picture is one of the following:



where $\nu_p(c_6) = 0 \equiv n \pmod{2}$

where $m \geq n$ and $\nu_p(c_6) \equiv m \equiv n \pmod{2}$



where $m > n$ and $\nu_p(c_6) \equiv m \equiv n \pmod{2}$

Furthermore, there is an explicit description for \tilde{C} as the union of two elliptic curves over \mathbb{F}_{p^2} linked by a chain of \mathbb{P}^1 for each cluster picture.

Computing Euler factors

It turns out that any genus two curve over \mathbb{Q} with almost good reduction at an odd prime can be normalised to obtain such a model.

Theorem (MS25, Theorem 1.1)

Let C be a genus two curve over \mathbb{Q} given by $Y^2 = \sum_{i=0}^6 c_i X^i \in \mathbb{Z}[X]$ with almost good reduction at some odd prime p . Then there is a probabilistic algorithm that computes $L_p(C, T)$ with running time

$$O\left(\frac{(\max_i \log |c_i|)^2 \log^2(\max_i \log |c_i|)}{\log p} + \log^5 p\right).$$

Furthermore, if a quadratic non-residue modulo p is given, then the algorithm is deterministic with the same running time.

This has been implemented in Magma in the public Genus2Euler repository. In a test on 3454506 pairs of (C, p) , it is almost 5000 times faster than the existing EulerFactor function in Magma, including 489 pairs of (C, p) whose computations were terminated after eight hours.

References

MS25 Céline Maistret, Andrew Sutherland. Computing Euler factors of genus 2 curves at odd primes of almost good reduction. *Research in Number Theory* 11, 37 (2025).
<https://doi.org/10.1007/s40993-024-00605-7>

M2D2 Tim Dokchitser, Vladimir Dokchitser, Céline Maistret, Adam Morgan. Arithmetic of hyperelliptic curves over local fields. *Mathematische Annalen* 385, 1213-1322 (2023).
<https://doi.org/10.1007/s00208-021-02319-y>