

Dual abelian varieties ¹

Abelian varieties over finite fields

David Kurniadi Angdinata

University College London

Wednesday, 18 January 2023

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K . Recall that

$$\begin{aligned}\lambda_{(O)} : E &\longrightarrow \text{Cl}^0(E) \leq \text{Cl}(E) \\ P &\longmapsto (-P) - (O)\end{aligned}.$$

Here $\text{Cl}(E)$ is the **class group** of Weil divisors $\sum_{P \in E} n_P(P)$ modulo \sim , where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \overline{K}(E)^\times$, and $\text{Cl}^0(E)$ is its subgroup with $\sum_{P \in E} n_P = 0$.

Idea: for any $D \in \text{Cl}^0(E)$, the Riemann–Roch space $\mathcal{L}(D + (O))$, where

$$\mathcal{L}(D) := \{f \in \overline{K}(E)^\times : (f) + D \geq 0\} \cup \{0\},$$

is one-dimensional, so $D \sim (-P) - (O)$ for some $P \in E$.

For an elliptic curve E , its *dual* is $\text{Cl}^0(E)$.

Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

$$\begin{array}{ccc} \mathrm{Cl}(X) & \xrightarrow{\sim} & \mathrm{Pic}(X) \\ D & \mapsto & \mathcal{L}(D). \end{array}$$

Here $\mathrm{Pic}(X)$ is the **Picard group** of invertible sheaves \mathcal{L} modulo \cong , with

$$\mathcal{L} \cdot \mathcal{L}' := \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}', \quad \mathcal{L}^{-1} := \mathrm{Hom}(\mathcal{L}, \mathcal{O}_X),$$

and $\mathcal{L}(D)$ is the sheaf of \mathcal{O}_X -modules such that for any open $U \subseteq X$,

$$\Gamma(U, \mathcal{L}(D)) := \{f \in K(X)^\times : (f) + D \geq 0 \text{ in } U\} \cup \{0\}.$$

If $f : Y \rightarrow X$ is a morphism, then there is also a **pull-back**

$$f^* \mathcal{L} := f^{-1} \mathcal{L} \otimes_{f^{-1} \mathcal{O}_Y} \mathcal{O}_X \in \mathrm{Pic}(Y).$$

Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \rightarrow A$ induces $\tau_a^* : \text{Pic}(A) \rightarrow \text{Pic}(A)$. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\begin{aligned}\lambda_{\mathcal{L}} &: A(K) &\longrightarrow \text{Pic}(A) \\ a &\longmapsto \tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1}.\end{aligned}$$

This is a homomorphism, by **theorem of the square**

$$\tau_{a+b}^* \mathcal{L} \cdot \mathcal{L} \cong \tau_a^* \mathcal{L} \cdot \tau_b^* \mathcal{L}, \quad a, b \in A(K).$$

This follows from **theorem of the cube**² that

$$(f+g+h)^* \mathcal{L} \cdot (f+g)^* \mathcal{L}^{-1} \cdot (f+h)^* \mathcal{L}^{-1} \cdot (g+h)^* \mathcal{L}^{-1} \cdot f^* \mathcal{L} \cdot g^* \mathcal{L} \cdot h^* \mathcal{L}$$

is trivial for any regular maps $f, g, h : V \rightarrow A$ from a variety V/K .

In fact, if $\mathcal{L} \in \text{Pic}(A)$ is ample, then $\ker(\lambda_{\mathcal{L}}) \leq A(K)$ is finite.³

²Theorem I.5.1

³Proposition I.8.1

Invertible sheaves and Weil divisors

Remark

Equivalently, $\tau_a^* : \text{Cl}(A) \rightarrow \text{Cl}(A)$ translates a Weil divisor D by $-a$, so

$$\begin{aligned}\lambda_{\mathcal{L}(D)} &: A(K) &\longrightarrow \text{Cl}(A) \\ a &\longmapsto D_{-a} - D\end{aligned},$$

where D_{-a} is translation of D by $-a$. Theorem of the square becomes

$$D_{-(a+b)} + D \sim D_{-a} + D_{-b}, \quad a, b \in A(K).$$

If $A = E$, then

$$\begin{aligned}\lambda_{\mathcal{L}((O))} &: E(K) &\longrightarrow \text{Cl}(E) \\ P &\longmapsto (-P) - (O)\end{aligned}.$$

In fact, if $D \in \text{Cl}(E)$ is effective, then $\deg D = 0$ iff $\lambda_{\mathcal{L}(D)} = 0$. ⁴

⁴Example I.8.3

Translation-invariant invertible sheaves

Let $+$: $A \times A \rightarrow A$ be the addition map, and let $\pi_i : A \times A \rightarrow A$ be the projection map to the i -th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$K(\mathcal{L}) := \{a \in A : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{A \times \{a\}} \cong \mathcal{O}_A\}.$$

Then $K(\mathcal{L})(K) = \ker(\lambda_{\mathcal{L}})$ as subgroups of A , since

$$(+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{A \times \{a\}} = \tau_a^*\mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K).$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A .⁵

Define the subgroup of **translation-invariant invertible sheaves**

$$\text{Pic}^0(A) := \{\mathcal{L} \in \text{Pic}(A) : K(\mathcal{L}) = A\}.$$

Then $\tau_a^*\mathcal{L} \cdot \mathcal{L}^{-1} \in \text{Pic}^0(A)$ for any $a \in A(K)$, so $\text{im}(\lambda_{\mathcal{L}}) \subseteq \text{Pic}^0(A)$.

Need an abelian variety \widehat{A} such that $\widehat{A}(K) \cong \text{Pic}^0(A)$.

⁵Proposition I.5.19

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}} : A(K) \rightarrow \text{Pic}^0(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \text{Pic}(A)$ is ample,⁶ so \widehat{A} should be the quotient variety $A/K(\mathcal{L})$.

- ▶ If $\text{char}(K) = 0$, then $K(\mathcal{L})$ is a reduced subgroup variety of A , and $A/K(\mathcal{L})$ is simply defined as the $K(\mathcal{L})$ -orbits of A .
- ▶ If $\text{char}(K) \neq 0$, then $K(\mathcal{L})$ may not be reduced in general, so redefine $K(\mathcal{L})$ as the maximal subscheme of A such that $(+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{A \times K(\mathcal{L})} \cong \pi_2^*\mathcal{L}'$ for some $\mathcal{L}' \in \text{Pic}(K(\mathcal{L}))$, and $A/K(\mathcal{L})$ is naturally an algebraic space quotient of A .

The **dual abelian variety** of A is $\widehat{A} := A/K(\mathcal{L})$.

Remark

Since $\mathcal{L} \in \text{Pic}^0(A)$ iff $+^*\mathcal{L} \cong \pi_1^*\mathcal{L} \cdot \pi_2^*\mathcal{L}$, addition on A lifts to multiplication on \mathcal{L} and makes $\mathcal{G}(\mathcal{L}) := \mathcal{L} \setminus \{0\}$ an abelian group scheme over K . In fact, $\mathcal{G}(\mathcal{L})$ is an extension of A by \mathbb{G}_m , and this defines an isomorphism $\mathcal{G} : \text{Pic}^0(A) \xrightarrow{\sim} \text{Ext}_K^1(A, \mathbb{G}_m)$ of abelian group schemes.⁷

⁶Proposition I.8.14

⁷Proposition I.9.3

Representability of dual abelian varieties

Consider the functor $\mathcal{F} : \mathbf{Var}_K \rightarrow \mathbf{Set}$ that associates a variety V/K to the set of isomorphism classes of $\mathcal{L} \in \mathrm{Pic}(A \times V)$ such that

- ▶ $\mathcal{L}|_{A \times \{x\}} \in \mathrm{Pic}^0(A_x)$ for any $x \in V$, and
- ▶ $\mathcal{L}|_{\{0\} \times V} \cong \mathcal{O}_V$.

Theorem

\widehat{A} represents \mathcal{F} . In other words $\mathcal{F}(V) = \mathrm{Hom}(V, \widehat{A})$ for any variety V/K .

Proof.

Sketched in Section I.8. □

By construction, $\widehat{A}(L) = \mathrm{Pic}^0(A_L)$ for any field extension L/K .

By universality, \widehat{A} is unique up to unique isomorphism. Its corresponding universal element is the **Poincaré sheaf** $\mathcal{P}_A \in \mathcal{F}(\widehat{A})$, which associates any $\mathcal{L} \in \mathrm{Pic}^0(A)$ with a unique $\mathcal{P}_A|_{A \times \{a\}}$ for some $a \in \widehat{A}(K)$.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$,⁸ since \mathcal{P}_A parameterises $\widehat{A}(K) \cong \text{Pic}^0(A)$.

Now let $\phi : A \rightarrow B$ be a morphism. Then it has a dual morphism

$$\begin{aligned}\widehat{\phi} &: \widehat{B} &\longrightarrow \widehat{A} \\ \mathcal{L} &\longmapsto \phi^*\mathcal{L}\end{aligned}.$$

If ϕ is an isogeny, then $\ker(\widehat{\phi}) = \widehat{\ker(\phi)}$ is the *Cartier dual* of $\ker(\phi)$,⁹ where $\widehat{\widehat{\ker(\phi)}} \cong \ker(\phi)$. If $K = K^s$ with $\text{char}(K) \nmid n := \#\ker(\phi)$, then

$$\widehat{\ker(\phi)} = \text{Hom}(\ker(\phi), \mu_n).$$

This defines a *Weil pairing*

$$e_\phi : \ker(\phi) \times \ker(\widehat{\phi}) \rightarrow \mu_n.$$

⁸Theorem I.8.9

⁹Theorem I.9.1

Polarisations on abelian varieties

A **polarisation** on A is an isogeny $\lambda : A \rightarrow \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \text{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

Remark

Zarhin proved that $(A \times \widehat{A})^4$ is always principally polarised.¹⁰

Let $\lambda : A \rightarrow \widehat{A}$ be a polarisation. This defines an involution on $\text{End}^0(A)$ called the **Rosati involution** $(\cdot)^\dagger : \text{End}^0(A) \rightarrow \text{End}^0(A)$, where

$$A \xrightarrow{\phi} A \quad \longmapsto \quad A \xrightarrow{\lambda} \widehat{A} \xrightarrow{\widehat{\phi}} \widehat{A} \xrightarrow{\lambda^{-1}} A,$$

which is well-defined since $\lambda^{-1} \in \text{Hom}^0(\widehat{A}, A)$. It satisfies

$$(\phi + \psi)^\dagger = \phi^\dagger + \psi^\dagger, \quad (\phi \circ \psi)^\dagger = \psi^\dagger \circ \phi^\dagger, \quad \phi, \psi \in \text{End}^0(A),$$

and $a^\dagger = a$ for any $a \in \mathbb{Q}$.

¹⁰Theorem I.13.12