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Abstract

The analytic class number formula, as its name might suggest, relates the class number of a number
field, an algebraic invariant, to the residue of its zeta-function, an analytic quantity. In his thesis, Tate
reinterpreted such zeta-functions as global zeta-integrals over the locally compact topological group of
idèles, where the class number formula becomes a relatively straightforward computation in Fourier
analysis. This talk outlines an adèlic proof of the class number formula as an application of Tate’s thesis.

1 The statement

Let K be a number field with r real and c complex embeddings. The class number formula relates its class
number hK , the size of its ideal class group ClK , to the residue at s = 1 of its Dedekind ζ-function

ζK (s) :=
∑

06=IEOK

1

Nm (I)
s ,

which has a simple pole at s = 1. A common formulation is as follows.

Theorem (Class number formula).

Ress=1ζK (s) =
2r (2π)

c
hKRK

wK
√
|DK |

.

Here, if VK := Vr
K ∪Vc

K ∪Vf
K is the set of real, complex, and finite places of K respectively, then

� wK is the size of the group of roots of unity µK ,

� DK is the absolute discriminant, which is the product of q
v(Dv)
v over all v ∈ Vf

K , where qv is the
size of the residue field at v ∈ Vf

K and Dv is the absolute different at v ∈ Vf
K , and

� RK is the regulator, which is the determinant of any
(
(r + c− 1)× (r + c− 1)

)
-minor of the matrix(

log|εi|v
)
1≤i≤r+c−1, v∈Vr

K∪Vc
K

,

where the εi are the non-torsion generators in O×K ∼= µK ×〈ε1, . . . , εr+c−1〉 by Dirichlet’s unit theorem.

It is worth noting the analogy with the invariants in the strong Birch and Swinnerton-Dyer conjecture.
Classically, its proof falls into the realm of the geometry of numbers, and the residue is computed by

counting lattice points in the ring of integers OK within a region obtained by embedding K ↪→ Rr+c, not
unlike the proof of Dirichlet’s unit theorem. However, Tate’s Fourier analytic proof for the meromorphic
continuation and functional equation of the Dedekind ζ-function, and more generally those of Hecke L-
functions in his thesis, paved way for an elegant adèlic proof of the class number formula, by reducing the
residue computation to determining the measure of the norm one idèle class group.

After recalling a few basic constructions of adèles and idèles, a brief overview of Tate’s thesis will be
provided, including the necessary integral calculations to finally compute this residue.
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2 Adèles and idèles

For a place v ∈ VK , let Ov be the valuation ring of the completion Kv. Recall that the ring of adèles

AK :=

(xv)v∈VK
∈
∏
v∈VK

Kv

∣∣∣∣∣∣ xv ∈ Ov for almost all v ∈ VK

 ,

and its unit group of idèles A×K , can both can be endowed with the restricted product topology, which make
them locally compact groups by Tychonoff’s theorem. An open basis of A×K is given by the open subsets of

A×S :=
∏

v∈Vr
K∪Vc

K∪S
K×v ×

∏
Vf

K\S

O×v

under the usual product topology, for some finite subset of places S ⊂ Vf
K , so that for instance,

A×∅ = K×∞ × ÔK
×

:=
∏

v∈Vr
K∪Vc

K

K×v ×
∏
Vf

K

O×v .

Note that A×K ↪→ AK is finer than the subspace topology to allow inversion to be continuous.
There are natural discrete diagonal embeddings K ↪→ AK and K× ↪→ A×K , but only the former is

cocompact. The latter quotient is the idèle class group CK := A×K/K×, and has a compact subgroup, the
norm one idèle class group C1K , defined as the kernel of the idèle norm homomorphism

|·|AK
: CK −→ R+

(xv)v∈VK
7−→

∏
v∈VK

|xv|v ,

which is well-defined by the product formula and continuous under the real topology on the positive reals
R+. Now the idèle norm is clearly surjective since K×∞/K

× ↪→ CK , and has a set-theoretic section given by

ι : R+ −→ K×∞/K
×

x 7−→
(
x

1
r+2c

)
v∈Vr

K∪Vc
K

.

Thus there is a split short exact sequence 1→ C1K → CK
ι←− R+ → 1.

For a place v ∈ VK , let pv be the corresponding prime ideal. There is a surjective content homomorphism

κ : CK −→ ClK

(xv)v∈VK
7−→

∏
v∈Vf

K

pv(xv)
v ,

which is well-defined since the content of a idèle arising from some x ∈ K× is precisely the principal ideal 〈x〉,
and is continuous under the discrete topology on ClK since its kernel is the open subgroup A×∅ /O

×
K . Thus

there is a short exact sequence 1→ A×∅ /O
×
K → CK

κ−→ ClK → 1. Since κ ◦ ι : R+ → ClK is the zero map, the
content map also factors through κ : C1K → ClK , which is a continuous surjection from a compact group to a
discrete group, so the finiteness of ClK follows. Note that an argument akin to Minkowski’s theorem in the
geometry of numbers is still present, albeit hidden in the proof that C1K is compact. With slightly more effort,
Dirichlet’s unit theorem may also be proven by considering the surjective idèle logarithm homomorphism

λ : A×∅ −→ Rr+c
(xv)v∈VK

7−→
(
log|xv|v

)
v∈Vr

K∪Vc
K

,

or more precisely its continuous surjective quotient A×∅ /O
×
K → Rr+c/λ

(
O×K
)

from the closed, and hence

compact, subgroup A×∅ /O
×
K < C1K . The idèle logarithm also clearly factors through λ : K×∞ → Rr+c, whose

kernel is {±}r ×U (1)
c
, and thus there is a short exact sequence 1→ {±}r ×U (1)

c → K×∞
λ−→ Rr+c → 1.
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3 Tate’s thesis

The main input behind Tate’s thesis is the fact that a locally compact group G, such as AK and A×K or their
local counterparts, can be endowed with a certain translation-invariant measure that is unique up to scaling
by a non-zero constant, called the Haar measure µ =

∫
dx, which allows for a notion of integration over

G. The adèlic Haar measure happens to be the product measure of the Haar measures at each completion,
and these local Haar measures can be described and normalised explicitly for an easier computation later.

� If v ∈ Vr
K , the additive Haar measure is normalised to be the usual Lebesgue measure, so that dv x = dx,

while the multiplicative Haar measure is normalised such that d×v x = dv x/|x|v.

� If v ∈ Vc
K , the additive Haar measure is normalised to be twice the usual Lebesgue measure, so that

dv (x+ iy) = 2 dx dy, while the multiplicative Haar measure is normalised such that d×v z = dv z/|z|v.

� If v ∈ Vf
K , the additive Haar measure is normalised such that µv (Ov) = q

−v(Dv)/2
v , so that

µv (πnvOv) = q−nv · µv (Ov) = q
−n−

v(Dv)
2

v ,

for any uniformiser πv ∈ Ov, while the multiplicative Haar measure is normalised such that

d×v x =
q
v(Dv)

2
v

1− q−1v
· dv x

|x|v
,

so that

µ×v
(
O×v
)

=
q
v(Dv)

2
v

1− q−1v
·
(
µv (Ov)− µv (πvOv)

)
= 1.

Thus the normalised adèlic Haar measure on all of ÔK
×

is also 1.

The global ζ-integral ζ (f, s) may then be defined as the product of local ζ-integrals

ζv (fv, s) :=

∫
K×

v

fv (x)|x|sv d×v x,

for a class of well-behaved functions fv : K×v → C. These functions are equipped with Fourier transforms

f̂v (y) :=

∫
Kv

e2πiχv(xy)fv (x) dv x,

for some additive function χv : Kv → C depending only on the choice of normalising factor in µv, such that

the Fourier inversion formula
̂̂
fv = fv holds. For the sake of brevity, the exact choices for these additive

characters will be omitted, but the resulting Fourier transforms for each function will be provided directly.

� If v ∈ Vr
K , let fv (x) := e−πx

2

. Then f̂v = fv, and by substituting y := πx2,

ζv (fv, s) =

∫ ∞
0

e−πx
2

xs
2 dx

x
=

∫ ∞
0

e−y
(
y

π

) s
2 dy

y
= π−

s
2 Γ

(
s

2

)
=: ΓR (s) .

� If v ∈ Vc
K , let fv (z) := 1

π e
−2πzz. Then f̂v = fv, and by substituting z := reiθ,

ζv (fv, s) =

∫ 2π

0

∫ ∞
0

1

π
e−2πr

2

r2s
2r dr dθ

r2
= 4

∫ ∞
0

e−2πr
2

r2s
dr

r
= 2 (2π)

−s
Γ (s) =: ΓC (s) .

� If v ∈ Vf
K , let fv := 1Ov

. Then f̂v = q
−v(Dv)/2
v 1D−1

v
, and

ζv (fv, s) =
q
v(Dv)

2
v

1− q−1v
·
∫
Ov

|x|sv
dv x

|x|v
=

∞∑
n=0

q
v(Dv)

2 +n(1−s)
v

1− q−1v
·
(
µv (πnvOv)− µv

(
πn+1
v Ov

))
=

∞∑
n=0

q−nsv .

Thus the product of ζv (fv, s) for all v ∈ Vf
K is simply ζK (s).
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In this sense, ζ (f, s) supplements ζK (s) with local Euler factors corresponding to the archimedean places,
which also explains the functional equation ZK (s) = ZK (1− s) of the completed Dedekind ζ-function

ZK (s) := |DK |
s
2 · ΓR (s) · ΓC (s) · ζK (s) ,

whose fudge factors were poorly understood prior to Tate’s thesis. He further proved the analytic continuation
of ζ (f, s) to C apart from simple poles at s = 0 and s = 1, with residues −µ

(
C1K
)
f (0) and µ

(
C1K
)
f̂ (0)

respectively, but the proof of this will be omitted for the sake of brevity. It is worth noting that the residue
contributions at s = 0 and s = 1 arise precisely from introducing a 0-term to a certain integral over K× to
utilise an adèlic Poisson summation formula

∑
x∈K f (x) =

∑
x∈K f̂ (x).

4 The proof

The class number formula can now be proven as follows.

Proof of Theorem. Consider the global Schwartz-Bruhat function f :=
∏
v∈VK

fv, where

fv (x) =


e−πx

2

v ∈ Vr
K

1

π
e−2πxx v ∈ Vc

K

1Ov
(x) v ∈ Vf

K

.

Then its global ζ-integral ζ (f, s) is related to the Dedekind ζ-function ζK (s) by

ζK (s) = ΓR (s)
−r · ΓC (s)

−c · ζ (f, s) ,

so their residues at s = 1 are

Ress=1ζK (s) = ΓR (1)
−r · ΓC (1)

−c · Ress=1ζ (f, s) = 1−r ·
(

1

π

)−c
· µ
(
C1K
)
f̂ (0) ,

where µ is the normalised adèlic Haar measure. On one hand, the norm one idèle class group has measure

µ
(
C1K
)

= µ
(
CK/

〈
ι (e)

〉)
by 1→ C1K → CK

ι←− R+ → 1

= hK · µ
(
A×∅ /O

×
K

〈
ι (e)

〉)
by 1→ A×∅ /O

×
K → CK

κ−→ ClK → 1

=
hK
wK
· µ
(
A×∅ /

〈
ε1, . . . , εr+c−1, ι (e)

〉)
by O×K = µK × 〈ε1, . . . , εr+c−1〉

=
hK
wK
· µ
(
K×∞/

〈
ε1, . . . , εr+c−1, ι (e)

〉)
by A×∅ = K×∞ × ÔK

×

=
2r (2π)

c
hKRK

wK
by 1→ {±}r ×U (1)

c → K×∞
λ−→ Rr+c → 1.

On the other hand, f has Fourier transform f̂ :=
∏
v∈VK

f̂v, where

f̂v (x) =


e−πx

2

v ∈ Vr
K

1

π
e−2πxx v ∈ Vc

K

q
−
v(Dv)

2
v 1D−1

v
(x) v ∈ Vf

K

,

so

f̂ (0) =
∏
v∈Vr

K

e−π0
2

·
∏
v∈Vc

K

1

π
e−2π00 ·

∏
v∈Vf

K

q
−
v(Dv)

2
v = 1r ·

(
1

π

)c
· 1√
|DK |

.

Combining both expressions yields the class number formula.
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