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Global fields

Let E be an elliptic curve over a global field K. Its L-function is given by
L(E,s):= H v
’ ) EV(E p—sdegV)’

v PV

where p, is the residue characteristic at each place v of K.
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Global fields

Let E be an elliptic curve over a global field K. Its L-function is given by

1
1l E =y

v PV

where p, is the residue characteristic at each place v of K.

Here, the local Euler factors are given by

L,E,T):=detl—T-¢,;" | pf,) €1+ T-Q[T],

where £ is some prime different from p,.

Conjecture (Birch and Swinnerton-Dyer)
The arithmetic of E is determined by the analysis of L(E,s) ats = 1.

There is much numerical evidence, which requires computing L(E, s)!
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Computing special values

Over a number field K, Dokchitser 1 gave an algorithm to compute the
special values of L(E,s) assuming the functional equation

A(E,s) = eeNm(fg)' * Ak °A(E,2 — s),

where its completed L-function is given by

AE,s) = ((ZSTS))S)[K:Q] LE.5)

This was originally the ComputeL package in PARI/GP, but later ported
to Magma as LSeries() and SageMath as 1series() .dokchitser().

ITim Dokchitser. “Computing special values of motivic L-functions” Experimental
Mathematics 13 (2) 137-150, 2004
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Computing special values

Over a number field K, Dokchitser 1 gave an algorithm to compute the
special values of L(E,s) assuming the functional equation

A(E,s) = eeNm(fg)' * Ak °A(E,2 — s),

where its completed L-function is given by

AE,s) = ((ZSTS))S)[K:Q] LE.5)

This was originally the ComputeL package in PARI/GP, but later ported
to Magma as LSeries() and SageMath as 1series() .dokchitser().

Over a global function field, Magma has LFunction(), which uses the
theory of Mordell-Weil lattices on elliptic surfaces to give a polynomial.

| claim that there is a much easier way to compute the same polynomial!

ITim Dokchitser. “Computing special values of motivic L-functions” Experimental
Mathematics 13 (2) 137-150, 2004
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Global function fields

Let K := k(C) be the global function field of a smooth proper
geometrically irreducible curve C over a finite field k := Fj.
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The formal L-function of an elliptic curve E over K is given by

£(E.7) =TT g aaey € QT

so that L(E,s) = L(E,q™%).
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Global function fields

Let K := k(C) be the global function field of a smooth proper
geometrically irreducible curve C over a finite field k := Fj.

The formal L-function of an elliptic curve E over K is given by

£(E.7) =TT g aaey € QT
so that L(E,s) = L(E,q™%).

If {a,,;}5, are the coefficients of £, (E, T9€")~1, then

c(E,T)=]] <ZaV,T’deg">

9/30



Global function fields

Let K := k(C) be the global function field of a smooth proper
geometrically irreducible curve C over a finite field k := Fj.

The formal L-function of an elliptic curve E over K is given by

£(E.7) =TT g aaey € QT
so that L(E,s) = L(E,q™%).

If {a,,;}5, are the coefficients of £, (E, T9€")~1, then
0 .
e (Eer=] £ (5 )

j=0 \degD=j

where ap =[], ay,;, for any effective Weil divisor D =3 i, [v] on C.
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Rationality
Corollary (of the Weil conjectures 2)
There are polynomials Po(T), P1(T), P2(T) € 1+ T - Q[T] such that

Pi(T)

AE D= By R

€ Q(T),
and
—deg Po(T) + deg P1(T) — deg Po(T) = 4gc — 4 + deg fe.

Furthermore, there are simple expressions for Po(T) and P,(T) in terms
of L(C, T), and in fact Po(T) = P>(T) = 1 whenever E is not constant.

2Grothendieck—Lefschetz trace formula and Grothendieck=Ogg-=Shafarevich=formula
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Rationality

Corollary (of the Weil conjectures 2)
There are polynomials Po(T), P1(T), P2(T) € 1+ T - Q[T] such that

Pi(T)

Ao(m) a1 <

L(E,T)=

and
—deg Po(T) + deg P1(T) — deg Po(T) = 4gc — 4 + deg fe.

Furthermore, there are simple expressions for Po(T) and P,(T) in terms
of L(C, T), and in fact Po(T) = P>(T) = 1 whenever E is not constant.

Thus L£(E, T) is completely determined by the coefficients ap for all
effective Weil divisors D on C with deg D < dg, where

de = 4gc — 4 + deg e + deg Po(T) + deg P(T).

2Grothendieck—Lefschetz trace formula and Grothendieck=Ogg-=Shafarevich=formula
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Quadratic example
Let E be the elliptic curve y? = x3 + x? + % 4 2 over K = F3(t).
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Quadratic example
Let E be the elliptic curve y? = x3 + x? + % + 2 over K = F3(t). Then

deg L(E, T) = dg = 4(0) — 4+ deg(4[2] + [t + 1] + [t +2]) = 2.
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Quadratic example
Let E be the elliptic curve y? = x3 + x? + % + 2 over K = F3(t). Then

deg L(E, T) = dg = 4(0) — 4+ deg(4[2] + [t + 1] + [t +2]) = 2.

v L,(E,T) L,(E, Tdev) [ L, (E, Tdev)1
z 1 1 1
t 1-T+3T? [ 1-T+3T% [14+T -2T2+...
t+1 1-T 1-T 1+ T+T%+...
t+2 1-T 1-T I+ T+T%+...
2+ 1 1+2T +3T2[1+2T%2+... 1-2T72+...
t24+t+2 [1—4T+3T7T2[1—-4T%2+ ... 14472+ ...
242t +2 |1 —4T +3T2 |1 —4T°+ ... 1+4T%2+ ...
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Quadratic example
Let E be the elliptic curve y? = x3 + x? + % + 2 over K = F3(t). Then

deg L(E, T) = dg = 4(0) — 4+ deg(4[2] + [t + 1] + [t +2]) = 2.

v L,(E,T) L,(E, Tdev) [ L, (E, Tdev)1
z 1 1 1
t 1-T+3T? [ 1-T+3T% [14+T -2T2+...
t+1 1-T 1-T 1+ T+T%+...
t+2 1-T 1-T I+ T+T%+...
2+ 1 1+2T +3T2[1+2T%2+... 1-2T72+...
t24+t+2 [1—4T+3T7T2[1—-4T%2+ ... 14472+ ...
242t +2 |1 —4T +3T2 |1 —4T°+ ... 1+4T%2+ ...

Thus

LET)=0+T-2T%4+...)----(1+4T>+...) mod T3
=1+3T+97? mod T3,

which forces L(E, T) =1+3T +9T2.
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Functional equation

Corollary (of the Weil conjectures and root number results 3)
There is a global root number eg € {£1} such that

L(E,T)=ecqT%L(E,1/¢°T).

Furthermore, there is a simple algorithm to compute e¢g in terms of the
reduction type of E at each place in the support of fg.

3by the works of Deligne, Rohrlich, Kobayashi, and Imai
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Functional equation

Corollary (of the Weil conjectures and root number results 3)
There is a global root number eg € {£1} such that

L(E,T)=ecqT%L(E,1/¢°T).

Furthermore, there is a simple algorithm to compute e¢g in terms of the
reduction type of E at each place in the support of fg.

If {b,-}?io are the coefficients of L(E, T), then

de de
Z bi T = Z GEbiqu72’ ngfl
i=0 i=0

3by the works of Deligne, Rohrlich, Kobayashi, and Imai
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Functional equation

Corollary (of the Weil conjectures and root number results 3)
There is a global root number eg € {£1} such that

L(E,T)=ecqT%L(E,1/¢°T).

Furthermore, there is a simple algorithm to compute e¢g in terms of the
reduction type of E at each place in the support of fg.

If {b;}f’io are the coefficients of L(E, T), then

de de de
§ bi T = § GEb,'quiledEi’ _ § GEbdgfiqzlidE TI,
i=0 i=0 i=0

so that b; can be computed as egby,_;g?~% when [de/2] < i < dE.

3by the works of Deligne, Rohrlich, Kobayashi, and Imai
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Quintic example

Let E be the elliptic curve y? = x3 + x? + t* 4 t? over K = F3(t).
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Quintic example

Let E be the elliptic curve y? = x3 + x? + t* + t2 over K = F3(t). Then

deg L(E, T) = dg = 4(0) — 4 + deg(6[1] + [t] + [t* + 1]) = 5.
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Quintic example

Let E be the elliptic curve y? = x3 + x? + t* + t2 over K = F3(t). Then
deg L(E, T) = dg = 4(0) — 4 + deg(6[1] + [t] + [t* + 1]) = 5.
By computing £, (E, T9%€V)~1 for all places v of K with degv < 2,
LE,T)=14+3T+9T? mod T3,

which forces L(E, T) =1+3T +9T2 +27eg T3 + 8lep T* + 243¢ T°.

22/30



Quintic example

Let E be the elliptic curve y? = x3 + x? + t* + t2 over K = F3(t). Then
deg L(E, T) = dg = 4(0) — 4 + deg(6[1] + [t] + [t* + 1]) = 5.
By computing £, (E, T9%€V)~1 for all places v of K with degv < 2,
LE,T)=14+3T+9T? mod T3,

which forces L(E, T) =1+3T +9T2 +27eg T3 + 8lep T* + 243¢ T°.

In fact, g = —1, since €t = €g 241 = —1 and

v;(aG,El) V%(AEI) -1 %
EE,% :7(AE’336,E’)' T . ?

=1

)

where E’ is the elliptic curve y? = x3 + (1)2x% + (1)* + (1)2 over Ki.
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(-adic representations

In general, the formal L-function of an almost everywhere unramified
¢-adic representation p : Gk — GL,(Qy) is given by

=1 75, ey < TUTI

where L, (p, T) is defined similarly as before.

4by the works of Grothendieck and Deligne
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(-adic representations

In general, the formal L-function of an almost everywhere unramified
¢-adic representation p : Gk — GL,(Qy) is given by

=1 75, ey < TUTI

where L, (p, T) is defined similarly as before.

Corollary (of the Weil conjectures *)
If p has no Gr-invariants, then L(p, T) € Q,[T] has degree

d, == (2gc — 2)dim p + deg ),

and satisfies the functional equation

w,+1

L(p, T)= epqd”(pT) poﬁ(p, 1/q""/"H T)%»

where w,, is the weight of p and o, is some automorphism on Q.

4by the works of Grothendieck and Deligne
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Magma implementation

| have implemented intrinsics for computing formal L-functions of
arbitrary f-adic representations with or without functional equations.
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Magma implementation

| have implemented intrinsics for computing formal L-functions of
arbitrary f-adic representations with or without functional equations.

This includes specific examples of motives over k(t):
> elliptic curves, with functional equation except when char(k) = 2,3

» functional equation when char(k) = 2,3 require Hilbert symbols
» faster than LFunction() when char(k) = 2,3,5,7
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» non-square-free modulus is surprisingly tricky
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Magma implementation

| have implemented intrinsics for computing formal L-functions of
arbitrary f-adic representations with or without functional equations.

This includes specific examples of motives over k(t):
> elliptic curves, with functional equation except when char(k) = 2,3

» functional equation when char(k) = 2,3 require Hilbert symbols
» faster than LFunction() when char(k) = 2,3,5,7

» Dirichlet characters, without functional equation

> functional equation requires efficient computations of Gauss sums
» non-square-free modulus is surprisingly tricky

» tensor products assuming their conductors are disjoint

» degree computation requires f,gr in terms of f, and f,
» functional equation requires €,g- in terms of €, and €,
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Magma implementation

| have implemented intrinsics for computing formal L-functions of
arbitrary f-adic representations with or without functional equations.

This includes specific examples of motives over k(t):
> elliptic curves, with functional equation except when char(k) = 2,3

» functional equation when char(k) = 2,3 require Hilbert symbols
» faster than LFunction() when char(k) = 2,3,5,7

» Dirichlet characters, without functional equation

> functional equation requires efficient computations of Gauss sums
» non-square-free modulus is surprisingly tricky

» tensor products assuming their conductors are disjoint

» degree computation requires f,gr in terms of f, and f,
» functional equation requires €,g- in terms of €, and €,

> any other nice motives?

» hyperelliptic curves?
> Artin representations?
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