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Dual elliptic curves
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Dual elliptic curves

Let (E ,O) be an elliptic curve over a field K . Recall that

λ(O) : E
∼−→ Cl0(E ) ≤ Cl(E )

P 7→ (−P)− (O)
.

Here Cl(E ) is the class group of Weil divisors
∑

P∈E nP(P) modulo ∼,

where D ∼ 0 if D is the divisor (f ) of some rational function f ∈ K (E )×,
and Cl0(E ) is its subgroup with

∑
P∈E nP = 0.
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Dual elliptic curves

Let (E ,O) be an elliptic curve over a field K . Recall that

λ(O) : E
∼−→ Cl0(E ) ≤ Cl(E )

P 7→ (−P)− (O)
.

Here Cl(E ) is the class group of Weil divisors
∑

P∈E nP(P) modulo ∼,

where D ∼ 0 if D is the divisor (f ) of some rational function f ∈ K (E )×,
and Cl0(E ) is its subgroup with

∑
P∈E nP = 0.

Idea: for any D ∈ Cl0(E ), the Riemann-Roch space L(D + (O)), where

L(D) := {f ∈ K (E )× : (f ) + D ≥ 0} ∪ {0},

is one-dimensional, so D ∼ (−P)− (O) for some P ∈ E .
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Dual elliptic curves

Let (E ,O) be an elliptic curve over a field K . Recall that

λ(O) : E
∼−→ Cl0(E ) ≤ Cl(E )

P 7→ (−P)− (O)
.

Here Cl(E ) is the class group of Weil divisors
∑

P∈E nP(P) modulo ∼,

where D ∼ 0 if D is the divisor (f ) of some rational function f ∈ K (E )×,
and Cl0(E ) is its subgroup with

∑
P∈E nP = 0.

Idea: for any D ∈ Cl0(E ), the Riemann-Roch space L(D + (O)), where

L(D) := {f ∈ K (E )× : (f ) + D ≥ 0} ∪ {0},

is one-dimensional, so D ∼ (−P)− (O) for some P ∈ E .

For an elliptic curve E , its dual is Cl0(E ).
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety.
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

Cl(X )
∼−→ Pic(X )

D 7→ L(D)
.
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

Cl(X )
∼−→ Pic(X )

D 7→ L(D)
.

Here Pic(X ) is the Picard group of invertible sheaves L modulo ∼=, with

L · L′ := L ⊗OX
L′, L−1 := Hom(L,OX ),
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Cl(X )
∼−→ Pic(X )

D 7→ L(D)
.

Here Pic(X ) is the Picard group of invertible sheaves L modulo ∼=, with

L · L′ := L ⊗OX
L′, L−1 := Hom(L,OX ),

and L(D) is the sheaf of OX -modules such that for any open U ⊆ X ,

Γ(U,L(D)) := {f ∈ K (X )× : (f ) + D ≥ 0 on U} ∪ {0}.
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

Cl(X )
∼−→ Pic(X )

D 7→ L(D)
.

Here Pic(X ) is the Picard group of invertible sheaves L modulo ∼=, with

L · L′ := L ⊗OX
L′, L−1 := Hom(L,OX ),

and L(D) is the sheaf of OX -modules such that for any open U ⊆ X ,

Γ(U,L(D)) := {f ∈ K (X )× : (f ) + D ≥ 0 on U} ∪ {0}.

If f : Y → X is a morphism, then there is also a pull-back

f ∗L := f −1L ⊗f −1OY
OX ∈ Pic(Y ).
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety.
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a ∈ A(K ), the translation map
τa : A→ A induces τ∗a : Pic(A)→ Pic(A).
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a ∈ A(K ), the translation map
τa : A→ A induces τ∗a : Pic(A)→ Pic(A). For any L ∈ Pic(A), define

λL : A(K ) → Pic(A)
a 7→ τ∗a L · L−1 .
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a ∈ A(K ), the translation map
τa : A→ A induces τ∗a : Pic(A)→ Pic(A). For any L ∈ Pic(A), define

λL : A(K ) → Pic(A)
a 7→ τ∗a L · L−1 .

This is a homomorphism, by theorem of the square

τ∗a+bL · L ∼= τ∗a L · τ∗bL, a, b ∈ A(K ).
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a ∈ A(K ), the translation map
τa : A→ A induces τ∗a : Pic(A)→ Pic(A). For any L ∈ Pic(A), define

λL : A(K ) → Pic(A)
a 7→ τ∗a L · L−1 .

This is a homomorphism, by theorem of the square

τ∗a+bL · L ∼= τ∗a L · τ∗bL, a, b ∈ A(K ).

This follows from theorem of the cube 2 that

(f + g + h)∗L · (f + g)∗L−1 · (f + h)∗L−1 · (g + h)∗L−1 · f ∗L · g∗L · h∗L

is trivial for any regular maps f , g , h : V → A from a variety V /K .

2Theorem I.5.1
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a ∈ A(K ), the translation map
τa : A→ A induces τ∗a : Pic(A)→ Pic(A). For any L ∈ Pic(A), define

λL : A(K ) → Pic(A)
a 7→ τ∗a L · L−1 .

This is a homomorphism, by theorem of the square

τ∗a+bL · L ∼= τ∗a L · τ∗bL, a, b ∈ A(K ).

This follows from theorem of the cube 2 that

(f + g + h)∗L · (f + g)∗L−1 · (f + h)∗L−1 · (g + h)∗L−1 · f ∗L · g∗L · h∗L

is trivial for any regular maps f , g , h : V → A from a variety V /K .

In fact, if L ∈ Pic(A) is ample, then ker(λL) ≤ A(K ) is finite. 3

2Theorem I.5.1
3Proposition I.8.1
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Invertible sheaves and Weil divisors

Remark
Equivalently, τ∗a : Cl(A)→ Cl(A) translates a Weil divisor D by −a,
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Invertible sheaves and Weil divisors

Remark
Equivalently, τ∗a : Cl(A)→ Cl(A) translates a Weil divisor D by −a, so

λL(D) : A(K ) → Cl(A)
a 7→ D−a − D

,

where D−a is translation of D by −a.
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Invertible sheaves and Weil divisors

Remark
Equivalently, τ∗a : Cl(A)→ Cl(A) translates a Weil divisor D by −a, so

λL(D) : A(K ) → Cl(A)
a 7→ D−a − D

,

where D−a is translation of D by −a. Theorem of the square becomes

D−(a+b) + D ∼ D−a + D−b, a, b ∈ A(K ).
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Invertible sheaves and Weil divisors

Remark
Equivalently, τ∗a : Cl(A)→ Cl(A) translates a Weil divisor D by −a, so

λL(D) : A(K ) → Cl(A)
a 7→ D−a − D

,

where D−a is translation of D by −a. Theorem of the square becomes

D−(a+b) + D ∼ D−a + D−b, a, b ∈ A(K ).

If A = E , then

λL((O)) : E (K ) → Cl(E )
P 7→ (−P)− (O)

.
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Invertible sheaves and Weil divisors

Remark
Equivalently, τ∗a : Cl(A)→ Cl(A) translates a Weil divisor D by −a, so

λL(D) : A(K ) → Cl(A)
a 7→ D−a − D

,

where D−a is translation of D by −a. Theorem of the square becomes

D−(a+b) + D ∼ D−a + D−b, a, b ∈ A(K ).

If A = E , then

λL((O)) : E (K ) → Cl(E )
P 7→ (−P)− (O)

.

In fact, if D ∈ Cl(E ) is effective, then degD = 0 iff λL(D) = 0. 4

4Example I.8.3
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component.
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component. For any L ∈ Pic(A), define

K(L) := {a ∈ A : (+∗L · π∗1L−1)|A×{a} ∼= OA}.
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component. For any L ∈ Pic(A), define

K(L) := {a ∈ A : (+∗L · π∗1L−1)|A×{a} ∼= OA}.

Then K(L)(K ) = ker(λL) as subgroups of A, since

(+∗L · π∗1L−1)|A×{a} = τ∗a L · L−1, a ∈ A(K ).

In fact, K(L) is closed as a subvariety of A. 5

5Proposition I.5.19
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component. For any L ∈ Pic(A), define

K(L) := {a ∈ A : (+∗L · π∗1L−1)|A×{a} ∼= OA}.

Then K(L)(K ) = ker(λL) as subgroups of A, since

(+∗L · π∗1L−1)|A×{a} = τ∗a L · L−1, a ∈ A(K ).

In fact, K(L) is closed as a subvariety of A. 5

Define the subgroup of translation-invariant invertible sheaves

Pic0(A) := {L ∈ Pic(A) : K(L) = A}.

5Proposition I.5.19
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component. For any L ∈ Pic(A), define

K(L) := {a ∈ A : (+∗L · π∗1L−1)|A×{a} ∼= OA}.

Then K(L)(K ) = ker(λL) as subgroups of A, since

(+∗L · π∗1L−1)|A×{a} = τ∗a L · L−1, a ∈ A(K ).

In fact, K(L) is closed as a subvariety of A. 5

Define the subgroup of translation-invariant invertible sheaves

Pic0(A) := {L ∈ Pic(A) : K(L) = A}.

Then τ∗a L · L−1 ∈ Pic0(A) for any a ∈ A(K ), so im(λL) ⊆ Pic0(A).

5Proposition I.5.19
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Translation-invariant invertible sheaves

Let + : A× A→ A be the addition map, and let πi : A× A→ A be the
projection map to the i-th component. For any L ∈ Pic(A), define

K(L) := {a ∈ A : (+∗L · π∗1L−1)|A×{a} ∼= OA}.

Then K(L)(K ) = ker(λL) as subgroups of A, since

(+∗L · π∗1L−1)|A×{a} = τ∗a L · L−1, a ∈ A(K ).

In fact, K(L) is closed as a subvariety of A. 5

Define the subgroup of translation-invariant invertible sheaves

Pic0(A) := {L ∈ Pic(A) : K(L) = A}.

Then τ∗a L · L−1 ∈ Pic0(A) for any a ∈ A(K ), so im(λL) ⊆ Pic0(A).

Need an abelian variety Â such that Â(K ) ∼= Pic0(A).

5Proposition I.5.19
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Construction of dual abelian varieties

Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective
if L ∈ Pic(A) is ample, 6

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A,

I If char(K ) 6= 0, then K(L) may not be reduced in general, so
redefine K(L) as the maximal subscheme of A such that
(+∗L · π∗1L−1)|A×K(L)

∼= π∗2L′ for some L′ ∈ Pic(K(L)),

6Proposition I.8.14
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Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).
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Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L)-orbits of A.
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Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L)-orbits of A.

I If char(K ) 6= 0, then K(L) may not be reduced in general, so
redefine K(L) as the maximal subscheme of A such that
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A/K(L) is naturally an algebraic space quotient of A.
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Construction of dual abelian varieties

Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L)-orbits of A.

I If char(K ) 6= 0, then K(L) may not be reduced in general, so
redefine K(L) as the maximal subscheme of A such that
(+∗L · π∗1L−1)|A×K(L)

∼= π∗2L′ for some L′ ∈ Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is Â := A/K(L).

6Proposition I.8.14
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Construction of dual abelian varieties

Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L)-orbits of A.

I If char(K ) 6= 0, then K(L) may not be reduced in general, so
redefine K(L) as the maximal subscheme of A such that
(+∗L · π∗1L−1)|A×K(L)

∼= π∗2L′ for some L′ ∈ Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is Â := A/K(L).

Remark
Since L ∈ Pic0(A) iff +∗L ∼= π∗1L · π∗2L, addition on A lifts to
multiplication on L and makes G(L) := L \ {0} an abelian group scheme
over K .

6Proposition I.8.14
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Construction of dual abelian varieties

Idea: λL : A(K )→ Pic0(A) has kernel K(L)(K ), and in fact is surjective

if L ∈ Pic(A) is ample, 6 so Â should be the quotient variety A/K(L).

I If char(K ) = 0, then K(L) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L)-orbits of A.

I If char(K ) 6= 0, then K(L) may not be reduced in general, so
redefine K(L) as the maximal subscheme of A such that
(+∗L · π∗1L−1)|A×K(L)

∼= π∗2L′ for some L′ ∈ Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is Â := A/K(L).

Remark
Since L ∈ Pic0(A) iff +∗L ∼= π∗1L · π∗2L, addition on A lifts to
multiplication on L and makes G(L) := L \ {0} an abelian group scheme
over K . In fact, G(L) is an extension of A by Gm, and this defines an
isomorphism G : Pic0(A)

∼−→ Ext1
K (A,Gm) of abelian group schemes. 7

6Proposition I.8.14
7Proposition I.9.3
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Representability of dual abelian varieties

Consider the functor F : VarK → Set that associates a variety V /K to
the set of isomorphism classes of L ∈ Pic(A× V ) such that

I L|A×{x} ∈ Pic0(Ax) for any x ∈ V , and

I L|{0}×V ∼= OV .
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Representability of dual abelian varieties

Consider the functor F : VarK → Set that associates a variety V /K to
the set of isomorphism classes of L ∈ Pic(A× V ) such that

I L|A×{x} ∈ Pic0(Ax) for any x ∈ V , and

I L|{0}×V ∼= OV .

Theorem
Â represents F . In other words F(V ) = Hom(V , Â) for any variety V /K.

Proof.
Sketched in Section I.8.
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I L|A×{x} ∈ Pic0(Ax) for any x ∈ V , and

I L|{0}×V ∼= OV .

Theorem
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Proof.
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By construction, Â(L) = Pic0(AL) for any field extension L/K .
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By universality, Â is unique up to unique isomorphism.
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Representability of dual abelian varieties

Consider the functor F : VarK → Set that associates a variety V /K to
the set of isomorphism classes of L ∈ Pic(A× V ) such that

I L|A×{x} ∈ Pic0(Ax) for any x ∈ V , and

I L|{0}×V ∼= OV .

Theorem
Â represents F . In other words F(V ) = Hom(V , Â) for any variety V /K.

Proof.
Sketched in Section I.8.

By construction, Â(L) = Pic0(AL) for any field extension L/K .

By universality, Â is unique up to unique isomorphism. Its corresponding
universal element is the Poincaré sheaf PA ∈ F(Â), which associates

any L ∈ Pic0(A) with a unique PA|A×{a} for some a ∈ Â(K ).
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Dualities on abelian varieties

The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A.
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Dualities on abelian varieties

The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
∼= PA, 8 since PA parameterises Â(K ) ∼= Pic0(A).

8Theorem I.8.9
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The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
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The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
∼= PA, 8 since PA parameterises Â(K ) ∼= Pic0(A).

Now let φ : A→ B be a morphism. Then it has a dual morphism

φ̂ : B̂ 7→ Â
L 7→ φ∗L .
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Dualities on abelian varieties

The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
∼= PA, 8 since PA parameterises Â(K ) ∼= Pic0(A).

Now let φ : A→ B be a morphism. Then it has a dual morphism

φ̂ : B̂ 7→ Â
L 7→ φ∗L .

If φ is an isogeny, then ker(φ̂) = k̂er(φ) is the Cartier dual of ker(φ), 9

where
̂̂
ker(φ) ∼= ker(φ).

8Theorem I.8.9
9Theorem I.9.1
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Dualities on abelian varieties

The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
∼= PA, 8 since PA parameterises Â(K ) ∼= Pic0(A).

Now let φ : A→ B be a morphism. Then it has a dual morphism

φ̂ : B̂ 7→ Â
L 7→ φ∗L .

If φ is an isogeny, then ker(φ̂) = k̂er(φ) is the Cartier dual of ker(φ), 9
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Dualities on abelian varieties

The functor A 7→ Â is a duality theory in the sense that
̂̂
A ∼= A. This

follows from PÂ
∼= PA, 8 since PA parameterises Â(K ) ∼= Pic0(A).

Now let φ : A→ B be a morphism. Then it has a dual morphism

φ̂ : B̂ 7→ Â
L 7→ φ∗L .

If φ is an isogeny, then ker(φ̂) = k̂er(φ) is the Cartier dual of ker(φ), 9

where
̂̂
ker(φ) ∼= ker(φ). If K = K sep with char(K ) - n := # ker(φ), then

k̂er(φ) = Hom(ker(φ), µn).

This defines a Weil pairing

eφ : ker(φ)× ker(φ̂)→ µn.

8Theorem I.8.9
9Theorem I.9.1
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Polarisations on abelian varieties

A polarisation on A is an isogeny λ : A→ Â such that λ = λL over K
for some ample L ∈ Pic(AK ).
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A polarisation on A is an isogeny λ : A→ Â such that λ = λL over K
for some ample L ∈ Pic(AK ). It is principal if it has degree one.
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Polarisations on abelian varieties

A polarisation on A is an isogeny λ : A→ Â such that λ = λL over K
for some ample L ∈ Pic(AK ). It is principal if it has degree one.

Remark
Zarhin proved that (A× Â)4 is always principally polarised. 10

10Theorem I.13.12
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Polarisations on abelian varieties

A polarisation on A is an isogeny λ : A→ Â such that λ = λL over K
for some ample L ∈ Pic(AK ). It is principal if it has degree one.
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Let λ : A→ Â be a polarisation. This defines an involution on End0(A)
called the Rosati involution (·)† : End0(A)→ End0(A), where

A
φ−→ A 7−→ A

λ−→ Â
φ̂−→ Â

λ−1

−−→ A,

which is well-defined since λ−1 ∈ Hom0(Â,A).
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Let λ : A→ Â be a polarisation. This defines an involution on End0(A)
called the Rosati involution (·)† : End0(A)→ End0(A), where

A
φ−→ A 7−→ A

λ−→ Â
φ̂−→ Â

λ−1

−−→ A,

which is well-defined since λ−1 ∈ Hom0(Â,A). It satisfies

(φ+ ψ)† = φ† + ψ†, (φ ◦ ψ)† = ψ† ◦ φ†, φ, ψ ∈ End0(A),

and a† = a for any a ∈ Q.
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