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Notation

p an odd prime (of almost good reduction)

C a smooth projective (hyperelliptic) curve of genus g (= 2) over Q
(with semistable reduction at p) given by an integral model

Y 2 = c
∏
r∈R

(X − r), c ∈ Z, r ∈ Q.

C the minimal regular model of C at p

C̃ the special fibre of C
C the base change of C to Q

C̃ the base change of C̃ to Fp
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L-functions

Recall that the L-function of C is the Euler product

L(C , s) :=
∏
p

1

Lp(C , p−s)
,

over all primes p, where the local Euler factor at p is the polynomial

Lp(C ,T ) := det(1− T · Frob−1
p | H1

ét(C ,Qℓ)
Ip ).

When C has semistable reduction at p,

H1
ét(C ,Qℓ)

Ip ∼= H1
ét(C̃,Qℓ),

which is an isomorphism of Gal(Qp/Qp)-representations, so that

Lp(C ,T ) = det(1− T · Frob−1
p | H1

ét(C̃,Qℓ)).

This can be extracted from the ζ-function of C̃.
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ζ-functions

The ζ-function of a projective curve X over Fp is the rational function

ζ(X ,T ) := exp

∑
k≥1

#X (Fpk )
T k

k

 =
P1(X ,T )

P0(X ,T ) · P2(X ,T )
,

by the Weil conjectures, where

Pi (X ,T ) := det(1− T · Frob−1
p | H1

ét(X ,Qℓ)), i = 0, 1, 2.

When the Jacobian Jac(C ) of C has good reduction at p,

P0(C̃,T ) = 1− T , degP1(C̃,T ) = 2g , P2(C̃,T ) = 1− pT ,

so that Lp(C ,T ) is determined by #C̃(Fpk ) for sufficiently many k ≥ 1.

In general, this requires computing the minimal regular model C by a
resolution of singularities, which is computationally expensive.
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Cluster pictures

Instead of computing C, its special fibre C̃ can be recovered from cluster
picture machinery, with explicit models for its irreducible components.

Recall that a cluster is a non-empty subset of R of the form

s = {r ∈ R | νp(r − z) ≥ d}, z ∈ Qp, d ∈ Q.

The depth ds of a cluster s is the largest such d , in which case any z with
νp(r − z) = ds for some r ∈ s is called a centre zs of s. A child of s is a
maximal subcluster s′ ⊊ s, and its relative depth δs′ is simply ds′ − ds.

A cluster s is called odd or even if |s| is odd or even respectively. It is
called übereven if every child of s is even. It is called twin if |s| = 2, and
it is called cotwin if it is not übereven but it has a child s′ with |s′| = 2g .

The cluster R is called principal if it is odd or if it has more than two
children. In general, a cluster s is called principal when |s| ≥ 3 but has no
children s′ with |s′| = 2g .
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Cluster picture example

Let C be the hyperelliptic curve over Q given by

Y 2 = 2X (X − 1)(X − pn)(X − 2pn)(X − pm)(X − 2pm),

where p is an odd prime and m ≥ n are positive integers.

The associated cluster picture is:

0

1
n

pn 2pn
m − n

pm 2pm 0

The cluster R is not principal, but it has two principal subclusters.

▶ The odd subcluster sm := {pm, 2pm, 0} has centre zsm = 0, depth
dsm = m and relative depth δsm = m − n.

▶ The odd subcluster sn := {pn, 2pn, pm, 2pm, 0} has centre zsn = pn,
depth dsn = n, and relative depth δsn = n.

Neither subclusters are übereven or cotwin.
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Components of special fibres

Theorem (M2D2, Theorem 8.6(1))
Let C be a hyperelliptic curve over Q given by

Y 2 = c
∏
r∈R

(X − r), c ∈ Z, r ∈ Q.

Assume that C has semistable reduction at some odd prime p, and that
δs ̸= 1

2 for any principal cluster s. Then the components of C̃ consist of
the curves Γs associated to principal clusters s, given by

Y 2 =
c̃

pνp(c)

∏
r∈R\s

z̃s − r

pνp(zs−r)

∏
odd s′<s

(
X −

˜zs′ − zs
pds

)
.

This is irreducible except when s is übereven, in which case it has two
irreducible components Γ+s and Γ−s . The remaining components of C̃ are
chains of P1 that link Γs, which are given by the following conditions.
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Intersections of special fibres

Theorem (M2D2, Theorem 8.6(1), continued)

▶ Assume that s′ < s.
▶ When s′ is principal odd and s is principal, then there is a chain from

Γs′ to Γs of length 1
2
δs′ − 1.

▶ When s′ is principal even and s is principal, then there are two chains
from Γ+

s′ to Γ+
s and from Γ−

s′ to Γ−
s each of length δs′ − 1.

▶ When s′ is twin and s is principal, then there is a chain from Γ−
s to

Γ+
s of length 2δs′ − 1.

▶ When s′ is principal and s is cotwin, then there is a chain from Γ−
s′ to

Γ+
s′ of length 2δs′ − 1.

▶ Assume that R is not principal, but R = s1 ⊔ s2.
▶ When s1 and s2 are principal odd, then there is a chain from Γs1 to

Γs2 of length 1
2
(δs1 + δs2)− 1.

▶ When s1 and s2 are principal even, then there are two chains from
Γ+
s1 to Γ+

s2 and from Γ−
s1 to Γ−

s2 each of length δs1 + δs2 − 1.
▶ When s1 is principal even and s2 is twin, then there is a chain from

Γ−
s1 to Γ+

s1 of length 2(δs1 + δs2)− 1.
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Special fibre example

Continuing on the previous example, Γsm computes to be

Y 2 = 2
˜(
0− 1

pνp(0−1)

) ˜(
0− pn

pνp(0−pn)

) ˜(
0− 2pn

pνp(0−2pn)

)
(
X − p̃m − 0

pm

)(
X −

˜2pm − 0

pm

)(
X − 0̃− 0

pm

)
= −4X (X − 1)(X − 2),

and Γsn computes to be

Y 2 = 2
˜(
pn − 1

pνp(pn−1)

)(
X −

˜pn − pn

pn

)(
X −

˜2pn − pn

pn

)(
X − 0̃− pn

pn

)
= −2X (X − 1)(X + 1).

Furthermore, there is a chain from Γsm to Γsn of length 1
2 (m − n)− 1.
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ζ-function example

Recall that to compute ζ(C̃,T ), it suffices to compute

#C (Fpk ) = #Γsm(Fpk ) +#Γsn(Fpk ) +

(
m − n

2
− 1

)
#P1(Fpk )− m − n

2
,

for all k ≥ 1. For instance, if p = 5, then

#Γsm(F5k ) = 1− ((−1− 2i)k + (−1 + 2i)k) + 5k ,

#Γsn(F5k ) = 1− ((1− 2i)k + (1 + 2i)k) + 5k ,

and if m = 16 and n = 10, then

#C (F5k ) = 1 + 4 · 5k −
∑
±

(±1± 2i)k ,

so that

ζ(C̃,T ) =

∏
±(1− (±1± 2i)T )

(1− T )(1− 5T )4
=

(1− 2T + 5T 2)(1 + 2T + 5T 2)

(1− T )(1− 5T )4
.
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Almost good primes

Unlike elliptic curves, there are higher genus curves C over Q with primes
p that divide its minimal discriminant ∆C but do not divide its conductor
fC , such as when Jac(C ) reduces to a product of elliptic curves over Fp.
These primes p are called primes of almost good reduction for C .

For instance, the genus two curve over Q given by

Y 2 + (X 3 + X 2 + X )Y = −144061786290072X 6 − 23062462482396X 5

− 1266273619292236X 4 − 3052943051575761X 3

+ 3989955132045666X 2 + 3438312415pX − 1707513566p

has fC = 270761 but ∆C = 270761p22 where p = 14556001.

Maistret and Sutherland were motivated to expand the LMFDB, which
currently contains 66158 genus two curves C over Q with ∆C ≤ 106, to
over 5 · 106 genus two curves C over Q with fC ≤ 220 ≈ 106.
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Cluster pictures at almost good primes

The prime of almost good reduction forces the existence of a subcluster of
size 3, all subclusters to be odd, and specific conditions on their depths.

Theorem (MS25, Corollaries 3.5/7/10/11)
Let C be a hyperelliptic curve over Q given by Y 2 =

∑6
i=0 ciX

i ∈ Z[X ]
such that dR = 0 and νp(c6) = mini νp(ci ) ≤ 1 at some odd prime p of
almost good reduction. Then its cluster picture is one of the following:

0
n

where νp(c6) = 0 ≡ n mod 2

0
m n

where m ≥ n and νp(c6) ≡ m ≡ n mod 2

0
n

m − n
where m > n and νp(c6) ≡ m ≡ n mod 2

Furthermore, there is an explicit description for C̃ as the union of two
elliptic curves over Fp2 linked by a chain of P1 for each cluster picture.
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Computing Euler factors

It turns out that any genus two curve over Q with almost good reduction
at an odd prime can be normalised to obtain such a model.

Theorem (MS25, Theorem 1.1)
Let C be a genus two curve over Q given by Y 2 =

∑6
i=0 ciX

i ∈ Z[X ]
with almost good reduction at some odd prime p. Then there is a
probabilistic algorithm that computes Lp(C ,T ) with running time

O

(
(maxi log |ci |)2 log2(maxi log |ci |)

log p
+ log5 p

)
.

Furthermore, if a quadratic non-residue modulo p is given, then the
algorithm is deterministic with the same running time.

This has been implemented in Magma in the public Genus2Euler
repository. In a test on 3454506 pairs of (C , p), it is almost 5000 times
faster than the existing EulerFactor function in Magma, including 489
pairs of (C , p) whose computations were terminated after eight hours.
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