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Overview

Notation:
> N is an integer
> p and g are odd primes such that pt N (and p=1 mod q)
> E is an elliptic curve over Q of conductor N (with analytic rank zero)

» v is a Dirichlet character of conductor p and order g
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Overview

Notation:
> N is an integer
> p and g are odd primes such that pt N (and p=1 mod q)
> E is an elliptic curve over Q of conductor N (with analytic rank zero)

» v is a Dirichlet character of conductor p and order g

Outline:
» Twisted L-values
» Modular symbols
» Arithmetic consequences
» Asymptotic distribution
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The L-function of E

Recall that the L-function of E is given by

L(E,s)=]] !

b\’
p det(1—p==- ¢, | pg,)

where ¢, € Gg is an arithmetic Frobenius and pe ¢ : Gg — Aut( T¢(E))
is the representation of the ¢-adic Tate module T;(E) for some ¢ # p.
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The L-function of E

Recall that the L-function of E is given by

L(E,s)=]] !

b\’
p det(1—p==- ¢, | pg,)

where ¢, € Gg is an arithmetic Frobenius and pe ¢ : Gg — Aut( T¢(E))
is the representation of the ¢-adic Tate module T;(E) for some ¢ # p.

Conjecture (Birch—Swinnerton-Dyer)
The order of vanishing of L(E,s) at s =1 isrk(E), and

i L(E,s) 1 Reg(E) - Tam(E) - #I11(E)
<01 (s — 1)E) Q(E) F#tor(E)? '
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The L-function of E

Recall that the L-function of E is given by

L(E,s)=]] !

b\’
p det(1—p==- ¢, | pg,)

where ¢, € Gg is an arithmetic Frobenius and pe ¢ : Gg — Aut( T¢(E))
is the representation of the ¢-adic Tate module T;(E) for some ¢ # p.

Conjecture (Birch—Swinnerton-Dyer)
The order of vanishing of L(E,s) at s =1 isrk(E), and

i L(E,s) 1 Reg(E) - Tam(E) - #I11(E)
<01 (s — 1)E) Q(E) F#tor(E)?

When rk(E) = 0, the LHS is the algebraic L-value of E, given by

L(E) = L(E,1)- ﬁ
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The L-function of E/K
Let K/Q be finite Galois. The L-function of E/K is given by

1
L(E/K,s) = :
1;[ det(1 — Nm(p)=s - ¢y | PIEF/K,[)
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The L-function of E/K
Let K/Q be finite Galois. The L-function of E/K is given by

1
L(E/K,s) = :
1;[ det(1 — Nm(p)=s - ¢y | PIEF/K,[)

Conjecture (Birch—Swinnerton-Dyer)
The order of vanishing of L(E/K,s) at s =1 istk(E/K), and

i LE/Ks)  VA(K) _ Reg(E/K)- Tam(E/K) - #1U(E/K)

s=1 (s — 1)KE/K) " Q(E/K) #tor(E/K)2
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The L-function of E/K
Let K/Q be finite Galois. The L-function of E/K is given by

1
L(E/K,s) = :
1;[ det(1 — Nm(p)=s - ¢y | PIEP/K,[)

Conjecture (Birch-Swinnerton-Dyer)
The order of vanishing of L(E/K,s) at s =1 istk(E/K), and
im L(E/K,s) /A(K) Reg(E/K)-Tam(E/K)- #II(E/K)

s=1 (s — 1)KE/K) " Q(E/K) #tor(E/K)2

On the other hand, Artin formalism gives a factorisation

WE/K )= I LEps)m.
p:Gal(K/Q)—CX
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Twisted L-functions of E
Let K =Q((p). Then

Artin representations — Dirichlet characters
Gal(K/Q) —» C* (Z/pz)* — C*
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Twisted L-functions of E
Let K =Q((p). Then

Artin representations — Dirichlet characters
Gal(K/Q) —» C* (Z/pz)* — C*

The L-function of E twisted by x is given by

1
- 1;[ det(1 —p=5-dp | (PEL @ py)e)

L(E,x,s):
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Twisted L-functions of E
Let K =Q((p). Then

Artin representations — Dirichlet characters
Gal(K/Q) —» C* (Z/pz)* — C*

The L-function of E twisted by x is given by

1
- 1;[ det(1 —p=5-dp | (PEL @ py)e)

L(E,x,s):

More concretely,
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Twisted L-functions of E
Let K =Q((p). Then
Artin representations Dirichlet characters
{ Gal(K/Q) — C* } - { (Z)pZ)* — C* }
The L-function of E twisted by x is given by

1
- 1;[ det(1 —p=5-dp | (PEL @ py)e)

L(E,x,s):

More concretely,

Conjecture (Deligne—Gross)
The order of vanishing of L(E, x,s) ats =1 is (x, E(K)c).
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A twisted BSD-type formula

Is there a conjectural leading term?
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A twisted BSD-type formula

Is there a conjectural leading term?
When rk(E) = 0, the algebraic L-value of E twisted by x is given by
L(E,x)=L(E,x,1) ———,
(E) = HEe D 0

where 7(x) is the Gauss sum of .
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A twisted BSD-type formula

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by x is given by
p
L(E,x)=LExl) —————,
EX=HEXD 20 agE)
where 7(x) is the Gauss sum of .
Example (Dokchitser—Evans—Wiersema)

Let £; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (s.
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A twisted BSD-type formula

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by x is given by

p

L(E,x) = L(E,x,1)- W,

where 7(x) is the Gauss sum of .

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) = —307, and

Reg(E;/K) = Tam(E;/K) = TII(E;/K) = tor(E;/K) =1,

for all K - Q(C11)+-
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A twisted BSD-type formula

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by x is given by

p

L(E,x) = L(E,x,1)- W,

where 7(x) is the Gauss sum of .

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) = —307, and

Reg(E;/K) = Tam(E;/K) = TII(E;/K) = tor(E;/K) =1,
for all K C Q(¢11)™. However

L(E1,x) =1, L(E2, x) = GG+ G+ @)
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Varying the character
Fix E and g. As p varies, how does L(E, x) vary?
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Varying the character
Fix E and g. As p varies, how does L(E, x) vary?

Example
Let E be given by 67al, and let g = 3.
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Varying the character

Fix E and g. As p varies, how does L(E, x) vary?
Example
Let E be given by 67al, and let g = 3.

p | 7 13 19 31 37 43 61 73 79
L(E,x) |2z 3Gz -z -27¢z 3¢z -4z -Gz -3(z 8

p ‘97 103 109 127 139 151 157 163
L(E,x) ‘-17 3¢z -90¢s T74¢s 23¢z -2 16 -43¢s
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Varying the character

Fix E and g. As p varies, how does L(E, x) vary?

Example
Let E be given by 67al, and let g = 3.

‘ 7 13 19 31 3r 43 61 73 79

p
L(E,x) | 2¢z 3Gz -Gz -27¢z 3¢z -4 -¢3 -3¢z 8
(3—1 2 3 -1 =27 3 -4 -1 -3 8

| 97 103 109 127 139 151 157 163
17 3(; -90(; 740 23(; 2 16 -43(s
17 3 9 74 23 2 16 -43
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Varying the character
Fix E and g. As p varies, how does L(E, x) vary?

Example
Let E be given by 67al, and let g = 3.

p 7 13 19 31 37 43 61 73 79
L(E,x) | 2¢z 3Gz -Gz -27¢z 3¢z -4 -¢3 -3¢z 8
(3—1 2 3 -1 =27 3 -4 -1 -3 8
#E(FP) 10 12 13 42 39 46 64 81 88

p 97 103 109 127 139 151 157 163
L(E.,X) | -17 3G -90(; 74G; 230z -2 16 -43(3
GG—1|-17 3 9 74 23 2 16 -43
#E(F,) | 98 120 108 121 118 149 149 145
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Varying the character
Fix E and g. As p varies, how does L(E, x) vary?

Example
Let E be given by 67al, and let g = 3.

p 7 13 19 31 37 43 61 73 79
L(E,x) | 2¢z 3¢ -Gz -27¢3 3¢3 -4z -Gz -3¢z 8
(3—1 2 3 -1 =27 3 -4 -1 -3 8
#E(FP) 10 12 13 42 39 46 64 81 88

sum 12 15 12 15 42 42 63 78 96

p 97 103 109 127 139 151 157 163
L(E.,X) | -17 3G -90(; 74G; 230z -2 16 -43(3
GG—1|-17 3 9 74 23 2 16 -43
#E(F,) | 98 120 108 121 118 149 149 145
sum | 81 123 18 195 141 147 165 102
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The modularity theorem

Write L-values of E as L-values of modular forms.
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The modularity theorem

Write L-values of E as L-values of modular forms.

Recall that the Hecke L-function of a cusp form f € S, (I') is given by

L(Fs) = — (_rz():)_ /0 ~ riyF(z)dz.
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The modularity theorem

Write L-values of E as L-values of modular forms.

Recall that the Hecke L-function of a cusp form f € S, (I') is given by

L(Fs) = — (_rz():)_ /0 ~ riyF(z)dz.

Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven)

There is a finite surjective morphism ¢ : Xo(N) — E defined over Q,
and a cuspidal eigenform fg € Sy([o(N)), such that

» the Hecke operator T, has eigenvalue a,(E),
» the Hecke L-function of fg is L(E,s), and
» the pullback of wg under ¢ is a positive multiple of 2mifg(z)dz.
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The modularity theorem

Write L-values of E as L-values of modular forms.

Recall that the Hecke L-function of a cusp form f € S, (I') is given by

_>)s—1 o]
L(f,s) = — rz()s) /0 (i) F(2)dz.
Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven)

There is a finite surjective morphism ¢ : Xo(N) — E defined over Q,
and a cuspidal eigenform fg € Sy([o(N)), such that

» the Hecke operator T, has eigenvalue a,(E),
» the Hecke L-function of fg is L(E,s), and
» the pullback of wg under ¢ is a positive multiple of 2mifg(z)dz.

This positive multiple is called the Manin constant ¢y(E) of E.
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Classical modular symbols

A modular symbol is a path {x,y} € H/T', whose period is

pr(x,y) = /y 2mwif(z)dz

so that uf(0,00) = —L(f,1).
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Classical modular symbols

A modular symbol is a path {x,y} € H/T', whose period is

y
we(x,y) ::/ 2mwif(z)dz,

so that pr(0,00) = —L(f,1). For any x € Q,

1r(0,x + Z) = pr(0, x), 1 (0, —x) = (0, x).
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Classical modular symbols

A modular symbol is a path {x,y} € H/T', whose period is
y
we(x,y) ::/ 2mwif(z)dz,
so that pr(0,00) = —L(f,1). For any x € Q,

/f“f(07x + Z) = ,uf(O,X), Mf(07 _X) = Mf(O,X).
In particular, for any x € Q,

1 (0, x) + 126 (0,1 — x) = 2R(r (0, x)).
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Classical modular symbols

A modular symbol is a path {x,y} € H/T', whose period is

y
we(x,y) ::/ 2mwif(z)dz,

so that pr(0,00) = —L(f,1). For any x € Q,

1r(0,x + Z) = pr(0, x), 1 (0, —x) = (0, x).

In particular, for any x € Q,

1 (0, x) + 126 (0,1 — x) = 2R(r (0, x)).
Lemma (Manin)

M (0.5)) 1
Q) < )
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L-values as periods

The Hecke operator T, acts on the space of modular symbols such that

CUE 1) HEE) = S (0, 2).
n=1
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L-values as periods

The Hecke operator T, acts on the space of modular symbols such that

CUE 1) HEE) = S (0, 2).
n=1

Dividing by Q(E) gives
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L-values as periods

The Hecke operator T, acts on the space of modular symbols such that

CUE) - #E(E,) = 3 (0, 2).
n=1

Dividing by Q(E) gives

p—1 0,2
() #E(E) = 3 o

n=1

Combining the n-th and (p — n)-th terms gives
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L-values as periods

The Hecke operator T, acts on the space of modular symbols such that
p—1
~L(E.1) - #E(F) = > 1 (0,2).
n=1

Dividing by Q(E) gives

p—1 0,2
() #E(E) = 3 o

n=1

Combining the n-th and (p — n)-th terms gives

Multiplying by co(E) gives an equality in Z.
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Twisted L-values as periods
Applying the Mellin transform to the Dirichlet series of fg ® x yields

1

L(E 1) 5 = D X (0, 3).

o
|

Il
._.

n

37/90



Twisted L-values as periods
Applying the Mellin transform to the Dirichlet series of fg ® x yields
1

L(E,x,1)- % =3 X(M)nr (0, 2).

o
|

~—

3
Il
—

A similar rearrangement gives

i
L

o 2R(pr(0,3))
x(n —aE)

[+

‘C(E7X) =

n=1
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Twisted L-values as periods
Applying the Mellin transform to the Dirichlet series of fg ® x yields

1

L(E,x,1)- % =3 X(M)nr (0, 2).

o
|

~—

3
Il
—

A similar rearrangement gives

i
L

2R(pr (0, 5))

L(E,x) = X(n T QE)

[+

n=1

Multiplying by co(E) gives an equality in Z[(g].
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Twisted L-values as periods
Applying the Mellin transform to the Dirichlet series of fg ® x yields

1

L(E 1) 5 = D X (0, 3).

A similar rearrangement gives

o
|

\_/

3
Il
—

i
L

o 2R(pr(0,3))
x(n )

[+

‘C(E7X) =

n=1

Multiplying by co(E) gives an equality in Z[(g].

Theorem (Manin)

—co(E) - L(E) - #E(Fp) = co(E) - L(E, x) mod (1 —(q).
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Revisiting the example

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (s. Then A(E;) = —307, and

Reg(E;/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)™. However

L(E1,x) =1, L(E2, x) = Gs(Gs + G+ @)
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Revisiting the example

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (s. Then A(E;) = —307, and

Reg(Ei/K) = Tam(E;/K) = TI(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)™. However
LE,x)=1,  L(E2,x)=G(G+ G+ &)
Now c(E) = £(E)) = 1, but
#E1(Fu1) =9, #E(Fu) =16,

so the congruence says L(Ey, x) Z L(Ez,x) mod (1 — (s).
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Revisiting the example

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (s. Then A(E;) = —307, and

Reg(Ei/K) = Tam(E;/K) = TI(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)™. However
LE,x)=1,  L(E2,x)=G(G+ G+ &)
Now c(E) = £(E)) = 1, but
#E1(Fu1) =9, #E(Fu) =16,

so the congruence says L(Ey, x) Z L(Ez,x) mod (1 — (s).

In fact, the congruence clarifies all 30 pairs of examples in the paper.
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Insufficiency of congruence

In general, the congruence only serves as a sanity check for the L-value.
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example

Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (s.
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example

Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) <0, and

Reg(E;/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,

for all K - @(Cll)Jr.
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example

Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) <0, and

Reg(E;/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)*. Furthermore ¢o(E;) = L(E;) =1, and
#El(]Fll) - 11a #E2(]Fll) = 67

so the congruence says L(E1, x) = L(Ez, x) mod (1 — (s).
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example

Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) <0, and

Reg(Ej/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)*. Furthermore ¢o(E;) = L(E;) =1, and
#E(F11) =11, #E(Fu) =6,
so the congruence says L(E1, x) = L(Ez,x) mod (1 — (s). However

L(E,x)=—G2,  L(E,x)=-C.
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example
Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) <0, and

Reg(Ej/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)*. Furthermore ¢o(E;) = L(E;) =1, and
#E(F11) =11, #E(Fu) =6,
so the congruence says L(E1, x) = L(Ez,x) mod (1 — (s). However

L(E,x)=—G2,  L(E,x)=-C.

In certain cases, the congruence can be interpreted as an equality.

49/90



Congruence for units
Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.

Theorem (Dokchitser—Evans—Wiersema)
L(E,x) =xX(N) - ¢ for some { € Z[Cq + g,
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.
Theorem (Dokchitser—Evans—Wiersema)

L(E,x) =X(N) - £ for some ¢ € Z[(, + (4], has norm +B(E, x), where

_ Tam(E/K) - #1I(E/K) - #tor(E/K) 2

= Tam(E/Q) - #11(E/Q) - #tor(E/Q) 2 =

B(E, x)
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.

Theorem (Dokchitser—Evans—Wiersema)
L(E,x) =X(N) - £ for some ¢ € Z[(, + (4], has norm +B(E, x), where
_ Tam(E/K) - #1I(E/K) - #tor(E/K) 2
BN = Ton(E/Q) #1T1(E/Q) - Hror(E/Q) 2 < &

and generates an ideal of Z[(4] invariant under complex conjugation.
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.

Theorem (Dokchitser—Evans—Wiersema)
L(E,x) =X(N) - £ for some ¢ € Z[(, + (4], has norm +B(E, x), where

_ Tam(E/K) - #I1(E/K) - #tor(E/K) 2 c7z
= Tam(E/Q) - #11(E/Q) - #tor(E/Q) 2 = 7

and generates an ideal of Z[(4] invariant under complex conjugation.

B(E, x)

Corollary
If B(E,x) =1, then { € Z[(q + (4%, and

(= —L(E)- #E(F,) mod (2— (¢ + )
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and L(E) - #E(F,) #0 mod gq.

Theorem (Dokchitser—Evans—Wiersema)

L(E,x) =X(N) - £ for some ¢ € Z[(, + (4], has norm +B(E, x), where
_ Tam(E/K) - #1I(E/K) - #tor(E/K) 2 c7z

- Tam(E/Q) - #1I(E/Q) - #tor(E/Q)=2 ~

and generates an ideal of Z[(4] invariant under complex conjugation.

B(E, x)

Corollary
If B(E,x) =1, then { € Z[(q + (4%, and

(= —L(E)- #E(F,) mod (2— (¢ + )

If g = 3, the congruence determines ¢ exactly.
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Congruence for non-units

In general, the ideal generated by L(E, x) has finitely many possibilities.
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Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (3.

58/90



Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
L(E;,x) generate ideals of norm 112 that are invariant under complex
conjugation.
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Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
L(E;,x) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

0 =3¢ + & + 3G, by =2 +3C + 3.
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Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
L(E;,x) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

b =3@+ G +3C6G, b= +36G+3

In fact, (L(E;, x)) = (¢;) by Burns—Castillo.

61/90



Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
L(E;,x) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

0 =3¢ + & + 3G, by =2 +3C + 3.

In fact, (L(E;, x)) = (¢;) by Burns—Castillo. Furthermore L(E;) =1,
#E1(F31) = 33, and #Ex(F31) = 23, so the congruence says

L(E1,x) = u1 - b, v (3+1+3)=-33 mod (1- (),

L(Ez, x) = un - £y, u-(14+3+43)=-23 mod (1— ).
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Congruence for non-units
In general, the ideal generated by L(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
L(E;,x) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

0 =3¢ + & + 3G, by =2 +3C + 3.

In fact, (L(E;, x)) = (¢;) by Burns—Castillo. Furthermore L(E;) =1,
#E1(F31) = 33, and #Ex(F31) = 23, so the congruence says

L(E1,x) = u1 - b, v (3+1+3)=-33 mod (1- (),

L(Ez, x) = un - £y, u-(14+3+43)=-23 mod (1— ).

In fact, uy = (¢ and up = (2 — (5 + 1.
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?

The congruence says L(E, x) varies according to #E(F,) modulo g.
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?

The congruence says L(E, x) varies according to #E(F,) modulo g.

On the other hand, by considering pg q(¢p) € GL2(Zy),

#E(Fp) = 1 + det(pe q(¢p)) — tr(pe.q(dp))-
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?

The congruence says L(E, x) varies according to #E(F,) modulo g.

On the other hand, by considering pg q(¢p) € GL2(Zy),

#E(Fp) = 1+ det(pe,q(dp)) — tr(pe,q(9p))-

As p=1 mod q varies, pe q(¢p) varies over the group

Ge g :={M €im(peq) | det(M)=1 mod q}.
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?

The congruence says L(E, x) varies according to #E(F,) modulo g.

On the other hand, by considering pg q(¢p) € GL2(Zy),

#E(Fp) = 1+ det(pe,q(dp)) — tr(pe,q(9p))-

As p=1 mod q varies, pg 4(¢p) varies over the group
Ge g :={M €im(peq) | det(M)=1 mod q}.

By Chebotarev, pe (¢,) is asymptotically distributed uniformly in Gg geo .
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Asymptotic distribution
Fix E and g. As p varies, how does L(E, x) modulo (1 — ¢,) vary?

The congruence says L(E, x) varies according to #E(F,) modulo g.

On the other hand, by considering pg q(¢p) € GL2(Zy),

#E(Fp) = 1+ det(pe,q(dp)) — tr(pe,q(9p))-

As p=1 mod q varies, pg 4(¢p) varies over the group
Ge g :={M €im(peq) | det(M)=1 mod q}.

By Chebotarev, pe (¢,) is asymptotically distributed uniformly in Gg geo .

Thus the asymptotic density of #E(F,) = ¢ mod q is the asymptotic
density of matrices M € Gg g with 1 + det(M) — tr(M) =¢ mod gq.
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and

Geq :={M € im(peq) | det(M) = 1}.
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and
Geq = {M € im(peg) | det(M) =1}.

Example

Let E be given by 11al. Then ¢o(E) =1 and L(E) = £ = —1 mod 3, so

1
5

L(E.x) = #E(F,) = 2 — x(pEa(¢p)) mod (1 Ga).
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and
Geq = {M € im(peg) | det(M) =1}.

Example

Let E be given by 11al. Then ¢o(E) =1 and L(E) = £ = —1 mod 3, so

L(E.x) = #E(F,) = 2 — x(pEa(¢p)) mod (1 Ga).

Now pE3 is surjective, so Gg 3 = SLy(F3).
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and

Geq :={M € im(peq) | det(M) = 1}.

Example
Let E be given by 11al. Then ¢o(E) =1 and £(E) = £ = —1 mod 3, so
L(E, x) = #E(Fp) =2 — tr(pe3(0p)) mod (1 - G3).

Now p£3 is surjective, so Gg.3 = SLy(F3). This consists of:
GHEDEDEIE)ENE DG
CICDEIECYEDE )G )G

CIC)EDEYEED

0 2
1 2
2 2
0 0
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and

Geq :={M € im(peq) | det(M) = 1}.

Example

Let E be given by 11al. Then ¢o(E) =1 and £(E) = £ = —1 mod 3, so

L(E, x) = #E(Fp) =2 — tr(p£ 3(6p))

Now p£3 is surjective, so Gg.3 = SLy(F3). This consists of:
GHEDEDEIE)ENE DG
CICDEIECYEDE )G )G

CIC)EDEYEED

mod (1 — (3).

0 2
1 2
2 2
0 0

Thus £(E,x) =0,1,2 mod (1 — (3) with densities 5, 5, =.

74 /90



Small Galois image

For other E, need to consider pg g» : Gg — Aut(E[q"]) and

Gegn :={M € im(pg ¢) | det(M)=1 mod g}.
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Small Galois image

For other E, need to consider pg g» : Gg — Aut(E[q"]) and

Gegn :={M € im(pg ¢) | det(M)=1 mod g}.

Example

Let E be given by 14al. Then ¢(E) =1 and L(E) = ¢, so

L(E,x) = —¢ - #E(Fp) mod (1 - G).
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Small Galois image

For other E, need to consider pg g» : Gg — Aut(E[q"]) and

Gegn :={M € im(pg ¢) | det(M)=1 mod g}.

Example
Let E be given by 14al. Then ¢(E) =1 and L(E) = ¢, so
L(E,x) = —¢ - #E(F,) mod (1 -G).

In other words, L(E,x) =¢ mod (1 — (3) precisely if

1+ det(pEs(#y)) — tr(PEs(6,)) = —6¢ mod .
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Small Galois image

For other E, need to consider pg g» : Gg — Aut(E[q"]) and
Gegn :={M € im(pg ¢) | det(M)=1 mod g}.
Example
Let E be given by 14al. Then ¢(E) =1 and L(E) = ¢, so
L(E.x) = —§ #E(F,) mod (1-(3).
In other words, L(E,x) =¢ mod (1 — (3) precisely if
1 + det(pe o(¢p)) — tr(PE9(0p)) = —6¢ mod 9.
However, 1 + det(M) — tr(M) =0 mod 9 for all matrices M in

Geo = {M € GLy(Z/9Z) | M=1 mod 3}.
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Small Galois image

For other E, need to consider pg g» : Gg — Aut(E[q"]) and
Gegn :={M € im(pg ¢) | det(M)=1 mod g}.
Example
Let E be given by 14al. Then ¢(E) =1 and L(E) = ¢, so
L(E,x) = —¢ - #E(F,) mod (1-G).
In other words, L(E,x) =¢ mod (1 — (3) precisely if
1+ det(pEs(6p)) — tr(PES(65)) = —6¢ mod 9.
However, 1 + det(M) — tr(M) =0 mod 9 for all matrices M in
Geo={M € GLy(Z/9Z) | M=1 mod 3}.

Thus L(E,x) =0,1,2 mod (1 — ¢3) with densities 1, 0, 0.
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.

Example
Let E be given by 20al. Then ¢o(E) =1 and L£(E) = £, so similarly

1+ det(pEo(¢p)) — tr(PES(¢p)) = —6L mod 9

precisely if L(E,x)=¢ mod (1 — ().
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.

Example
Let E be given by 20al. Then ¢o(E) =1 and L£(E) = £, so similarly

1+ det(pEo(¢p)) — tr(PES(¢p)) = —6L mod 9

precisely if L(E,x) =¢ mod (1 — (3). Now

Geo = {M € GL,(Z/9Z) ‘ M= <(1) D mod 3}.
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.

Example
Let E be given by 20al. Then ¢o(E) =1 and L£(E) = £, so similarly

1+ det(pEo(¢p)) — tr(PES(¢p)) = —6L mod 9

precisely if L(E,x) =¢ mod (1 — (3). Now

Geo = {M € GL,(Z/9Z) ‘ M= <(1) D mod 3}.
There are 135, 54, 54 matrices M € Gg g such that

1+ det(M) — tr(M) = —6(0), —6(1), ~6(2) mod 9.
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.

Example
Let E be given by 20al. Then ¢o(E) =1 and L£(E) = £, so similarly

1+ det(pEs(6p)) — tr(PES(0p)) = —6( mod 9
precisely if L(E,x) =¢ mod (1 — (3). Now
Geo = {M € GLy(Z/97) ‘ M = <(1) D mod 3}.
There are 135, 54, 54 matrices M € Gg g such that
1+ det(M) — tr(M) = —6(0), —6(1),—6(2) mod 9.

Thus £(E,x) =0,1,2 mod (1 — (3) with densities 222, 2%, 2.
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The density theorem

Define the natural density

i P E Pal (E) - £(E) = ¢ mod (1- o)}

5E,q(€) = 00 #Pn ’

where P, is the set of primes p =1 mod g less than n.
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The density theorem

Define the natural density

— m #{peP,| (E) - LIE,x)=¢ mod (1-¢,)}
T oo #Pn )

deq(0) :

where P, is the set of primes p =1 mod g less than n.

Theorem (A.)
Let ¢ := (co(E) - L(E))™1, and let n := v4(c) + 1.
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The density theorem

Define the natural density

— m #{peP,| (E) - LIE,x)=¢ mod (1-¢,)}
T oo #Pn )

deq(0) :

where P, is the set of primes p =1 mod g less than n.

Theorem (A.)

Let ¢ := (co(E) - L(E))™Y, and let n:=v4(c) + 1. If n <O, then
de,q(0) =1.
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The density theorem

Define the natural density

— m #{peP,| (E) - LIE,x)=¢ mod (1-¢,)}
T oo #Pn )

deq(0) :

where P, is the set of primes p =1 mod g less than n.

Theorem (A.)

Let ¢ := (co(E) - L(E))™Y, and let n:=v4(c) + 1. If n <O, then
d£,q(0) = 1. Otherwise, c is well-defined and non-zero modulo q", and

_ #{M S GE’qn

1+ det(M) — tr(M) = —cf mod q"}

Oe (¢
E,q( ) #GE,qn
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The density theorem

Define the natural density

— m #{peP,| (E) - LIE,x)=¢ mod (1-¢,)}
T oo #Pn )

deq(0) :

where P, is the set of primes p =1 mod g less than n.
Theorem (A.)

Let ¢ := (co(E) - L(E))™Y, and let n:=v4(c) + 1. If n <O, then
d£,q(0) = 1. Otherwise, c is well-defined and non-zero modulo q", and

_ #{M S GE’qn

1+ det(M) — tr(M) = —cf mod q"}
#GE,q" .

In particular, if pg q is surjective, then n =1, and

5E,q(£)

1
— 1
a1 . cl cl+4
0= 0= () (55)
-1
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Current status

Paper is in preparation.

» Stated congruence for non-trivial even Dirichlet characters of
arbitrary conductor and order, but with an error term of periods.

» Classified natural densities for cubic characters, thanks to
classification of 3-adic images by Rouse-Sutherland—Zureick-Brown.

» Explained some distributions for cubic characters in Kisilevsky—Nam,
where the normalisation of L(E, x) depends crucially on x(N).

Thank you!
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