Congruences of twisted L-values

David Ang

University College London

Thursday, 19 October 2023

Overview

Notation:

- ► N is an integer
- ▶ p and q are odd primes such that $p \nmid N$ (and $p \equiv 1 \mod q$)
- *E* is an elliptic curve over \mathbb{Q} of conductor *N* (with analytic rank zero)
- χ is a Dirichlet character of conductor p and order q

Overview

Notation:

- N is an integer
- ▶ p and q are odd primes such that $p \nmid N$ (and $p \equiv 1 \mod q$)
- *E* is an elliptic curve over \mathbb{Q} of conductor *N* (with analytic rank zero)
- χ is a Dirichlet character of conductor p and order q

Outline:

- Twisted L-values
- Modular symbols
- Arithmetic consequences
- Asymptotic distribution

The L-function of E

Recall that the **L**-function of E is given by

$$\mathcal{L}(\mathcal{E},s) := \prod_{p} rac{1}{\det(1 - p^{-s} \cdot \phi_p \mid
ho_{\mathcal{E},\ell}^{l_p})},$$

where $\phi_p \in G_{\mathbb{Q}}$ is an arithmetic Frobenius and $\rho_{E,\ell} : G_{\mathbb{Q}} \to \operatorname{Aut}(T_{\ell}(E))$ is the representation of the ℓ -adic Tate module $T_{\ell}(E)$ for some $\ell \neq p$.

The L-function of E

Recall that the **L**-function of E is given by

$$\mathcal{L}(\mathcal{E},s) := \prod_{p} rac{1}{\det(1 - p^{-s} \cdot \phi_p \mid
ho_{\mathcal{E},\ell}^{l_p})},$$

where $\phi_p \in G_{\mathbb{Q}}$ is an arithmetic Frobenius and $\rho_{E,\ell} : G_{\mathbb{Q}} \to \operatorname{Aut}(T_{\ell}(E))$ is the representation of the ℓ -adic Tate module $T_{\ell}(E)$ for some $\ell \neq p$.

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of L(E, s) at s = 1 is rk(E), and

$$\lim_{s \to 1} \frac{L(E,s)}{(s-1)^{\operatorname{rk}(E)}} \cdot \frac{1}{\Omega(E)} = \frac{\operatorname{Reg}(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$$

The L-function of E

Recall that the **L**-function of E is given by

$$\mathcal{L}(\mathcal{E},s) := \prod_{
ho} rac{1}{\det(1 -
ho^{-s} \cdot \phi_{
ho} \mid
ho_{\mathcal{E},\ell}^{l_{
ho}})},$$

where $\phi_p \in G_{\mathbb{Q}}$ is an arithmetic Frobenius and $\rho_{E,\ell} : G_{\mathbb{Q}} \to \operatorname{Aut}(T_{\ell}(E))$ is the representation of the ℓ -adic Tate module $T_{\ell}(E)$ for some $\ell \neq p$.

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of L(E, s) at s = 1 is rk(E), and

$$\lim_{s \to 1} \frac{L(E,s)}{(s-1)^{\operatorname{rk}(E)}} \cdot \frac{1}{\Omega(E)} = \frac{\operatorname{Reg}(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}$$

When rk(E) = 0, the LHS is the algebraic L-value of E, given by

$$\mathcal{L}(E) := \mathcal{L}(E,1) \cdot \frac{1}{\Omega(E)}.$$

6 / 90

The L-function of E/K

Let K/\mathbb{Q} be finite Galois. The **L**-function of E/K is given by

$$L(E/K,s) := \prod_{\mathfrak{p}} rac{1}{\det(1 - \operatorname{Nm}(\mathfrak{p})^{-s} \cdot \phi_{\mathfrak{p}} \mid
ho_{E/K,\mathfrak{l}}^{l_{\mathfrak{p}}})}.$$

The L-function of E/K

Let K/\mathbb{Q} be finite Galois. The **L**-function of E/K is given by

$$L(E/K,s) := \prod_{\mathfrak{p}} \frac{1}{\det(1 - \operatorname{Nm}(\mathfrak{p})^{-s} \cdot \phi_{\mathfrak{p}} \mid \rho_{E/K,\mathfrak{l}}^{l_{\mathfrak{p}}})}$$

Conjecture (Birch–Swinnerton-Dyer) The order of vanishing of L(E/K, s) at s = 1 is rk(E/K), and

$$\lim_{s \to 1} \frac{L(E/K, s)}{(s-1)^{\operatorname{rk}(E/K)}} \cdot \frac{\sqrt{\Delta(K)}}{\Omega(E/K)} = \frac{\operatorname{Reg}(E/K) \cdot \operatorname{Tam}(E/K) \cdot \#\operatorname{III}(E/K)}{\#\operatorname{tor}(E/K)^2}$$

The L-function of E/K

Let K/\mathbb{Q} be finite Galois. The **L**-function of E/K is given by

$$L(E/K,s) := \prod_{\mathfrak{p}} \frac{1}{\det(1 - \operatorname{Nm}(\mathfrak{p})^{-s} \cdot \phi_{\mathfrak{p}} \mid \rho_{E/K,\mathfrak{l}}^{l_{\mathfrak{p}}})}$$

Conjecture (Birch–Swinnerton-Dyer) The order of vanishing of L(E/K, s) at s = 1 is rk(E/K), and

$$\lim_{s \to 1} \frac{L(E/K, s)}{(s-1)^{\operatorname{rk}(E/K)}} \cdot \frac{\sqrt{\Delta(K)}}{\Omega(E/K)} = \frac{\operatorname{Reg}(E/K) \cdot \operatorname{Tam}(E/K) \cdot \#\operatorname{III}(E/K)}{\#\operatorname{tor}(E/K)^2}$$

On the other hand, Artin formalism gives a factorisation

$$L(E/K, s) = \prod_{\rho: \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times}} L(E, \rho, s)^{\dim(\rho)}.$$

Let $K = \mathbb{Q}(\zeta_p)$. Then

$$\left\{\begin{array}{l} \text{Artin representations} \\ \operatorname{Gal}(\mathcal{K}/\mathbb{Q}) \to \mathbb{C}^{\times} \end{array}\right\} \quad \stackrel{\text{\tiny \ef{eq:Gal}}}{\longleftrightarrow} \quad \left\{\begin{array}{l} \text{Dirichlet characters} \\ (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \end{array}\right\}.$$

Let
$$K = \mathbb{Q}(\zeta_p)$$
. Then

 $\left\{\begin{array}{l} \text{Artin representations}\\ \operatorname{Gal}({\mathcal K}/{\mathbb Q}) \to {\mathbb C}^{\times} \end{array}\right\} \quad \leftrightsquigarrow \quad \left\{\begin{array}{l} \text{Dirichlet characters}\\ ({\mathbb Z}/p{\mathbb Z})^{\times} \to {\mathbb C}^{\times} \end{array}\right\}.$

The **L-function of** *E* **twisted by** χ is given by

$$L(E,\chi,s) := \prod_{p} \frac{1}{\det(1-p^{-s} \cdot \phi_p \mid (\rho_{E,\ell} \otimes \rho_{\chi})^{l_p})}.$$

Let
$$K = \mathbb{Q}(\zeta_p)$$
. Then

 $\left\{ \begin{array}{l} \text{Artin representations} \\ \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{l} \text{Dirichlet characters} \\ (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \end{array} \right\}.$

The **L-function of** *E* **twisted by** χ is given by

$$L(E,\chi,s) := \prod_{p} \frac{1}{\det(1-p^{-s} \cdot \phi_p \mid (\rho_{E,\ell} \otimes \rho_\chi)^{l_p})}.$$

More concretely,

$$L(E,s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \stackrel{\chi}{\leadsto} \quad L(E,\chi,s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

<ロト</td><ロト</td>12/90

Let
$$K = \mathbb{Q}(\zeta_p)$$
. Then

 $\left\{ \begin{array}{l} \text{Artin representations} \\ \operatorname{Gal}(K/\mathbb{Q}) \to \mathbb{C}^{\times} \end{array} \right\} \quad \longleftrightarrow \quad \left\{ \begin{array}{l} \text{Dirichlet characters} \\ (\mathbb{Z}/p\mathbb{Z})^{\times} \to \mathbb{C}^{\times} \end{array} \right\}.$

The L-function of E twisted by χ is given by

$$L(E,\chi,s) := \prod_{p} \frac{1}{\det(1-p^{-s} \cdot \phi_p \mid (\rho_{E,\ell} \otimes \rho_{\chi})^{l_p})}.$$

More concretely,

$$L(E,s) = \sum_{n \in \mathbb{N}} \frac{a_n}{n^s} \quad \stackrel{\chi}{\leadsto} \quad L(E,\chi,s) = \sum_{n \in \mathbb{N}} \frac{a_n \chi(n)}{n^s}.$$

Conjecture (Deligne–Gross) The order of vanishing of $L(E, \chi, s)$ at s = 1 is $\langle \chi, E(K)_{\mathbb{C}} \rangle$.

Is there a conjectural leading term?

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by χ is given by

$$\mathcal{L}(E,\chi) := \mathcal{L}(E,\chi,1) \cdot \frac{p}{\tau(\chi) \cdot \Omega(E)},$$

where $\tau(\chi)$ is the Gauss sum of χ .

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by χ is given by

$$\mathcal{L}(E,\chi) := \mathcal{L}(E,\chi,1) \cdot rac{p}{ au(\chi) \cdot \Omega(E)},$$

where $\tau(\chi)$ is the Gauss sum of χ .

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$.

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by χ is given by

$$\mathcal{L}(E,\chi) := \mathcal{L}(E,\chi,1) \cdot \frac{p}{\tau(\chi) \cdot \Omega(E)}$$

where $\tau(\chi)$ is the Gauss sum of χ .

Example (Dokchitser-Evans-Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) = -307$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$.

Is there a conjectural leading term?

When rk(E) = 0, the algebraic L-value of E twisted by χ is given by

$$\mathcal{L}(E,\chi) := \mathcal{L}(E,\chi,1) \cdot \frac{p}{\tau(\chi) \cdot \Omega(E)}$$

where $\tau(\chi)$ is the Gauss sum of χ .

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) = -307$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. However

$$\mathcal{L}(E_1,\chi) = 1,$$
 $\mathcal{L}(E_2,\chi) = \zeta_5(\zeta_5 + \zeta_5^2 + \zeta_5^3)^2.$

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Example

Let *E* be given by 67a1, and let q = 3.

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Example

Let *E* be given by 67a1, and let q = 3.

р	7	13	19	31	37	43	61	73	79
$\mathcal{L}(E,\chi)$	$2\zeta_3$	$3\zeta_3$	-ζ3	$-27\zeta_3$	$3\zeta_3$	-4 ζ_3	$-\zeta_3$	-3ζ ₃	8
р	97	103	109	127	139	151	157	71	63
$\mathcal{L}(E,\chi)$	-17	$3\zeta_3$	-90ζ ₃	$74\zeta_3$	$23\zeta_3$	-2	16	-4	$3\zeta_3$

・ロト・白 ト・山 ド・山 ア・クタイ

21 / 90

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Example

Let *E* be given by 67a1, and let q = 3.

р	7	13	19	31	37	43	61	73	79
$\mathcal{L}(E,\chi)$	$2\zeta_3$	$3\zeta_3$	$-\zeta_3$	$-27\zeta_{3}$	$3\zeta_3$	-4ζ ₃	$-\zeta_3$	$-3\zeta_3$	8
$\zeta_3\mapsto 1$	2	3	-1	-27	3	-4	-1	-3	8
р	97	103	109	127	139	151	1 15	57 1	.63
$\mathcal{L}(E,\chi)$	-17	$3\zeta_3$	-90ζ ₃	, 74ζ ₃	$23\zeta_3$	3 -2	1	6 -4	$3\zeta_3$
$\zeta_3\mapsto 1$	-17	3	-90	74	23	-2	1	6 -	43

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Example

Let *E* be given by 67a1, and let q = 3.

р	7	13	19	31	37	43	61	73	79
$\mathcal{L}(E,\chi)$	$2\zeta_3$	$3\zeta_3$	$-\zeta_3$	$-27\zeta_3$	$3\zeta_3$	-4 ζ_3	$-\zeta_3$	-3ζ ₃	8
$\zeta_3\mapsto 1$	2	3	-1	-27	3	-4	-1	-3	8
$\#E(\mathbb{F}_p)$	10	12	13	42	39	46	64	81	88
р	97	103	109	127	139	15	1 15	57	163
$\mathcal{L}(E,\chi)$	-17	$3\zeta_3$	-90ζ ₃	₃ 74ζ ₃	23ζ	3 -2	1	6 -	$43\zeta_3$
$\zeta_3\mapsto 1$	-17	3	-90	74	23	-2	1	6	-43
$\#E(\mathbb{F}_p)$	98	120	108	121	118	8 149	9 14	19	145

23 / 90

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ vary?

Example

Let *E* be given by 67a1, and let q = 3.

р	7	13	19	31	37	43	61	73	79
$\mathcal{L}(E,\chi)$	$2\zeta_3$	$3\zeta_3$	$-\zeta_3$	$-27\zeta_{3}$	$3\zeta_3$	-4 ζ_3	$-\zeta_3$	$-3\zeta_3$	8
$\zeta_3 \mapsto 1$	2	3	-1	-27	3	-4	-1	-3	8
$\#E(\mathbb{F}_p)$	10	12	13	42	39	46	64	81	88
sum	12	15	12	15	42	42	63	78	96
р	97	103	109	127	139) 15	1 1	57	163
$\mathcal{L}(E,\chi)$	-17	$3\zeta_3$	-90ζ ₃	, 74ζ ₃	23ζ	3 -2	2 1	.6 -	-43ζ ₃
$\zeta_3 \mapsto 1$	-17	3	-90	74	23	-2	2 1	.6	-43
$\#E(\mathbb{F}_p)$	98	120	108	121	118	8 14	9 14	49	145
sum	81	123	18	195	141	. 14	7 1	65	102

24 / 90

Write L-values of E as L-values of modular forms.

Write L-values of E as L-values of modular forms.

Recall that the **Hecke L-function** of a cusp form $f \in S_k(\Gamma)$ is given by

$$L(f,s):=-\frac{(-z)^{s-1}}{\Gamma(s)}\int_0^\infty (2\pi i)^s f(z)\mathrm{d} z.$$

Write L-values of E as L-values of modular forms.

Recall that the **Hecke L-function** of a cusp form $f \in S_k(\Gamma)$ is given by

$$L(f,s):=-\frac{(-z)^{s-1}}{\Gamma(s)}\int_0^\infty (2\pi i)^s f(z)\mathrm{d} z.$$

Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven) There is a finite surjective morphism $\phi_E : X_0(N) \to E$ defined over \mathbb{Q} , and a cuspidal eigenform $f_E \in S_2(\Gamma_0(N))$, such that

- the Hecke operator T_p has eigenvalue $a_p(E)$,
- the Hecke L-function of f_E is L(E, s), and
- the pullback of ω_E under ϕ_E is a positive multiple of $2\pi i f_E(z) dz$.

イロト 不得 トイヨト イヨト 三日

Write L-values of E as L-values of modular forms.

Recall that the **Hecke L-function** of a cusp form $f \in S_k(\Gamma)$ is given by

$$L(f,s):=-\frac{(-z)^{s-1}}{\Gamma(s)}\int_0^\infty (2\pi i)^s f(z)\mathrm{d} z.$$

Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven) There is a finite surjective morphism $\phi_E : X_0(N) \to E$ defined over \mathbb{Q} , and a cuspidal eigenform $f_E \in S_2(\Gamma_0(N))$, such that

- the Hecke operator T_p has eigenvalue $a_p(E)$,
- the Hecke L-function of f_E is L(E, s), and
- the pullback of ω_E under ϕ_E is a positive multiple of $2\pi i f_E(z) dz$.

This positive multiple is called the **Manin constant** $c_0(E)$ of E.

A modular symbol is a path $\{x, y\} \in \mathcal{H}/\Gamma$, whose period is

$$\mu_f(x,y) := \int_x^y 2\pi i f(z) \mathrm{d} z,$$

so that $\mu_f(0,\infty) = -L(f,1)$.

A modular symbol is a path $\{x, y\} \in \mathcal{H}/\Gamma$, whose period is

$$\mu_f(x,y) := \int_x^y 2\pi i f(z) \mathrm{d} z,$$

so that $\mu_f(0,\infty) = -L(f,1).$ For any $x \in \mathbb{Q}$,

$$\mu_f(0,x+\mathbb{Z})=\mu_f(0,x),\qquad \mu_f(0,-x)=\overline{\mu_f(0,x)},$$

A modular symbol is a path $\{x, y\} \in \mathcal{H}/\Gamma$, whose period is

$$\mu_f(x,y) := \int_x^y 2\pi i f(z) \mathrm{d} z,$$

so that $\mu_f(0,\infty)=-L(f,1).$ For any $x\in\mathbb{Q}$,

$$\mu_f(0, x + \mathbb{Z}) = \mu_f(0, x), \qquad \mu_f(0, -x) = \mu_f(0, x),$$

In particular, for any $x \in \mathbb{Q}$,

$$\mu_f(0,x) + \mu_f(0,1-x) = 2\Re(\mu_f(0,x)).$$

A modular symbol is a path $\{x, y\} \in \mathcal{H}/\Gamma$, whose period is

$$\mu_f(x,y) := \int_x^y 2\pi i f(z) \mathrm{d} z,$$

so that $\mu_f(0,\infty) = -L(f,1).$ For any $x \in \mathbb{Q}$,

$$\mu_f(0, x + \mathbb{Z}) = \mu_f(0, x), \qquad \mu_f(0, -x) = \mu_f(0, x),$$

In particular, for any $x \in \mathbb{Q}$,

$$\mu_f(0,x) + \mu_f(0,1-x) = 2\Re(\mu_f(0,x)).$$

Lemma (Manin)

$$rac{2\Re(\mu_{f_E}(0,x))}{\Omega(E)}\in rac{1}{c_0(E)}\mathbb{Z}.$$

The Hecke operator T_p acts on the space of modular symbols such that

$$-L(E,1)\cdot \#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\mu_{f_E}(0,\frac{n}{p}).$$

The Hecke operator T_p acts on the space of modular symbols such that

$$-L(E,1)\cdot \#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\mu_{f_E}(0,\frac{n}{p}).$$

Dividing by $\Omega(E)$ gives

$$-\mathcal{L}(E)\cdot\#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\frac{\mu_{f_E}(0,\frac{n}{p})}{\Omega(E)}.$$

The Hecke operator T_p acts on the space of modular symbols such that

$$-L(E,1)\cdot \#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\mu_{f_E}(0,\frac{n}{p}).$$

Dividing by $\Omega(E)$ gives

$$-\mathcal{L}(E)\cdot\#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\frac{\mu_{f_E}(0,\frac{n}{p})}{\Omega(E)}.$$

Combining the *n*-th and (p - n)-th terms gives

$$-\mathcal{L}(E) \cdot \# E(\mathbb{F}_p) = \sum_{n=1}^{\frac{p-1}{2}} \frac{2\Re(\mu_{f_E}(0, \frac{n}{p}))}{\Omega(E)}$$

・ロト・日本・モー・モー うへの

35 / 90

The Hecke operator T_p acts on the space of modular symbols such that

$$-L(E,1)\cdot \#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\mu_{f_E}(0,\frac{n}{p}).$$

Dividing by $\Omega(E)$ gives

$$-\mathcal{L}(E)\cdot\#E(\mathbb{F}_p)=\sum_{n=1}^{p-1}\frac{\mu_{f_E}(0,\frac{n}{p})}{\Omega(E)}.$$

Combining the *n*-th and (p - n)-th terms gives

$$-\mathcal{L}(E) \cdot \# E(\mathbb{F}_p) = \sum_{n=1}^{\frac{p-1}{2}} \frac{2\Re(\mu_{f_E}(0,\frac{n}{p}))}{\Omega(E)}.$$

Multiplying by $c_0(E)$ gives an equality in \mathbb{Z} .
Applying the Mellin transform to the Dirichlet series of $f_E \otimes \chi$ yields

$$L(E,\chi,1)\cdot\frac{p}{\tau(\chi)}=\sum_{n=1}^{p-1}\overline{\chi}(n)\mu_{f_E}(0,\frac{n}{p}).$$

Applying the Mellin transform to the Dirichlet series of $f_E \otimes \chi$ yields

$$L(E,\chi,1)\cdot\frac{p}{\tau(\chi)}=\sum_{n=1}^{p-1}\overline{\chi}(n)\mu_{f_E}(0,\frac{n}{p}).$$

A similar rearrangement gives

$$\mathcal{L}(E,\chi) = \sum_{n=1}^{\frac{p-1}{2}} \overline{\chi}(n) \frac{2\Re(\mu_{f_E}(0,\frac{n}{p}))}{\Omega(E)}.$$

Applying the Mellin transform to the Dirichlet series of $f_E \otimes \chi$ yields

$$L(E,\chi,1)\cdot\frac{p}{\tau(\chi)}=\sum_{n=1}^{p-1}\overline{\chi}(n)\mu_{f_E}(0,\frac{n}{p}).$$

A similar rearrangement gives

$$\mathcal{L}(E,\chi) = \sum_{n=1}^{\frac{p-1}{2}} \overline{\chi}(n) \frac{2\Re(\mu_{f_E}(0,\frac{n}{p}))}{\Omega(E)}.$$

Multiplying by $c_0(E)$ gives an equality in $\mathbb{Z}[\zeta_q]$.

Applying the Mellin transform to the Dirichlet series of $f_E \otimes \chi$ yields

$$L(E,\chi,1)\cdot\frac{p}{\tau(\chi)}=\sum_{n=1}^{p-1}\overline{\chi}(n)\mu_{f_E}(0,\frac{n}{p}).$$

A similar rearrangement gives

$$\mathcal{L}(E,\chi) = \sum_{n=1}^{\frac{p-1}{2}} \overline{\chi}(n) \frac{2\Re(\mu_{f_E}(0,\frac{n}{p}))}{\Omega(E)}.$$

Multiplying by $c_0(E)$ gives an equality in $\mathbb{Z}[\zeta_q]$.

Theorem (Manin)

 $-c_0(E) \cdot \mathcal{L}(E) \cdot \# E(\mathbb{F}_p) \equiv c_0(E) \cdot \mathcal{L}(E,\chi) \mod (1-\zeta_q).$

Revisiting the example

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) = -307$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. However

$$\mathcal{L}(E_1, \chi) = 1,$$
 $\mathcal{L}(E_2, \chi) = \zeta_5(\zeta_5 + \zeta_5^2 + \zeta_5^3)^2.$

Revisiting the example

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) = -307$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. However

$$\mathcal{L}(E_1, \chi) = 1,$$
 $\mathcal{L}(E_2, \chi) = \zeta_5(\zeta_5 + \zeta_5^2 + \zeta_5^3)^2.$

Now $c_0(E_i) = \mathcal{L}(E_i) = 1$, but

$$\#E_1(\mathbb{F}_{11}) = 9, \qquad \#E_2(\mathbb{F}_{11}) = 16,$$

so the congruence says $\mathcal{L}(E_1, \chi) \not\equiv \mathcal{L}(E_2, \chi) \mod (1 - \zeta_5)$.

Revisiting the example

Example (Dokchitser-Evans-Wiersema)

Let E_1 and E_2 be given by 307a1 and 307c1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) = -307$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. However

$$\mathcal{L}(E_1, \chi) = 1,$$
 $\mathcal{L}(E_2, \chi) = \zeta_5(\zeta_5 + \zeta_5^2 + \zeta_5^3)^2.$

Now $c_0(E_i) = \mathcal{L}(E_i) = 1$, but

$$\#E_1(\mathbb{F}_{11}) = 9, \qquad \#E_2(\mathbb{F}_{11}) = 16,$$

so the congruence says $\mathcal{L}(E_1,\chi) \not\equiv \mathcal{L}(E_2,\chi) \mod (1-\zeta_5).$

In fact, the congruence clarifies all 30 pairs of examples in the paper.

In general, the congruence only serves as a sanity check for the L-value.

In general, the congruence only serves as a sanity check for the L-value.

Example

Let E_1 and E_2 be given by 182d1 and 460a1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$.

In general, the congruence only serves as a sanity check for the L-value.

Example

Let E_1 and E_2 be given by 182d1 and 460a1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) < 0$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$.

In general, the congruence only serves as a sanity check for the L-value. Example

Let E_1 and E_2 be given by 182d1 and 460a1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) < 0$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. Furthermore $c_0(E_i) = \mathcal{L}(E_i) = 1$, and

$$\#E_1(\mathbb{F}_{11}) = 11, \qquad \#E_2(\mathbb{F}_{11}) = 6,$$

so the congruence says $\mathcal{L}(E_1, \chi) \equiv \mathcal{L}(E_2, \chi) \mod (1 - \zeta_5)$.

In general, the congruence only serves as a sanity check for the L-value. Example

Let E_1 and E_2 be given by 182d1 and 460a1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) < 0$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. Furthermore $c_0(E_i) = \mathcal{L}(E_i) = 1$, and

$$\#E_1(\mathbb{F}_{11}) = 11, \qquad \#E_2(\mathbb{F}_{11}) = 6,$$

so the congruence says $\mathcal{L}(E_1, \chi) \equiv \mathcal{L}(E_2, \chi) \mod (1 - \zeta_5)$. However

$$\mathcal{L}(E_1,\chi) = -\zeta_5^2, \qquad \mathcal{L}(E_2,\chi) = -\zeta_5^3.$$

In general, the congruence only serves as a sanity check for the L-value. Example

Let E_1 and E_2 be given by 182d1 and 460a1, and let χ be the quintic character of conductor 11 given by $\chi(2) = \zeta_5$. Then $\Delta(E_i) < 0$, and

$$\operatorname{Reg}(E_i/K) = \operatorname{Tam}(E_i/K) = \operatorname{III}(E_i/K) = \operatorname{tor}(E_i/K) = 1,$$

for all $K \subseteq \mathbb{Q}(\zeta_{11})^+$. Furthermore $c_0(E_i) = \mathcal{L}(E_i) = 1$, and

$$\#E_1(\mathbb{F}_{11}) = 11, \qquad \#E_2(\mathbb{F}_{11}) = 6,$$

so the congruence says $\mathcal{L}(E_1, \chi) \equiv \mathcal{L}(E_2, \chi) \mod (1 - \zeta_5)$. However

$$\mathcal{L}(E_1,\chi) = -\zeta_5^2, \qquad \mathcal{L}(E_2,\chi) = -\zeta_5^3.$$

In certain cases, the congruence can be interpreted as an equality.

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} .

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for Eover \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \neq 0 \mod q$.

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for Eover \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \not\equiv 0 \mod q$.

Theorem (Dokchitser-Evans-Wiersema)

 $\mathcal{L}(E,\chi) = \overline{\chi}(N) \cdot \ell \text{ for some } \ell \in \mathbb{Z}[\zeta_q + \overline{\zeta_q}],$

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for E over \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \not\equiv 0 \mod q$.

Theorem (Dokchitser-Evans-Wiersema)

 $\mathcal{L}(E,\chi) = \overline{\chi}(N) \cdot \ell$ for some $\ell \in \mathbb{Z}[\zeta_q + \overline{\zeta_q}]$, has norm $\pm \mathcal{B}(E,\chi)$, where

$$\mathcal{B}(E,\chi) := \frac{\operatorname{Tam}(E/K) \cdot \#\operatorname{III}(E/K) \cdot \#\operatorname{tor}(E/K)^{-2}}{\operatorname{Tam}(E/\mathbb{Q}) \cdot \#\operatorname{III}(E/\mathbb{Q}) \cdot \#\operatorname{tor}(E/\mathbb{Q})^{-2}} \in \mathbb{Z},$$

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for E over \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \not\equiv 0 \mod q$.

Theorem (Dokchitser-Evans-Wiersema)

 $\mathcal{L}(E,\chi) = \overline{\chi}(N) \cdot \ell$ for some $\ell \in \mathbb{Z}[\zeta_q + \overline{\zeta_q}]$, has norm $\pm \mathcal{B}(E,\chi)$, where

$$\mathcal{B}(E,\chi) := \frac{\operatorname{Tam}(E/K) \cdot \#\operatorname{III}(E/K) \cdot \#\operatorname{tor}(E/K)^{-2}}{\operatorname{Tam}(E/\mathbb{Q}) \cdot \#\operatorname{III}(E/\mathbb{Q}) \cdot \#\operatorname{tor}(E/\mathbb{Q})^{-2}} \in \mathbb{Z},$$

and generates an ideal of $\mathbb{Z}[\zeta_q]$ invariant under complex conjugation.

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for E over \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \neq 0 \mod q$.

Theorem (Dokchitser-Evans-Wiersema)

 $\mathcal{L}(E,\chi) = \overline{\chi}(N) \cdot \ell$ for some $\ell \in \mathbb{Z}[\zeta_q + \overline{\zeta_q}]$, has norm $\pm \mathcal{B}(E,\chi)$, where

$$\mathcal{B}(E,\chi) := \frac{\operatorname{Tam}(E/K) \cdot \# \operatorname{III}(E/K) \cdot \# \operatorname{tor}(E/K)^{-2}}{\operatorname{Tam}(E/\mathbb{Q}) \cdot \# \operatorname{III}(E/\mathbb{Q}) \cdot \# \operatorname{tor}(E/\mathbb{Q})^{-2}} \in \mathbb{Z},$$

and generates an ideal of $\mathbb{Z}[\zeta_q]$ invariant under complex conjugation.

Corollary

If $\mathcal{B}(\mathsf{E},\chi)=1$, then $\ell\in\mathbb{Z}[\zeta_q+\overline{\zeta_q}]^{ imes}$, and

 $\ell \equiv -\mathcal{L}(E) \cdot \# E(\mathbb{F}_p) \mod (2 - (\zeta_q + \overline{\zeta_q})).$

4 ロ ト 4 日 ト 4 王 ト 4 王 ト 王 の Q (や 55 / 90

Let $K \subseteq \mathbb{Q}(\zeta_p)$ be the subfield of degree q where χ factors through K/\mathbb{Q} . Assume further that the Birch–Swinnerton-Dyer conjecture holds for E over \mathbb{Q} and over K, and that $c_0(E) = 1$ and $\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \not\equiv 0 \mod q$.

Theorem (Dokchitser-Evans-Wiersema)

 $\mathcal{L}(E,\chi) = \overline{\chi}(N) \cdot \ell$ for some $\ell \in \mathbb{Z}[\zeta_q + \overline{\zeta_q}]$, has norm $\pm \mathcal{B}(E,\chi)$, where

$$\mathcal{B}(E,\chi) := \frac{\operatorname{Tam}(E/K) \cdot \# \operatorname{III}(E/K) \cdot \# \operatorname{tor}(E/K)^{-2}}{\operatorname{Tam}(E/\mathbb{Q}) \cdot \# \operatorname{III}(E/\mathbb{Q}) \cdot \# \operatorname{tor}(E/\mathbb{Q})^{-2}} \in \mathbb{Z},$$

and generates an ideal of $\mathbb{Z}[\zeta_q]$ invariant under complex conjugation.

Corollary

If $\mathcal{B}(\mathsf{E},\chi)=1$, then $\ell\in\mathbb{Z}[\zeta_q+\overline{\zeta_q}]^{ imes}$, and

$$\ell \equiv -\mathcal{L}(E) \cdot \#E(\mathbb{F}_p) \mod (2 - (\zeta_q + \overline{\zeta_q})).$$

If q = 3, the congruence determines ℓ exactly.

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

In general, the ideal generated by $\mathcal{L}(E, \chi)$ has finitely many possibilities.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$.

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$. Then $\mathcal{B}(E_i, \chi) = 11^2$, so $\mathcal{L}(E_i, \chi)$ generate ideals of norm 11^2 that are invariant under complex conjugation.

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

Example (Dokchitser–Evans–Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$. Then $\mathcal{B}(E_i, \chi) = 11^2$, so $\mathcal{L}(E_i, \chi)$ generate ideals of norm 11^2 that are invariant under complex conjugation. There are only two such ideals, generated by

$$\ell_1 := 3\zeta_5^3 + \zeta_5^2 + 3\zeta_5, \qquad \ell_2 := \zeta_5^3 + 3\zeta_5 + 3.$$

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

Example (Dokchitser-Evans-Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$. Then $\mathcal{B}(E_i, \chi) = 11^2$, so $\mathcal{L}(E_i, \chi)$ generate ideals of norm 11^2 that are invariant under complex conjugation. There are only two such ideals, generated by

$$\ell_1 := 3\zeta_5^3 + \zeta_5^2 + 3\zeta_5, \qquad \ell_2 := \zeta_5^3 + 3\zeta_5 + 3.$$

In fact, $(\mathcal{L}(E_i, \chi)) = (\ell_i)$ by Burns–Castillo.

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

Example (Dokchitser-Evans-Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$. Then $\mathcal{B}(E_i, \chi) = 11^2$, so $\mathcal{L}(E_i, \chi)$ generate ideals of norm 11^2 that are invariant under complex conjugation. There are only two such ideals, generated by

$$\ell_1 := 3\zeta_5^3 + \zeta_5^2 + 3\zeta_5, \qquad \ell_2 := \zeta_5^3 + 3\zeta_5 + 3.$$

In fact, $(\mathcal{L}(E_i, \chi)) = (\ell_i)$ by Burns–Castillo. Furthermore $\mathcal{L}(E_i) = 1$, $\#E_1(\mathbb{F}_{31}) = 33$, and $\#E_2(\mathbb{F}_{31}) = 23$, so the congruence says

$$\begin{aligned} \mathcal{L}(E_1,\chi) &= u_1 \cdot \ell_1, & u_1 \cdot (3+1+3) \equiv -33 \mod (1-\zeta_5), \\ \mathcal{L}(E_2,\chi) &= u_2 \cdot \ell_2, & u_2 \cdot (1+3+3) \equiv -23 \mod (1-\zeta_5). \end{aligned}$$

In

In general, the ideal generated by $\mathcal{L}(E,\chi)$ has finitely many possibilities.

Example (Dokchitser-Evans-Wiersema)

Let E_1 and E_2 be given by 291d1 and 139a1, and let χ be the quintic character of conductor 31 given by $\chi(3) = \zeta_5^3$. Then $\mathcal{B}(E_i, \chi) = 11^2$, so $\mathcal{L}(E_i, \chi)$ generate ideals of norm 11^2 that are invariant under complex conjugation. There are only two such ideals, generated by

$$\ell_1 := 3\zeta_5^3 + \zeta_5^2 + 3\zeta_5, \qquad \ell_2 := \zeta_5^3 + 3\zeta_5 + 3.$$

In fact, $(\mathcal{L}(E_i, \chi)) = (\ell_i)$ by Burns–Castillo. Furthermore $\mathcal{L}(E_i) = 1$, $\#E_1(\mathbb{F}_{31}) = 33$, and $\#E_2(\mathbb{F}_{31}) = 23$, so the congruence says

$$\begin{aligned} \mathcal{L}(E_1,\chi) &= u_1 \cdot \ell_1, \qquad u_1 \cdot (3+1+3) \equiv -33 \mod (1-\zeta_5), \\ \mathcal{L}(E_2,\chi) &= u_2 \cdot \ell_2, \qquad u_2 \cdot (1+3+3) \equiv -23 \mod (1-\zeta_5). \\ \text{fact, } u_1 &= \zeta_5^4 \text{ and } u_2 &= \zeta_5^2 - \zeta_5 + 1. \end{aligned}$$

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

The congruence says $\mathcal{L}(E,\chi)$ varies according to $\#E(\mathbb{F}_p)$ modulo q.

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

The congruence says $\mathcal{L}(E,\chi)$ varies according to $\#E(\mathbb{F}_p)$ modulo q.

On the other hand, by considering $\rho_{E,q}(\phi_p) \in \operatorname{GL}_2(\mathbb{Z}_q)$,

$$#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\phi_p)) - \operatorname{tr}(\rho_{E,q}(\phi_p)).$$

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

The congruence says $\mathcal{L}(E,\chi)$ varies according to $\#E(\mathbb{F}_p)$ modulo q.

On the other hand, by considering $\rho_{E,q}(\phi_p) \in \operatorname{GL}_2(\mathbb{Z}_q)$,

$$#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\phi_p)) - \operatorname{tr}(\rho_{E,q}(\phi_p)).$$

As $p \equiv 1 \mod q$ varies, $\rho_{E,q}(\phi_p)$ varies over the group

$$G_{E,q^{\infty}} := \{ M \in \operatorname{im}(\rho_{E,q}) \mid \operatorname{det}(M) \equiv 1 \mod q \}.$$

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

The congruence says $\mathcal{L}(E,\chi)$ varies according to $\#E(\mathbb{F}_p)$ modulo q.

On the other hand, by considering $\rho_{E,q}(\phi_{p}) \in \operatorname{GL}_{2}(\mathbb{Z}_{q})$,

$$#E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\phi_p)) - \operatorname{tr}(\rho_{E,q}(\phi_p)).$$

As $p \equiv 1 \mod q$ varies, $\rho_{E,q}(\phi_p)$ varies over the group

$$G_{E,q^{\infty}} := \{ M \in \operatorname{im}(\rho_{E,q}) \mid \operatorname{det}(M) \equiv 1 \mod q \}.$$

By Chebotarev, $\rho_{E,q}(\phi_p)$ is asymptotically distributed uniformly in $G_{E,q^{\infty}}$.

Fix *E* and *q*. As *p* varies, how does $\mathcal{L}(E, \chi)$ modulo $(1 - \zeta_q)$ vary?

The congruence says $\mathcal{L}(E,\chi)$ varies according to $\#E(\mathbb{F}_p)$ modulo q.

On the other hand, by considering $\rho_{E,q}(\phi_{p}) \in \operatorname{GL}_{2}(\mathbb{Z}_{q})$,

$$\# E(\mathbb{F}_p) = 1 + \det(\rho_{E,q}(\phi_p)) - \operatorname{tr}(\rho_{E,q}(\phi_p)).$$

As $p \equiv 1 \mod q$ varies, $\rho_{E,q}(\phi_p)$ varies over the group

$$G_{E,q^{\infty}} := \{ M \in \operatorname{im}(\rho_{E,q}) \mid \operatorname{det}(M) \equiv 1 \mod q \}.$$

By Chebotarev, $\rho_{E,q}(\phi_p)$ is asymptotically distributed uniformly in $G_{E,q^{\infty}}$.

Thus the asymptotic density of $\#E(\mathbb{F}_p) \equiv \ell \mod q$ is the asymptotic density of matrices $M \in G_{E,q^{\infty}}$ with $1 + \det(M) - \operatorname{tr}(M) \equiv \ell \mod q$.

Maximal Galois image

For most *E*, suffices to consider $\overline{\rho_{E,q}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q])$ and

$$G_{E,q} := \{ M \in \operatorname{im}(\overline{\rho_{E,q}}) \mid \operatorname{det}(M) = 1 \}.$$

Maximal Galois image

For most *E*, suffices to consider $\overline{\rho_{E,q}}$: $\mathcal{G}_{\mathbb{Q}} \to \operatorname{Aut}(E[q])$ and

$$G_{E,q} := \{ M \in \operatorname{im}(\overline{\rho_{E,q}}) \mid \operatorname{det}(M) = 1 \}.$$

Example

Let *E* be given by 11a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{5} \equiv -1 \mod 3$, so

$$\mathcal{L}(E,\chi) \equiv \#E(\mathbb{F}_p) \equiv 2 - \operatorname{tr}(\overline{\rho_{E,3}}(\phi_p)) \mod (1-\zeta_3).$$

Maximal Galois image

For most *E*, suffices to consider $\overline{\rho_{E,q}}$: $\mathcal{G}_{\mathbb{Q}} o \operatorname{Aut}(E[q])$ and

$$G_{E,q} := \{ M \in \operatorname{im}(\overline{\rho_{E,q}}) \mid \operatorname{det}(M) = 1 \}.$$

Example

Let *E* be given by 11a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{5} \equiv -1 \mod 3$, so

$$\mathcal{L}(\mathcal{E},\chi) \equiv \#\mathcal{E}(\mathbb{F}_{
ho}) \equiv 2 - \operatorname{tr}(\overline{
ho_{\mathcal{E},3}}(\phi_{
ho})) \mod (1-\zeta_3).$$

Now $\overline{\rho_{E,3}}$ is surjective, so $G_{E,3} = SL_2(\mathbb{F}_3)$.
Maximal Galois image

For most *E*, suffices to consider $\overline{\rho_{E,q}}$: $\mathcal{G}_{\mathbb{Q}} \to \operatorname{Aut}(E[q])$ and

$$G_{E,q} := \{ M \in \operatorname{im}(\overline{\rho_{E,q}}) \mid \operatorname{det}(M) = 1 \}.$$

Example

Let *E* be given by 11a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{5} \equiv -1 \mod 3$, so

$$\mathcal{L}(\mathcal{E},\chi) \equiv \#\mathcal{E}(\mathbb{F}_{p}) \equiv 2 - \operatorname{tr}(\overline{\rho_{\mathcal{E},3}}(\phi_{p})) \mod (1-\zeta_{3}).$$

Now $\overline{\rho_{E,3}}$ is surjective, so $G_{E,3} = \operatorname{SL}_2(\mathbb{F}_3)$. This consists of: $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$ $\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 1 \end{pmatrix}$

イロト 不得 トイヨト イヨト ニヨー

Maximal Galois image

For most *E*, suffices to consider $\overline{\rho_{E,q}}$: $\mathcal{G}_{\mathbb{Q}} \to \operatorname{Aut}(E[q])$ and

$$G_{E,q} := \{ M \in \operatorname{im}(\overline{\rho_{E,q}}) \mid \operatorname{det}(M) = 1 \}.$$

Example

Let E be given by 11a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{5} \equiv -1 \mod 3$, so

$$\mathcal{L}(\mathcal{E},\chi) \equiv \#\mathcal{E}(\mathbb{F}_{p}) \equiv 2 - \operatorname{tr}(\overline{\rho_{\mathcal{E},3}}(\phi_{p})) \mod (1-\zeta_{3}).$$

Now $\overline{\rho_{E,3}}$ is surjective, so $G_{E,3} = SL_2(\mathbb{F}_3)$. This consists of:

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 2 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 0 & 2 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 2 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 2 & 2 \\ 2 & 2 \end{pmatrix}$$

Thus $\mathcal{L}(E,\chi) \equiv 0,1,2 \mod (1-\zeta_3)$ with densities $\frac{9}{24}$, $\frac{9}{24}$, $\frac{6}{24}$.

For other *E*, need to consider $\overline{\rho_{E,q^n}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q^n])$ and

$$G_{E,q^n} := \{ M \in \operatorname{im}(\overline{\rho_{E,q^n}}) \mid \operatorname{det}(M) \equiv 1 \mod q \}.$$

For other *E*, need to consider $\overline{\rho_{E,q^n}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q^n])$ and

$$G_{E,q^n} := \{ M \in \operatorname{im}(\overline{\rho_{E,q^n}}) \mid \operatorname{det}(M) \equiv 1 \mod q \}.$$

Example

Let *E* be given by 14a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so

$$\mathcal{L}(E,\chi) \equiv -\frac{1}{6} \cdot \#E(\mathbb{F}_p) \mod (1-\zeta_3).$$

For other E, need to consider $\overline{\rho_{E,q^n}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q^n])$ and

$$G_{E,q^n} := \{M \in \operatorname{im}(\overline{\rho_{E,q^n}}) \mid \det(M) \equiv 1 \mod q\}.$$

Example

Let *E* be given by 14a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so

$$\mathcal{L}(E,\chi) \equiv -rac{1}{6} \cdot \#E(\mathbb{F}_p) \mod (1-\zeta_3).$$

In other words, $\mathcal{L}(E,\chi)\equiv\ell\mod(1-\zeta_3)$ precisely if

$$1 + \det(\overline{\rho_{E,9}}(\phi_p)) - \operatorname{tr}(\overline{\rho_{E,9}}(\phi_p)) \equiv -6\ell \mod 9.$$

For other E, need to consider $\overline{\rho_{E,q^n}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q^n])$ and

$$G_{E,q^n} := \{ M \in \operatorname{im}(\overline{\rho_{E,q^n}}) \mid \det(M) \equiv 1 \mod q \}.$$

Example

Let *E* be given by 14a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so

$$\mathcal{L}(E,\chi) \equiv -rac{1}{6} \cdot \#E(\mathbb{F}_p) \mod (1-\zeta_3).$$

In other words, $\mathcal{L}(E,\chi)\equiv\ell\mod(1-\zeta_3)$ precisely if

$$1 + \det(\overline{
ho_{E,9}}(\phi_{
ho})) - \operatorname{tr}(\overline{
ho_{E,9}}(\phi_{
ho})) \equiv -6\ell \mod 9.$$

However, $1 + \det(M) - \operatorname{tr}(M) \equiv 0 \mod 9$ for all matrices M in

$$G_{E,9} = \{ M \in \operatorname{GL}_2(\mathbb{Z}/9\mathbb{Z}) \mid M \equiv 1 \mod 3 \}.$$

For other E, need to consider $\overline{\rho_{E,q^n}}$: $G_{\mathbb{Q}} \to \operatorname{Aut}(E[q^n])$ and

$$G_{E,q^n} := \{ M \in \operatorname{im}(\overline{\rho_{E,q^n}}) \mid \det(M) \equiv 1 \mod q \}.$$

Example

Let *E* be given by 14a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so

$$\mathcal{L}(E,\chi) \equiv -rac{1}{6} \cdot \#E(\mathbb{F}_p) \mod (1-\zeta_3).$$

In other words, $\mathcal{L}(E,\chi)\equiv\ell\mod(1-\zeta_3)$ precisely if

$$1+ \det(\overline{
ho_{{\sf E},9}}(\phi_{{
ho}})) - \operatorname{tr}(\overline{
ho_{{\sf E},9}}(\phi_{{
ho}})) \equiv -6\ell \mod 9.$$

However, $1 + \det(M) - \operatorname{tr}(M) \equiv 0 \mod 9$ for all matrices M in

$$G_{E,9} = \{ M \in \operatorname{GL}_2(\mathbb{Z}/9\mathbb{Z}) \mid M \equiv 1 \mod 3 \}.$$

Thus $\mathcal{L}(E,\chi) \equiv 0, 1, 2 \mod (1-\zeta_3)$ with densities 1, 0, 0.

For some *E*, the density of $\#E(\mathbb{F}_p)$ might be visible in G_{E,q^n} .

For some *E*, the density of $\#E(\mathbb{F}_p)$ might be visible in G_{E,q^n} .

Example

Let *E* be given by 20a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so similarly

$$1 + \det(\overline{\rho_{E,9}}(\phi_p)) - \operatorname{tr}(\overline{\rho_{E,9}}(\phi_p)) \equiv -6\ell \mod 9$$

precisely if $\mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_3)$.

For some *E*, the density of $#E(\mathbb{F}_p)$ might be visible in G_{E,q^n} . Example

Let *E* be given by 20a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so similarly

$$1 + \det(\overline{\rho_{E,9}}(\phi_p)) - \operatorname{tr}(\overline{\rho_{E,9}}(\phi_p)) \equiv -6\ell \mod 9$$

precisely if $\mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_3)$. Now

$$\mathcal{G}_{E,9} = \left\{ M \in \mathrm{GL}_2(\mathbb{Z}/9\mathbb{Z}) \ \middle| \ M \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 3
ight\}.$$

For some *E*, the density of $\#E(\mathbb{F}_p)$ might be visible in G_{E,q^n} . Example

Let *E* be given by 20a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so similarly

$$1 + \det(\overline{
ho_{E,9}}(\phi_{
ho})) - \operatorname{tr}(\overline{
ho_{E,9}}(\phi_{
ho})) \equiv -6\ell \mod 9$$

precisely if $\mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_3)$. Now

$$\mathcal{G}_{E,9} = \left\{ M \in \mathrm{GL}_2(\mathbb{Z}/9\mathbb{Z}) \ \middle| \ M \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 3
ight\}.$$

There are 135, 54, 54 matrices $M \in G_{E,9}$ such that

$$1 + \det(M) - \operatorname{tr}(M) \equiv -6(0), -6(1), -6(2) \mod 9.$$

For some *E*, the density of $\#E(\mathbb{F}_p)$ might be visible in G_{E,q^n} . Example

Let *E* be given by 20a1. Then $c_0(E) = 1$ and $\mathcal{L}(E) = \frac{1}{6}$, so similarly

$$1 + \det(\overline{
ho_{E,9}}(\phi_{
ho})) - \operatorname{tr}(\overline{
ho_{E,9}}(\phi_{
ho})) \equiv -6\ell \mod 9$$

precisely if $\mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_3)$. Now

$$G_{E,9} = \left\{ M \in \operatorname{GL}_2(\mathbb{Z}/9\mathbb{Z}) \ \middle| \ M \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \mod 3
ight\}.$$

There are 135, 54, 54 matrices $M \in G_{E,9}$ such that

$$1 + \det(M) - \operatorname{tr}(M) \equiv -6(0), -6(1), -6(2) \mod 9.$$

Thus $\mathcal{L}(E,\chi) \equiv 0,1,2 \mod (1-\zeta_3)$ with densities $\frac{135}{243}$, $\frac{54}{243}$, $\frac{54}{243}$.

Define the natural density

$$\delta_{E,q}(\ell) := \lim_{n \to \infty} \frac{\#\{p \in P_n \mid c_0(E) \cdot \mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_q)\}}{\#P_n},$$

where P_n is the set of primes $p \equiv 1 \mod q$ less than n.

Define the natural density

$$\delta_{E,q}(\ell) := \lim_{n \to \infty} \frac{\#\{p \in P_n \mid c_0(E) \cdot \mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_q)\}}{\#P_n},$$

where P_n is the set of primes $p \equiv 1 \mod q$ less than n.

Theorem (A.) Let $c := (c_0(E) \cdot \mathcal{L}(E))^{-1}$, and let $n := \nu_q(c) + 1$.

Define the natural density

$$\delta_{E,q}(\ell) := \lim_{n \to \infty} \frac{\#\{p \in P_n \mid c_0(E) \cdot \mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_q)\}}{\#P_n},$$

where P_n is the set of primes $p \equiv 1 \mod q$ less than n.

Theorem (A.) Let $c := (c_0(E) \cdot \mathcal{L}(E))^{-1}$, and let $n := \nu_q(c) + 1$. If $n \le 0$, then $\delta_{E,q}(0) = 1$.

Define the natural density

$$\delta_{E,q}(\ell) := \lim_{n \to \infty} \frac{\#\{p \in P_n \mid c_0(E) \cdot \mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_q)\}}{\#P_n},$$

where P_n is the set of primes $p \equiv 1 \mod q$ less than n.

Theorem (A.) Let $c := (c_0(E) \cdot \mathcal{L}(E))^{-1}$, and let $n := \nu_q(c) + 1$. If $n \le 0$, then $\delta_{E,q}(0) = 1$. Otherwise, c is well-defined and non-zero modulo q^n , and

$$\delta_{E,q}(\ell) = \frac{\#\{M \in \mathcal{G}_{E,q^n} \mid 1 + \det(M) - \operatorname{tr}(M) \equiv -c\ell \mod q^n\}}{\#\mathcal{G}_{E,q^n}}.$$

Define the **natural density**

$$\delta_{E,q}(\ell) := \lim_{n \to \infty} \frac{\#\{p \in P_n \mid c_0(E) \cdot \mathcal{L}(E,\chi) \equiv \ell \mod (1-\zeta_q)\}}{\#P_n},$$

where P_n is the set of primes $p \equiv 1 \mod q$ less than n.

Theorem (A.) Let $c := (c_0(E) \cdot \mathcal{L}(E))^{-1}$, and let $n := \nu_a(c) + 1$. If $n \le 0$, then $\delta_{E,q}(0) = 1$. Otherwise, c is well-defined and non-zero modulo q^n , and б

$$\mathfrak{H}_{E,q}(\ell) = rac{\#\{M \in \mathcal{G}_{E,q^n} \mid 1 + \det(M) - \operatorname{tr}(M) \equiv -c\ell \mod q^n\}}{\#\mathcal{G}_{E,q^n}}.$$

In particular, if $\overline{\rho_{E,q}}$ is surjective, then n = 1, and

$$\delta_{E,q}(\ell) = \begin{cases} \frac{1}{q-1} & 1 \\ \frac{q}{q^2-1} & \text{if} & 0 \\ \frac{1}{q+1} & -1 \end{cases} = \left(\frac{c\ell}{q}\right) \left(\frac{c\ell+4}{q}\right).$$

イロト 不得 トイヨト イヨト 三日

Paper is in preparation.

- Stated congruence for non-trivial even Dirichlet characters of arbitrary conductor and order, but with an error term of periods.
- Classified natural densities for cubic characters, thanks to classification of 3-adic images by Rouse–Sutherland–Zureick-Brown.
- Explained some distributions for cubic characters in Kisilevsky–Nam, where the normalisation of $\mathcal{L}(E, \chi)$ depends crucially on $\chi(N)$.

Thank you!