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Overview

Notation:
» N is an integer
» p and g are odd primes such that pt N (and p=1 mod q)
> E is an elliptic curve over Q of conductor N (with analytic rank zero)

» v is a Dirichlet character of conductor p and order g

Outline:
» Twisted L-values
» Modular symbols
» Arithmetic consequences

» Asymptotic distribution
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The L-function of E

Recall that the L-function of E is given by

L(E,s)=]] !

b\’
p det(1—p==- ¢, | pg,)

where ¢, € Gg is an arithmetic Frobenius and pg ¢ : Gg — Aut(T¢(E)) is
the representation of the ¢-adic Tate module T;(E) for some ¢ # p.

Conjecture (Birch—Swinnerton-Dyer)
The order of vanishing of L(E,s) at s =1 is rk(E), and

! L(E,s) 1 Reg(E)-Tam(E) - #III(E)
S0 (s — 1)KE) " Q(E) #tor(E)? '

When rk(E) = 0, the LHS is the algebraic L-value of E, given by

L(E) = L(E,1)- ﬁ
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The L-function of E/K
Let K/Q be finite Galois. The L-function of E/K is given by

1
L(E/K,s) = :
1;[ det(1 — Nm(p)== - o, | PIEP/K,E)

Conjecture (Birch-Swinnerton-Dyer)
The order of vanishing of L(E/K,s) at s =1 isrk(E/K), and
L(E/K,>s) A(K)  Reg(E/K)-Tam(E/K) - #I1(E/K)

im (s — 1)XE/K) " Q(E/K) — #tor(E/K)? '

On the other hand, Artin formalism gives a factorisation

WEMK ) = I LEpsfm.
p:Gal(K/Q)—CX
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Twisted L-functions of E
Let K =Q((p). Then
Artin representations Dirichlet characters
{ Gal(K/Q) — C* } - { (Z/pZ)* — C* }
The L-function of E twisted by x is given by

1
- 1;[ det(1 —p=5-dp | (PEL @ py)e)

L(E,x,s):

More concretely,

Conjecture (Deligne—Gross)
The order of vanishing of L(E, x,s) ats =1 is (x, E(K)c).
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A twisted BSD-type formula

Is there a conjectural leading term?
When rk(E) = 0, the algebraic L-value of E twisted by x is given by

g(E,X) = L(E7X71) : W7

where 7(x) is the Gauss sum of .

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) = —307, and

Reg(E;/K) = Tam(E;/K) = III(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)™. However

X(ELX) = 17 j(E2ﬂX):<5(C5+C52+CS)2
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Varying the chara

cter

Fix E and g. As p varies, how does Z(E, x) vary?

Example

Let E be given by 67al, and let g = 3.

pl 7 13 19 31 37 43 61 73 79
Z(E;X) | 2¢s 3G —G —27¢s 3G —4G —G -3¢ 8
(31| 2 3 -1 27 3 -4 -1 -3 38
#E(F,) | 10 12 13 42 39 46 64 81 88
sum | 12 15 12 15 42 42 63 78 96
p| 97 103 109 127 139 151 157 163
Z(E,x) | —17 3¢z —90¢z 74(¢z 23(z —2 16 —43(s
G—1|-17 3 -9 74 23 -2 16 -43
#E(F,) | 98 120 108 121 118 149 149 145
sum | 81 123 18 195 141 147 165 102
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The modularity theorem

Write L-values of E as L-values of modular forms.

Recall that the Hecke L-function of a cusp form f € S, (I') is given by

L(f,s) = — (_rz():)_ /O " riyf(2)dz.

Theorem (Carayol, Eichler, Shimura, BCDT, Edixhoven)

There is a finite surjective morphism ¢g : Xo(N) — E defined over Q,
and a cuspidal eigenform fg € Sy(To(N)), such that

» the Hecke operator T, has eigenvalue a,(E),
» the Hecke L-function of fg is L(E,s), and
» the pullback of wg under ¢ is a positive multiple of 2mifg(z)dz.

This positive multiple is called the Manin constant ¢(E) of E.
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Classical modular symbols

A modular symbol is a path {x,y} € H/T', whose period is

y
we(x,y) ::/ 2mwif(z)dz,

so that pr(0,00) = —L(f,1). For any x € Q,

1r(0,x + Z) = pr(0, x), 1 (0, —x) = (0, x).

In particular, for any x € Q,

1 (0, x) + 126 (0,1 — x) = 2R(pr (0, x)).
Lemma (Manin)

M (0.5)) 1
Q) < B
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L-values as periods

The Hecke operator T, acts on the space of modular symbols such that

CUE) - #E(E,) = 3 (0, 2).
n=1

Dividing by Q(E) gives

Multiplying by co(E) gives an equality in Z.

10/21



Twisted L-values as periods

Applying the Mellin transform to the Dirichlet series of fg ® x yields

-1
L(E.x.1)- % S ()i 0 ).
n=1
A similar rearrangement gives
p—1
Z(E.x) = ix(n)mgz(;)n)-

Il
-

n

Multiplying by co(E) gives an equality in Z[(g].
Theorem (Manin)

—co(E) - Z(E) - #E(Fp) = co(E) - Z(E, x) mod (1 - ().
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Revisiting the example

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 307al and 307cl, and let x be the quintic
character of conductor 11 given by x(2) = (s. Then A(E;) = —307, and

Reg(E;/K) = Tam(E;/K) = II(E;/K) = tor(E;/K) = 1,
for all K C Q(¢11)™. However
L(ELx) =1 ZL(Exyx) =G+ +E)
Now c(E) = Z(E;) = 1, but
#E1(Fu1) =9,  #E(Fu1) = 16,

so the congruence says .Z(Ey, x) #Z Z(Ez, x) mod (1 — (5).

In fact, the congruence clarifies all 30 pairs of examples in the paper.
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Insufficiency of congruence
In general, the congruence only serves as a sanity check for the L-value.

Example
Let E; and E; be given by 182d1 and 460al, and let x be the quintic
character of conductor 11 given by x(2) = (5. Then A(E;) <0, and

Reg(E;/K) = Tam(E,/K) = LI(E;/K) = tor(£/K) = 1,
for all K C Q(¢11)™. Furthermore ¢o(E;) = Z(E;) =1, and
#E(F11) =11, #E(Fu) =6,
so the congruence says Z(E1, x) = Z(Ez, x) mod (1 — (5). However

g(E17X):_<§7 "g(E27X):_<§’

In certain cases, the congruence can be interpreted as an equality.
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Congruence for units

Let K C Q(¢p) be the subfield of degree g where x factors through K/Q.
Assume further that the Birch—Swinnerton-Dyer conjecture holds for E
over Q and over K, and that ¢o(E) =1 and Z(E)-#E(F,) #0 mod q.

Theorem (Dokchitser—Evans—Wiersema)
ZL(E,x) =X(N) - ¢ for some { € Z[Cq + (4], has norm £B(E, x), where

_ Tam(E/K) - #1(E/K) - #tor(E/K) 2 c7
- Tam(E/Q) - #11I(E/Q) - # tor(E/Q)=> ~

and generates an ideal of Z[(q] invariant under complex conjugation.

B(E, x)

Corollary
If B(E,x) =1, then { € Z[(y + (4%, and

(= —Z(E)-#E(F,) mod (2 (¢y+G)).

If g = 3, the congruence determines ¢ exactly.
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Congruence for non-units
In general, the ideal generated by .Z(E, x) has finitely many possibilities.

Example (Dokchitser—Evans—Wiersema)

Let E; and E; be given by 291d1 and 139al, and let x be the quintic
character of conductor 31 given by x(3) = (2. Then B(E;, x) = 112, so
Z(E;, x) generate ideals of norm 112 that are invariant under complex
conjugation. There are only two such ideals, generated by

=3¢ + & + 3G, by =2+ 3¢ + 3.

In fact, (Z(E;, x)) = (¢;) by Burns—Castillo. Furthermore Z(E;) = 1,
#E1(F31) = 33, and #Ex(F31) = 23, so the congruence says

ZL(Er, x) = - Ly, u-(34+143)=-33 mod (1—(s),

L(Ez, X) = up - €3, - (1+343)=-23 mod (1—¢s).

In fact, uy = (¢ and up = (2 — (5 + 1.
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Asymptotic distribution
Fix E and g. As p varies, how does .Z(E, x) modulo (1 — () vary?

The congruence says .Z(E, x) varies according to #E(F,) modulo g.
On the other hand, by considering pg q(¢p) € GL2(Zg),

#E(Fp) = 1+ det(pe q(9p)) — tr(pe,q(2p))-
As p=1 mod q varies, pg 4(¢p) varies over the group
Gg,go '={M €im(peq) : det(M) =1 mod q}.
By Chebotarev, pe (¢,) is asymptotically distributed uniformly in Gg geo.

Thus the asymptotic density of #E(F,) = ¢ mod q is the asymptotic
density of matrices M € Gg g with 1 + det(M) — tr(M) = ¢ mod gq.
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Maximal Galois image

For most E, suffices to consider pg 4 : Gg — Aut(E[q]) and

Ge g :={M € im(peq) : det(M) = 1}.

Example
Let E be given by 11al. Then ¢o(E) =1 and Z(E) = $ = -1 mod 3
so

Z(E, x) = #E(Fp) =2 - tr(pE3(¢p)) mod (1 —G).

Now p£3 is surjective, so Gg.3 = SLy(F3). This consists of:

GHEDEDEICDENEDEE )

CICDEICYEDEIE )G E 3
CIC)EDEYEED

Thus Z(E,x) =0,1,2 mod (1 — (3) with densities 5, =, 2
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Small Galois image
For other E, need to consider pg ¢ : Gg — Aut(E[¢"]) and

Ge g :={M € im(peq) : det(M) =1 mod q}.
Example
Let E be given by 14al. Then ¢(E) =1 and Z(E) = ¢, so

L(E,x)=-% #E(F,) mod (1 ().

In other words, Z(E,x) =¢ mod (1 — (3) precisely if

1+ det(pEs(6p)) — tr(pES(6p)) = 60 mod 0.
However, 1+ det(M) — tr(M) =0 mod 9 for all matrices M in

Geo = {M € GLy(Z/9Z): M =1 mod 3}.

Thus Z(E,x) =0,1,2 mod (1 — (3) with densities 1, 0, 0.
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Large Galois image
For some E, the density of #E(F,) might be visible in Gg gn.

Example
Let E be given by 20al. Then ¢o(E) =1 and Z(E) = ¢, so similarly

1 + det(pEo(0p)) — tr(pEo(9p)) = —6¢ mod 9
precisely if Z(E,x) =¢ mod (1 — (3). Now
GEg = {M S GLz(Z/QZ) <g.) 1> mod 3}
There are 135, 54, 54 matrices M € Gg g such that
1+ det(M) — tr(M) = —6(0), —6(1), —6(2) mod 9.

Thus Z(E,x) =0,1,2 mod (1 — (3) with densities 35, 2%, 3L
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The density theorem

Define the natural density

e qlt) = lim. #{peP,: o(E) .g(:bf) =( mod (1— gq)}’

where P, is the set of primes p =1 mod g less than n.
Theorem (A.)

Let ¢ := (co(E) - Z(E))~%, and let n:=vy(c) + 1. If n <0, then
d£,q(0) = 1. Otherwise, c is well-defined and non-zero modulo q", and

#{M € Gg g : 1 +det(M) —tr(M) = —c{ mod gq"}
5E7q(€) = #GE .
,q"

In particular, if pg q is surjective, then n =1, and

1
— 1
a1 . cl cl+4
0= 0= ()(557)
-1

20/21



Current status

Paper is in preparation.

» Stated congruence for non-trivial even Dirichlet characters of
arbitrary conductor and order, but with an error term of periods.

» Classified natural densities for cubic characters, thanks to
classification of 3-adic images by Rouse-Sutherland—Zureick-Brown.

» Explained some distributions for cubic characters in Kisilevsky—Nam,
where the normalisation of -Z(E, x) depends crucially on x(N).
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