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Dual elliptic curves

Let (E, O) be an elliptic curve over a field K.
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Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

o) = C1°(E) < CIE)
—

E
P (=P) - (0)
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Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

Noy : E = CI%E) < ClE)
P = (=P)-(0)

Here CI(E) is the class group of Weil divisors } 5. np(P) modulo ~,
where D ~ 0 if D is the divisor (f) of some rational function f € K(E)*,
and CI°(E) is its subgroup with 3" p g np = 0.
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Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

Noy : E = CI%E) < ClE)
P = (=P)-(0)

Here CI(E) is the class group of Weil divisors } 5. np(P) modulo ~,
where D ~ 0 if D is the divisor (f) of some rational function f € K(E)*,
and CI°(E) is its subgroup with 3" p g np = 0.

Idea: for any D € CI°(E), the Riemann-Roch space L(D + (0)), where
L(D) := {f € K(E)* : (f)+ D > 0} u {0},

is one-dimensional, so D ~ (—P) — (O) for some P € E.
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Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

Noy : E = CI%E) < ClE)
P = (=P)-(0)

Here CI(E) is the class group of Weil divisors } 5. np(P) modulo ~,

where D ~ 0 if D is the divisor (f) of some rational function f € K(E)*,

and CI°(E) is its subgroup with 3" p g np = 0.

Idea: for any D € CI°(E), the Riemann-Roch space L(D + (0)), where
L(D) :={f € K(E)* : (f)+ D >0} U {0},

is one-dimensional, so D ~ (—P) — (O) for some P € E.

For an elliptic curve E, its dual is CI°(E).
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety.
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

ic(X) .

C(X) = p
D — L(D)
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

CX) = Pic(X)
D — £(D) -

Here Pic(X) is the Picard group of invertible sheaves £ modulo 22, with

L-L=L&o L, L:=Hom(L,Ox),
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

CX) = Pic(X)
D — £(D) -

Here Pic(X) is the Picard group of invertible sheaves £ modulo 22, with
L-L=L®o, L, L1 :=Hom(L,Ox),
and L(D) is the sheaf of Ox-modules such that for any open U C X,

rU,L(D)):={feKX) :(f)+ D>0on U}U{0}.
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Invertible sheaves on smooth varieties

Let X/K be a smooth variety. Then identify

CX) = Pic(X)
D — £(D) -

Here Pic(X) is the Picard group of invertible sheaves £ modulo 22, with
L-L=L®o, L, L':=Hom(L,Ox),
and L(D) is the sheaf of Ox-modules such that for any open U C X,
rU,L(D)):={feKX) :(f)+ D>0on U}U{0}.
If f:Y — X is a morphism, then there is also a pull-back

f*E = f_l,C ®f—1oy OX S PIC(Y)
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety.
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a € A(K), the translation map
T, : A — Alinduces 7} : Pic(A) — Pic(A).
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a € A(K), the translation map
T, : A — Alinduces 7} : Pic(A) — Pic(A). For any £ € Pic(A), define

Ae : A(K) — Pic(A)
a = TIL-L7HC
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a € A(K), the translation map
T, : A — Alinduces 7} : Pic(A) — Pic(A). For any £ € Pic(A), define

Ae  A(K) — Pic(A)
a — TIL L1

This is a homomorphism, by theorem of the square

oL LETIL-ThL, a,b e A(K).
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a € A(K), the translation map
T, : A — Alinduces 7} : Pic(A) — Pic(A). For any £ € Pic(A), define

Ae  A(K) — Pic(A)
a — TIL L1

This is a homomorphism, by theorem of the square

oL LETIL-ThL, a,b e A(K).
This follows from theorem of the cube 2 that
(F+g+h)*L-(Frg) Lt (F+h) Lt (g+h)* L L-g"L-hL

is trivial for any regular maps f,g,h: V — A from a variety V /K.

2Theorem 1.5.1
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Invertible sheaves on abelian varieties

Let A/K be an abelian variety. For any a € A(K), the translation map
T, : A — Alinduces 7} : Pic(A) — Pic(A). For any £ € Pic(A), define

Ae  A(K) — Pic(A)
a — TIL L1

This is a homomorphism, by theorem of the square
oL LETIL-ThL, a, b e A(K).
This follows from theorem of the cube 2 that
(F+g+h)*L-(Frg) Lt (F+h) Lt (g+h)* L L-g"L-hL

is trivial for any regular maps f,g,h: V — A from a variety V /K.

In fact, if £ € Pic(A) is ample, then ker(Az) < A(K) is finite. 3

2Theorem 1.5.1
3Proposition 1.8.1
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Invertible sheaves and Weil divisors

Remark
Equivalently, 77 : C1(A) — Cl(A) translates a Weil divisor D by —a,

18/56



Invertible sheaves and Weil divisors

Remark
Equivalently, 77 : C1(A) — CI(A) translates a Weil divisor D by —a, so

Aeipy  AK) — gl(A) ;
a — _.— D"’

where D_, is translation of D by —a.
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Invertible sheaves and Weil divisors

Remark
Equivalently, 77 : C1(A) — CI(A) translates a Weil divisor D by —a, so

Aeipy  AK) — gl(A) ;
a — _.— D"’

where D_, is translation of D by —a. Theorem of the square becomes

D_(a4p) + D ~D_;+ D_p, a,b e A(K).
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Invertible sheaves and Weil divisors

Remark
Equivalently, 77 : C1(A) — CI(A) translates a Weil divisor D by —a, so

Aeipy  AK) — gl(A) ;
a — _.— D"’

where D_, is translation of D by —a. Theorem of the square becomes
D_(a4p) + D ~D_;+ D_p, a,b e A(K).
If A= E, then

A[Z((O)) : E(KF))

CI(E)
(=P)=(0) "

%
H
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Invertible sheaves and Weil divisors

Remark
Equivalently, 77 : C1(A) — CI(A) translates a Weil divisor D by —a, so

Aeipy  AK) — gl(A) ;
a — _.— D"’

where D_, is translation of D by —a. Theorem of the square becomes
D,(aer) +D~D_,+ D_y, a,be A(K).
If A= E, then

Aeoy : E(K) — CI(E)
P — (=P)—(0)"

In fact, if D € CI(E) is effective, then deg D = 0 iff Azpy = 0. 4

4Example 1.8.3
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component.
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(ﬁ) = {3 eA: (+*£ . ﬂ—ZT‘C_l)|A><{a} = OA}
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(ﬁ) = {3 eA: (+*£ . Wikﬁ_l)|A><{a} = OA}
Then K(L)(K) = ker(Az) as subgroups of A, since

(+°L- L axqay = 2L L7, a€ AK).
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(ﬁ) = {3 eA: (+*£ . Wikﬁ_l)|A><{a} = OA}
Then K(L)(K) = ker(Az) as subgroups of A, since
(+°L- L axqay = 2L L7, a€ AK).

In fact, K(£) is closed as a subvariety of A. °

5Proposition 1.5.19
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(ﬁ) = {3 eA: (+*£ . WT£_1)|A><{3} = OA}
Then K(L)(K) = ker(Az) as subgroups of A, since
(+°L- L axqay = 2L L7, a€ AK).

In fact, K(£) is closed as a subvariety of A. °

Define the subgroup of translation-invariant invertible sheaves

Pic’(A) := {L£ € Pic(A) : K(L) = A}.

5Proposition 1.5.19
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(L):={a€A: (+"L -1 L") ax(s) = Oal}-
Then K(L)(K) = ker(Az) as subgroups of A, since
(+°L- L axqay = 2L L7, a€ AK).
In fact, K(£) is closed as a subvariety of A. °
Define the subgroup of translation-invariant invertible sheaves
Pic’(A) := {L£ € Pic(A) : K(L) = A}.

Then 7L - L~ € Pic®(A) for any a € A(K), so im(\z) C Pic®(A).

5Proposition 1.5.19
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Translation-invariant invertible sheaves

Let + : A X A — A be the addition map, and let 7; : A X A — A be the
projection map to the i-th component. For any £ € Pic(A), define

K(L):={a€A: (+"L -1 L") ax(s) = Oal}-
Then K(L)(K) = ker(Az) as subgroups of A, since
(+°L- L axqay = 2L L7, a€ AK).
In fact, K(£) is closed as a subvariety of A. °
Define the subgroup of translation-invariant invertible sheaves
Pic’(A) := {L£ € Pic(A) : K(L) = A}.

Then 7L - L~ € Pic®(A) for any a € A(K), so im(\z) C Pic®(A).

Need an abelian variety A such that A(K) = Pic®(A).

5Proposition 1.5.19
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ©

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A,

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).

» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.
» If char(K) # 0, then K(£) may not be reduced in general, so
redefine K(£) as the maximal subscheme of A such that
(+7L- 7L axk(c) = 3L for some L' € Pic(K(L)),

SProposition 1.8.14
34/56



Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.
» If char(K) # 0, then K(£) may not be reduced in general, so
redefine K(£) as the maximal subscheme of A such that
(+*L -7 LY axk(c) = 3L for some L' € Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.

» If char(K) # 0, then K(£) may not be reduced in general, so
redefine K(£) as the maximal subscheme of A such that
(+*L -7 LY axk(c) = 3L for some L' € Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is A := A/K(L).

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.
» If char(K) # 0, then K(£) may not be reduced in general, so
redefine K(£) as the maximal subscheme of A such that
(+*L -7 LY axk(c) = 3L for some L' € Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is A := A/K(L).

Remark

Since £ € Pic®(A) iff +*L£ = 7;L - w5 L, addition on A lifts to
multiplication on £ and makes G(£) := £\ {0} an abelian group scheme
over K.

SProposition 1.8.14
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Construction of dual abelian varieties

Idea: Az : A(K) — Pic®(A) has kernel K(£)(K), and in fact is surjective
if £ € Pic(A) is ample, ® so A should be the quotient variety A/K(L).
» If char(K) =0, then K(£) is a reduced subgroup variety of A, and
A/K(L) is simply defined as the K(L£)-orbits of A.
» If char(K) # 0, then K(£) may not be reduced in general, so
redefine K(£) as the maximal subscheme of A such that
(+*L -7 LY axk(c) = 3L for some L' € Pic(K(L)), and
A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is A := A/K(L).

Remark

Since £ € Pic®(A) iff +*L£ = 7;L - w5 L, addition on A lifts to
multiplication on £ and makes G(£) := £\ {0} an abelian group scheme
over K. In fact, G(L) is an extension of A by G,,, and this defines an

isomorphism G : Pic’(A) = Ext (A, Gy,) of abelian group schemes. 7

SProposition 1.8.14

"Proposition 1.9.3
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Representability of dual abelian varieties

Consider the functor F : Varkx — Set that associates a variety V /K to
the set of isomorphism classes of £ € Pic(A x V) such that

> Llaxix) € Pic®(Ay) for any x € V, and

> Llioyxv = Oy.
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Representability of dual abelian varieties

Consider the functor F : Varkx — Set that associates a variety V /K to
the set of isomorphism classes of £ € Pic(A x V) such that

> Llaxix) € Pic®(Ay) for any x € V, and

> Llioyxv = Oy.

Theorem R
A represents F. In other words F (V) = Hom(V/, A) for any variety V /K.

Proof.
Sketched in Section 1.8. O
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Representability of dual abelian varieties

Consider the functor F : Varkx — Set that associates a variety V /K to
the set of isomorphism classes of £ € Pic(A x V) such that

> Llaxix) € Pic®(Ay) for any x € V, and
> Lloyxv = Oy.

Theorem R

A represents F. In other words F (V) = Hom(V/, A) for any variety V /K.
Proof.

Sketched in Section 1.8. O

By construction, E(L) = Pic’(A,) for any field extension L/K.
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Representability of dual abelian varieties
Consider the functor F : Varkx — Set that associates a variety V /K to
the set of isomorphism classes of £ € Pic(A x V) such that
> Llaxix) € Pic®(Ay) for any x € V, and
> Lloyxv = Oy.

Theorem R

A represents F. In other words F (V) = Hom(V/, A) for any variety V /K.
Proof.

Sketched in Section 1.8. O

By construction, E(L) = Pic’(A,) for any field extension L/K.

By universality, Alis unique up to unique isomorphism.
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Representability of dual abelian varieties
Consider the functor F : Varkx — Set that associates a variety V /K to
the set of isomorphism classes of £ € Pic(A x V) such that
> Llaxix) € Pic®(Ay) for any x € V, and
> Lloyxv = Oy.

Theorem R

A represents F. In other words F (V) = Hom(V/, A) for any variety V /K.
Proof.

Sketched in Section 1.8. O

By construction, E(L) = Pic’(A,) for any field extension L/K.

By universality, Alis unique up to unique isomorphism. Its corresponding

-~

universal element is the Poincaré sheaf P4 € F(A), which associates
any L € Pic’(A) with a unique Palax{ay for some a € A(K).
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Dualities on abelian varieties

The functor A +— A is a duality theory in the sense that A A

44 /56



Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

8Theorem 1.8.9
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Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

Now let ¢ : A — B be a morphism.

8Theorem 1.8.9
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Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

Now let ¢ : A — B be a morphism. Then it has a dual morphism

¢

)

[ Yve)}

H
— 'L

< >

8Theorem 1.8.9
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Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

Now let ¢ : A — B be a morphism. Then it has a dual morphism

¢

)

[ Yve)}

H
— 'L

< >

If ¢ is an isogeny, then ker(gfzﬁ\) = @(?5) is the Cartier dual of ker(¢), °
where kc?(?ﬁ) = ker(¢).

8Theorem 1.8.9
9Theorem 1.9.1
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Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

Now let ¢ : A — B be a morphism. Then it has a dual morphism

¢

)

[ Yve)}

H
— 'L

< >

If ¢ is an isogeny, then ker(gfzﬁ\) = @(?5) is the Cartier dual of ker(¢), °
where ker(¢) = ker(¢). If K = K*P with char(K) f n := # ker(g), then

@(?5) = Hom(ker(9), ptn)-

8Theorem 1.8.9
9Theorem 1.9.1
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Dualities on abelian varieties

The functor A — A is a duality theory in the sense that A= A This
follows from Pz = Pa, & since Pa parameterises A(K) = Pic’(A).

Now let ¢ : A — B be a morphism. Then it has a dual morphism

¢

)

[ Yve)}

H
— 'L

< >

If ¢ is an isogeny, then ker(gfzﬁ\) = @(?5) is the Cartier dual of ker(¢), °
where ker(¢) = ker(¢). If K = K*P with char(K) f n := # ker(g), then

ker(¢) = Hom(ker(6). 1r).
This defines a Weil pairing

-~

ey : ker(¢) x ker(¢) — fin.

8Theorem 1.8.9
9Theorem 1.9.1
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ax).
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ag). It is principal if it has degree one.
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ag). It is principal if it has degree one.

Remark R
Zarhin proved that (A x A)* is always principally polarised. °

10T heorem 1.13.12
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ag). It is principal if it has degree one.

Remark R
Zarhin proved that (A x A)* is always principally polarised. °

Let \: A — Abea polarisation.

10T heorem 1.13.12
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ag). It is principal if it has degree one.

Remark R
Zarhin proved that (A x A)* is always principally polarised. °

Let A: A — A be a polarisation. This defines an involution on EndO(A)
called the Rosati involution (-) : End®(A) — End°(A), where

: 53 a0
A—A — ALAL AL A
A

)

which is well-defined since A~! € Hom’(A, A).

10T heorem 1.13.12
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Polarisations on abelian varieties

A polarisation on A is an isogeny A : A — A such that A = Az over K
for some ample £ € Pic(Ag). It is principal if it has degree one.

Remark R
Zarhin proved that (A x A)* is always principally polarised. °

Let A: A — A be a polarisation. This defines an involution on EndO(A)
called the Rosati involution (-) : End®(A) — End°(A), where

ALA s ANAL AN A
which is well-defined since A~1 € Hom®(A, A). It satisfies

(p+v) =0 +9f,  (pop) =vlosl, ¢4 € End(A),

and af = a for any a € Q.

10T heorem 1.13.12
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