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Overview

Notation:

▶ N is an integer

▶ p and q are odd primes such that p ∤ N (and p ≡ 1 mod q)

▶ E is an elliptic curve over Q of conductor N (with analytic rank zero)

▶ χ is a Dirichlet character of conductor p and order q

Outline:

▶ Twisted L-values

▶ Modular symbols

▶ Arithmetic consequences

▶ Asymptotic distribution

2 / 90



Overview

Notation:

▶ N is an integer

▶ p and q are odd primes such that p ∤ N (and p ≡ 1 mod q)

▶ E is an elliptic curve over Q of conductor N (with analytic rank zero)

▶ χ is a Dirichlet character of conductor p and order q

Outline:

▶ Twisted L-values

▶ Modular symbols

▶ Arithmetic consequences

▶ Asymptotic distribution

3 / 90



The L-function of E

Recall that the L-function of E is given by

L(E , s) :=
∏
p

1

det(1− p−s · ϕp | ρIpE ,ℓ)
,

where ϕp ∈ GQ is an arithmetic Frobenius and ρE ,ℓ : GQ → Aut(Tℓ(E ))
is the representation of the ℓ-adic Tate module Tℓ(E ) for some ℓ ̸= p.

Conjecture (Birch–Swinnerton-Dyer)
The order of vanishing of L(E , s) at s = 1 is rk(E ), and

lim
s→1

L(E , s)

(s − 1)rk(E)
· 1

Ω(E )
=

Reg(E ) · Tam(E ) ·#X(E )

#tor(E )2
.

When rk(E ) = 0, the LHS is the algebraic L-value of E , given by

L(E ) := L(E , 1) · 1

Ω(E )
.
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The L-function of E/K

Let K/Q be finite Galois. The L-function of E/K is given by

L(E/K , s) :=
∏
p

1

det(1−Nm(p)−s · ϕp | ρIpE/K ,l)
.

Conjecture (Birch–Swinnerton-Dyer)
The order of vanishing of L(E/K , s) at s = 1 is rk(E/K ), and

lim
s→1

L(E/K , s)

(s − 1)rk(E/K)
·
√

∆(K )

Ω(E/K )
=

Reg(E/K ) · Tam(E/K ) ·#X(E/K )

#tor(E/K )2
.

On the other hand, Artin formalism gives a factorisation

L(E/K , s) =
∏

ρ:Gal(K/Q)→C×

L(E , ρ, s)dim(ρ).
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Twisted L-functions of E

Let K = Q(ζp). Then{
Artin representations
Gal(K/Q) → C×

}
↭

{
Dirichlet characters
(Z/pZ)× → C×

}
.

The L-function of E twisted by χ is given by

L(E , χ, s) :=
∏
p

1

det(1− p−s · ϕp | (ρE ,ℓ ⊗ ρχ)Ip )
.

More concretely,

L(E , s) =
∑
n∈N

an
ns

χ
⇝ L(E , χ, s) =

∑
n∈N

anχ(n)

ns
.

Conjecture (Deligne–Gross)
The order of vanishing of L(E , χ, s) at s = 1 is ⟨χ,E (K )C⟩.
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A twisted BSD-type formula

Is there a conjectural leading term?

When rk(E ) = 0, the algebraic L-value of E twisted by χ is given by

L(E , χ) := L(E , χ, 1) · p

τ(χ) · Ω(E )
,

where τ(χ) is the Gauss sum of χ.

Example (Dokchitser–Evans–Wiersema)
Let E1 and E2 be given by 307a1 and 307c1, and let χ be the quintic
character of conductor 11 given by χ(2) = ζ5. Then ∆(Ei ) = −307, and

Reg(Ei/K ) = Tam(Ei/K ) = X(Ei/K ) = tor(Ei/K ) = 1,

for all K ⊆ Q(ζ11)
+. However

L(E1, χ) = 1, L(E2, χ) = ζ5(ζ5 + ζ25 + ζ35 )
2.
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Varying the character

Fix E and q. As p varies, how does L(E , χ) vary?

Example
Let E be given by 67a1, and let q = 3.

p 7 13 19 31 37 43 61 73 79
L(E , χ) 2ζ3 3ζ3 -ζ3 -27ζ3 3ζ3 -4ζ3 -ζ3 -3ζ3 8

ζ3 7→ 1 2 3 -1 -27 3 -4 -1 -3 8
#E (Fp) 10 12 13 42 39 46 64 81 88
sum 12 15 12 15 42 42 63 78 96

p 97 103 109 127 139 151 157 163
L(E , χ) -17 3ζ3 -90ζ3 74ζ3 23ζ3 -2 16 -43ζ3

ζ3 7→ 1 -17 3 -90 74 23 -2 16 -43
#E (Fp) 98 120 108 121 118 149 149 145
sum 81 123 18 195 141 147 165 102
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The modularity theorem

Write L-values of E as L-values of modular forms.

Recall that the Hecke L-function of a cusp form f ∈ Sk(Γ) is given by

L(f , s) := − (−z)s−1

Γ(s)

∫ ∞

0

(2πi)s f (z)dz .

Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven)
There is a finite surjective morphism ϕE : X0(N) → E defined over Q,
and a cuspidal eigenform fE ∈ S2(Γ0(N)), such that

▶ the Hecke operator Tp has eigenvalue ap(E ),

▶ the Hecke L-function of fE is L(E , s), and

▶ the pullback of ωE under ϕE is a positive multiple of 2πifE (z)dz.

This positive multiple is called the Manin constant c0(E ) of E .
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Classical modular symbols

A modular symbol is a path {x , y} ∈ H/Γ, whose period is

µf (x , y) :=

∫ y

x

2πif (z)dz ,

so that µf (0,∞) = −L(f , 1).

For any x ∈ Q,

µf (0, x + Z) = µf (0, x), µf (0,−x) = µf (0, x).

In particular, for any x ∈ Q,

µf (0, x) + µf (0, 1− x) = 2ℜ(µf (0, x)).

Lemma (Manin)

2ℜ(µfE (0, x))

Ω(E )
∈ 1

c0(E )
Z.
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L-values as periods

The Hecke operator Tp acts on the space of modular symbols such that

−L(E , 1) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p ).

Dividing by Ω(E ) gives

−L(E ) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p )

Ω(E )
.

Combining the n-th and (p − n)-th terms gives

−L(E ) ·#E (Fp) =

p−1
2∑

n=1

2ℜ(µfE (0,
n
p ))

Ω(E )
.

Multiplying by c0(E ) gives an equality in Z.

33 / 90



L-values as periods

The Hecke operator Tp acts on the space of modular symbols such that

−L(E , 1) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p ).

Dividing by Ω(E ) gives

−L(E ) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p )

Ω(E )
.

Combining the n-th and (p − n)-th terms gives

−L(E ) ·#E (Fp) =

p−1
2∑

n=1

2ℜ(µfE (0,
n
p ))

Ω(E )
.

Multiplying by c0(E ) gives an equality in Z.

34 / 90



L-values as periods

The Hecke operator Tp acts on the space of modular symbols such that

−L(E , 1) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p ).

Dividing by Ω(E ) gives

−L(E ) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p )

Ω(E )
.

Combining the n-th and (p − n)-th terms gives

−L(E ) ·#E (Fp) =

p−1
2∑

n=1

2ℜ(µfE (0,
n
p ))

Ω(E )
.

Multiplying by c0(E ) gives an equality in Z.

35 / 90



L-values as periods

The Hecke operator Tp acts on the space of modular symbols such that

−L(E , 1) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p ).

Dividing by Ω(E ) gives

−L(E ) ·#E (Fp) =

p−1∑
n=1

µfE (0,
n
p )

Ω(E )
.

Combining the n-th and (p − n)-th terms gives

−L(E ) ·#E (Fp) =

p−1
2∑

n=1

2ℜ(µfE (0,
n
p ))

Ω(E )
.

Multiplying by c0(E ) gives an equality in Z.

36 / 90



Twisted L-values as periods

Applying the Mellin transform to the Dirichlet series of fE ⊗ χ yields

L(E , χ, 1) · p

τ(χ)
=

p−1∑
n=1

χ(n)µfE (0,
n
p ).

A similar rearrangement gives

L(E , χ) =

p−1
2∑

n=1

χ(n)
2ℜ(µfE (0,

n
p ))

Ω(E )
.

Multiplying by c0(E ) gives an equality in Z[ζq].

Theorem (Manin)

−c0(E ) · L(E ) ·#E (Fp) ≡ c0(E ) · L(E , χ) mod (1− ζq).
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Revisiting the example

Example (Dokchitser–Evans–Wiersema)
Let E1 and E2 be given by 307a1 and 307c1, and let χ be the quintic
character of conductor 11 given by χ(2) = ζ5. Then ∆(Ei ) = −307, and

Reg(Ei/K ) = Tam(Ei/K ) = X(Ei/K ) = tor(Ei/K ) = 1,

for all K ⊆ Q(ζ11)
+. However

L(E1, χ) = 1, L(E2, χ) = ζ5(ζ5 + ζ25 + ζ35 )
2.

Now c0(Ei ) = L(Ei ) = 1, but

#E1(F11) = 9, #E2(F11) = 16,

so the congruence says L(E1, χ) ̸≡ L(E2, χ) mod (1− ζ5).

In fact, the congruence clarifies all 30 pairs of examples in the paper.
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Insufficiency of congruence

In general, the congruence only serves as a sanity check for the L-value.

Example
Let E1 and E2 be given by 182d1 and 460a1, and let χ be the quintic
character of conductor 11 given by χ(2) = ζ5. Then ∆(Ei ) < 0, and

Reg(Ei/K ) = Tam(Ei/K ) = X(Ei/K ) = tor(Ei/K ) = 1,

for all K ⊆ Q(ζ11)
+. Furthermore c0(Ei ) = L(Ei ) = 1, and

#E1(F11) = 11, #E2(F11) = 6,

so the congruence says L(E1, χ) ≡ L(E2, χ) mod (1− ζ5). However

L(E1, χ) = −ζ25 , L(E2, χ) = −ζ35 .

In certain cases, the congruence can be interpreted as an equality.
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Congruence for units

Let K ⊆ Q(ζp) be the subfield of degree q where χ factors through K/Q.

Assume further that the Birch–Swinnerton-Dyer conjecture holds for E
over Q and over K , and that c0(E ) = 1 and L(E ) ·#E (Fp) ̸≡ 0 mod q.

Theorem (Dokchitser–Evans–Wiersema)
L(E , χ) = χ(N) · ℓ for some ℓ ∈ Z[ζq + ζq], has norm ±B(E , χ), where

B(E , χ) := Tam(E/K ) ·#X(E/K ) ·#tor(E/K )−2

Tam(E/Q) ·#X(E/Q) ·#tor(E/Q)−2
∈ Z,

and generates an ideal of Z[ζq] invariant under complex conjugation.

Corollary
If B(E , χ) = 1, then ℓ ∈ Z[ζq + ζq]

×, and

ℓ ≡ −L(E ) ·#E (Fp) mod (2− (ζq + ζq)).

If q = 3, the congruence determines ℓ exactly.
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Congruence for non-units

In general, the ideal generated by L(E , χ) has finitely many possibilities.

Example (Dokchitser–Evans–Wiersema)
Let E1 and E2 be given by 291d1 and 139a1, and let χ be the quintic
character of conductor 31 given by χ(3) = ζ35 . Then B(Ei , χ) = 112, so
L(Ei , χ) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

ℓ1 := 3ζ35 + ζ25 + 3ζ5, ℓ2 := ζ35 + 3ζ5 + 3.

In fact, (L(Ei , χ)) = (ℓi ) by Burns–Castillo. Furthermore L(Ei ) = 1,
#E1(F31) = 33, and #E2(F31) = 23, so the congruence says

L(E1, χ) = u1 · ℓ1, u1 · (3 + 1 + 3) ≡ −33 mod (1− ζ5),

L(E2, χ) = u2 · ℓ2, u2 · (1 + 3 + 3) ≡ −23 mod (1− ζ5).

In fact, u1 = ζ45 and u2 = ζ25 − ζ5 + 1.
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Asymptotic distribution

Fix E and q. As p varies, how does L(E , χ) modulo (1− ζq) vary?

The congruence says L(E , χ) varies according to #E (Fp) modulo q.

On the other hand, by considering ρE ,q(ϕp) ∈ GL2(Zq),

#E (Fp) = 1 + det(ρE ,q(ϕp))− tr(ρE ,q(ϕp)).

As p ≡ 1 mod q varies, ρE ,q(ϕp) varies over the group

GE ,q∞ := {M ∈ im(ρE ,q) | det(M) ≡ 1 mod q}.

By Chebotarev, ρE ,q(ϕp) is asymptotically distributed uniformly in GE ,q∞ .

Thus the asymptotic density of #E (Fp) ≡ ℓ mod q is the asymptotic
density of matrices M ∈ GE ,q∞ with 1 + det(M)− tr(M) ≡ ℓ mod q.
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Asymptotic distribution
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Maximal Galois image

For most E , suffices to consider ρE ,q : GQ → Aut(E [q]) and

GE ,q := {M ∈ im(ρE ,q) | det(M) = 1}.

Example
Let E be given by 11a1. Then c0(E ) = 1 and L(E ) = 1

5 ≡ −1 mod 3, so

L(E , χ) ≡ #E (Fp) ≡ 2− tr(ρE ,3(ϕp)) mod (1− ζ3).

Now ρE ,3 is surjective, so GE ,3 = SL2(F3). This consists of:(
1 0
0 1

) (
0 2
1 2

) (
1 2
0 1

) (
2 2
1 0

) (
0 1
2 2

) (
1 0
2 1

) (
1 1
0 1

) (
1 0
1 1

) (
2 1
2 0

)
(
2 0
0 2

) (
0 2
1 1

) (
2 0
2 2

) (
0 1
2 1

) (
2 0
1 2

) (
2 1
0 2

) (
1 1
2 0

) (
1 2
1 0

) (
2 2
0 2

)
(
0 2
1 0

) (
0 1
2 0

) (
2 1
1 1

) (
1 1
1 2

) (
1 2
2 2

) (
2 2
2 1

)

Thus L(E , χ) ≡ 0, 1, 2 mod (1− ζ3) with densities 9
24 ,

9
24 ,

6
24 .
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Maximal Galois image

For most E , suffices to consider ρE ,q : GQ → Aut(E [q]) and

GE ,q := {M ∈ im(ρE ,q) | det(M) = 1}.
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Maximal Galois image
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Maximal Galois image

For most E , suffices to consider ρE ,q : GQ → Aut(E [q]) and

GE ,q := {M ∈ im(ρE ,q) | det(M) = 1}.
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Maximal Galois image

For most E , suffices to consider ρE ,q : GQ → Aut(E [q]) and

GE ,q := {M ∈ im(ρE ,q) | det(M) = 1}.
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Small Galois image

For other E , need to consider ρE ,qn : GQ → Aut(E [qn]) and

GE ,qn := {M ∈ im(ρE ,qn) | det(M) ≡ 1 mod q}.

Example
Let E be given by 14a1. Then c0(E ) = 1 and L(E ) = 1

6 , so

L(E , χ) ≡ − 1
6 ·#E (Fp) mod (1− ζ3).

In other words, L(E , χ) ≡ ℓ mod (1− ζ3) precisely if

1 + det(ρE ,9(ϕp))− tr(ρE ,9(ϕp)) ≡ −6ℓ mod 9.

However, 1 + det(M)− tr(M) ≡ 0 mod 9 for all matrices M in

GE ,9 = {M ∈ GL2(Z/9Z) | M ≡ 1 mod 3}.

Thus L(E , χ) ≡ 0, 1, 2 mod (1− ζ3) with densities 1, 0, 0.
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Large Galois image

For some E , the density of #E (Fp) might be visible in GE ,qn .

Example
Let E be given by 20a1. Then c0(E ) = 1 and L(E ) = 1

6 , so similarly

1 + det(ρE ,9(ϕp))− tr(ρE ,9(ϕp)) ≡ −6ℓ mod 9

precisely if L(E , χ) ≡ ℓ mod (1− ζ3). Now

GE ,9 =

{
M ∈ GL2(Z/9Z)

∣∣∣∣ M ≡
(
1 ∗
0 1

)
mod 3

}
.

There are 135, 54, 54 matrices M ∈ GE ,9 such that

1 + det(M)− tr(M) ≡ −6(0),−6(1),−6(2) mod 9.

Thus L(E , χ) ≡ 0, 1, 2 mod (1− ζ3) with densities 135
243 ,

54
243 ,

54
243 .
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Large Galois image
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Large Galois image
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The density theorem

Define the natural density

δE ,q(ℓ) := lim
n→∞

#{p ∈ Pn | c0(E ) · L(E , χ) ≡ ℓ mod (1− ζq)}
#Pn

,

where Pn is the set of primes p ≡ 1 mod q less than n.

Theorem (A.)
Let c := (c0(E ) · L(E ))−1, and let n := νq(c) + 1. If n ≤ 0, then
δE ,q(0) = 1. Otherwise, c is well-defined and non-zero modulo qn, and

δE ,q(ℓ) =
#{M ∈ GE ,qn | 1 + det(M)− tr(M) ≡ −cℓ mod qn}

#GE ,qn

.

In particular, if ρE ,q is surjective, then n = 1, and

δE ,q(ℓ) =


1

q−1 1
q

q2−1 if 0
1

q+1 −1

 =

(
cℓ

q

)(
cℓ+ 4

q

)
.
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The density theorem
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The density theorem

Define the natural density
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δE ,q(0) = 1. Otherwise, c is well-defined and non-zero modulo qn, and

δE ,q(ℓ) =
#{M ∈ GE ,qn | 1 + det(M)− tr(M) ≡ −cℓ mod qn}

#GE ,qn

.

In particular, if ρE ,q is surjective, then n = 1, and

δE ,q(ℓ) =


1

q−1 1
q

q2−1 if 0
1

q+1 −1

 =

(
cℓ

q

)(
cℓ+ 4

q

)
.
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Current status

Paper is in preparation.

▶ Stated congruence for non-trivial even Dirichlet characters of
arbitrary conductor and order, but with an error term of periods.

▶ Classified natural densities for cubic characters, thanks to
classification of 3-adic images by Rouse–Sutherland–Zureick-Brown.

▶ Explained some distributions for cubic characters in Kisilevsky–Nam,
where the normalisation of L(E , χ) depends crucially on χ(N).

Thank you!
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