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A friendly problem

Let’s write:

▶ a for apple

▶ b for banana

▶ c for ananas comosus

Real values:

▶ a = 2 +
√
3

▶ b = 1

▶ c = 0

Integer values:

▶ a = 11

▶ b = 4

▶ c = −1

2 / 24



A fiendish problem

Smallest positive whole values:

▶ a = 154476802108746166441951315019919837485664325669565431700026634898253202035277999

▶ b = 36875131794129999827197811565225474825492979968971970996283137471637224634055579

▶ c = 4373612677928697257861252602371390152816537558161613618621437993378423467772036
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Diophantine equations

A Diophantine equation is a polynomial equation in two or more
unknown variables with integer coefficients.

Examples

X − 2Y − 3Z = 4 2X 2 − 3XY + 4Y 2 − 5X + 6Y − 7 = 0

3X 3 + 4Y 3 + 5Z 3 = 0 X 4 + Y 4 = Z 4 Y 2 = X 5 + 1

To solve a Diophantine equation means to find its integer solutions:

▶ Is there an integer solution?

▶ Can we write down an integer solution?

▶ Are there infinitely many integer solutions?

▶ Can we generate new integer solutions from old ones?

▶ Is there a way to write down all integer solutions?

▶ Can we describe the distribution of integer solutions?
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Fermat’s last theorem

In 1637, Pierre de Fermat claimed the following theorem.

Conjecture (Fermat’s last theorem)
The only integer solutions to X n + Y n = Z n for some
n > 2 satisfy XYZ = 0.

“I have discovered a truly marvelous proof of this, which this margin is
too narrow to contain.”

In 1995, Andrew Wiles published the first complete proof,
which involved very advanced 20th century mathematics.

I think Fermat was mistaken.

Why are Diophantine equations so difficult?
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Hilbert’s tenth problem

In 1900, David Hilbert published a list of 23 unsolved
problems ranging over all areas of mathematics.

Question (Hilbert)
Is there an algorithm to solve any Diophantine equation?

Answer (Davis, Matiyasevich, Putnam, Robinson).
No.

We have to get creative!
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Overview

Diophantine equations become more difficult to solve with more
variables, so we will focus on two or three variables.

Diophantine equations can also be classified by their degree, and the
approaches to solve them typically depend on the degree.

For the rest of the talk, we will consider the following examples:

▶ Linear equations
▶ aX + bY = c for fixed a, b, c ∈ Z

▶ Quadratic equations
▶ X 2 + aY 2 = b for fixed a, b ∈ Z

▶ Cubic equations
▶ X 3 + Y 2Z = aZ 3 for fixed a ∈ Z

Ultimately we will develop ideas leading to Fermat’s last theorem.
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Linear equations

Observe that an integer solution gives a solution modulo n for any n ∈ N.

Question
Is there an integer solution to 15X + 21Y = 35?

Answer.
No, because 15X + 21Y ≡ 0 mod 3, but 35 ≡ 2 mod 3.

Theorem (Bézout’s identity)
There is an integer solution to aX + bY = c iff gcd(a, b) | c.
Furthermore, there is an algorithm to determine all of its solutions.

For a proof, refer to MATH0006 Algebra 2.
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Bézout’s identity

Question
Can we write down an integer solution to 15X + 21Y = 36?

Answer.
Yes, because 36 is divisible by gcd(15, 21) = 3. By the division algorithm:

21 = 1 · 15 + 6 divide 21 by 15

15 = 2 · 6 + 3 divide 15 by 6

By reversing the division algorithm:

3 = 15− 2 · 6 substitute 3

= 15− 2 · (21− 1 · 15) substitute 6

= 3 · 15− 2 · 21 rearrange

Thus X = 36
3 · 3 = 36 and Y = 36

3 · −2 = −24 works!
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Quadratic equations

Can we do something similar for quadratic equations X 2 + Y 2 = b?

Question
Is there an integer solution to X 2 + Y 2 = 75?

Answer.
No, because X 2,Y 2 ≡ 0, 1 mod 4, but 75 ≡ 3 mod 4.

Theorem (Sum of two squares theorem)
There is an integer solution to X 2 + Y 2 = b iff b is not divisible by a
prime congruent to 3 modulo 4 with odd exponent.

For a proof, refer to MATH0034 Number Theory.

10 / 24



Sum of two squares theorem

Question
Can we write down an integer solution to X 2 + Y 2 = 53?

Answer.
Yes, because 5 is a prime congruent to 1 modulo 4. In particular, 53 is
not divisible by any prime congruent to 3 modulo 4 with odd exponent.
In the ring of Gaussian integers Z[i ]:

53 = X 2 + Y 2 = (X + iY )(X − iY )

By unique factorisation in Z[i ], write X ± iY = (W ± iZ )3. Then:

53 = ((W + iZ )(W − iZ ))3 = (W 2 + Z 2)3

Now W = 2 and Z = 1 is an integer solution to W 2 +Z 2 = 5. Moreover:

X + iY = (W + iZ )3 = (W 3 − 3WZ 2) + i(3W 2Z − Z 3)

Thus X = W 3 − 3WZ 2 = 2 and Y = 3W 2Z − Z 3 = 11 works!
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Number rings

Can we do something similar for quadratic equations X 2 + aY 2 = b?

Question
Is there an integer solution to X 2 + 2Y 2 = 72?

Answer.
Consider the number ring R := Z[

√
−2]. Factorise:

72 = X 2 + 2Y 2 = (X +
√
−2Y )(X −

√
−2Y )

By unique factorisation in R, write X ±
√
−2Y = (W ±

√
−2Z )2. Then:

72 = ((W +
√
−2Z )(W −

√
−2Z ))2 = (W 2 + 2Z 2)2

There are no integer solutions to W 2 + 2Z 2 = 7!

Note that W 2 + 2Z 2 > 0, so it is easy to rule out solutions.
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Failure of unique factorisation

Solving the quadratic equation X 2 + aY 2 = b seems to rely on unique
factorisation in the ring R := Z[

√
−a], but this might fail.

Examples

▶ In R = Z[
√
−5], we have 6 = 2 · 3 = (1 +

√
−5) · (1−

√
−5).

▶ In R = Z[
√
10], we have 10 = 2 · 5 =

√
10 ·
√
10.

The solution is to replace X +
√
−a with the ideal

⟨X +
√
−a⟩ := {(X +

√
−a)r : r ∈ Z[

√
−a]},

which has unique factorisation into prime ideals if a ̸≡ 3 mod 4.

The failure of unique factorisation into primes is measured by the ideal
class group Cl(R). For some Cl(R), a similar argument still works!

For more details, refer to MATH0035 Algebraic Number Theory.
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Cyclotomic rings

In the 19th century, Ernst Kummer proved Fermat’s last
theorem for many exponents using this approach.

Theorem (Kummer)
If p is a regular odd prime, then the only integer solutions
to X p + Y p = Z p satisfy XYZ = 0.

Proof.
Consider the cyclotomic ring R := Z[ζp], where ζp := e

2πi
p . Then:

Z p = X p + Y p = (X + Y ) · (X + ζpY ) · (X + ζ2pY ) · · · · · (X + ζp−1
p Y )

A “similar” argument still works if p is a regular prime!

Say that a prime p is regular if it does not divide the size of Cl(R),
which conjecturally accounts for 61% of all primes.
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Rational projective plane

Observe that X n + Y n = Z n is homogeneous of degree n.

In particular, this almost gives a correspondence:

{(X ,Y ,Z ) ∈ Z3 : X n + Y n = Z n} ↭ {(x , y) ∈ Q2 : xn + yn = 1}
(X ,Y ,Z ) 7→ (XZ ,

Y
Z )

(xz , yw ,wz) ←[ ( x
w ,

y
z )

This correspondence is not quite bijective:

▶ Both (X ,Y ,Z ) and (λX , λY , λZ ) map to (XZ ,
Y
Z ).

▶ Where does (X ,Y , 0) map to?

Both of these issues can be fixed by working in the projective plane.

▶ Replace the left hand side with equivalence classes up to scaling.

▶ Supplement the right hand side with “points at infinity”.

For more details, refer to MATH0076 Algebraic Geometry.
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Fermat curves

By working in the projective plane, the integer solutions of
X n + Y n = Z n are essentially the rational solutions of xn + yn = 1.

The cubic equation x3 + y3 = 1 defines an object in algebraic geometry
called an elliptic curve that lives in the projective plane.
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Elliptic curves

The set of rational solutions of an elliptic curve forms an abelian group:

P + Q + R = 0 ⇐⇒ P,Q,R are collinear

This gives a way to generate new rational solutions from old ones!
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Cubic equations

Question
Can we write down two rational solutions to x3 − y2 = 4?

Answer.
This defines an elliptic curve, with an obvious solution x = 2 and y = 2.
The tangent of e(x , y) = x3 − y2 − 4 at the point (x , y) = (2, 2) is:

∂e

∂x
(2) · (x − 2) +

∂e

∂y
(2) · (y − 2) = 0

This simplifies as y = 3x − 4, which substitutes into e(x , y) = 0 to yield:

0 = x3 − (3x − 4)2 − 4 = (x − 2)2(x − 5)

Thus x = 5 and y = 3(5)− 4 = 11 works!

In fact, adding the solution x = 2 and y = 2 to itself repeatedly
generates the only infinite family of rational solutions to x3 − y2 = 4.
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Mordell’s theorem

In 1922, Louis Mordell classified the abstract group
structure of rational solutions of elliptic curves.

Theorem (Mordell)
The rational solutions of an elliptic curve can be generated
by a finite set of initial rational solutions.

Associated to an elliptic curve E is a complex-analytic function LE (s).

Conjecture (Birch, Swinnerton-Dyer)
An elliptic curve E has infinitely many rational solutions iff LE (1) = 0.

For more details, refer to MATH0036 Elliptic Curves.
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Modular forms

Andrew Wiles proved Fermat’s last theorem by contradiction.

This requires classifying certain highly-symmetric functions on the upper
half H of the complex plane called modular forms.
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Newforms

The modular forms of interest are the so-called level N newforms.

These are functions f : H → C satisfying the modular condition:

f

(
az + b

cz + d

)
= (cz + d)2 · f (z)

for any a, b, c , d ∈ Z such that ad − bc = 1 and N | c .

Theorem (Valence formula)
For fixed N, there are finitely many level N newforms.

In fact, there are no level N newforms for:

N ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 18, 22, 25, 28, 60}

For more details, refer to MATH0104 Modular Forms.
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Modularity theorem

Also associated to a modular form f is a complex-analytic function Lf (s).

Call an elliptic curve E modular if there is a level N
newform f such that LE (s) = Lf (s) for some N.

Theorem (Wiles)
For squarefree N, all elliptic curves are modular.

Theorem (Breuil, Conrad, Diamond, Taylor)
All elliptic curves are modular.
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Fermat’s last theorem

Fermat’s last theorem can now be deduced from the modularity theorem.

Assume for a contradiction that X n + Y n = Z n has an integer solution
not satisfying XYZ = 0. Consider the elliptic curve E given by:

y2 = x(x − X n)(x + Y n)

This is called the Frey curve associated to the triple (X ,Y ,Z ).

The modularity theorem says that E corresponds to a level N newform f .

Theorem (Ribet)
f can be “level-lowered” to a level 2 newform.

There are no level 2 newforms, hence a contradiction!
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Formalising Fermat

My PhD supervisor Kevin Buzzard started a massive
project to teach the modularity theorem to a computer.

This means formally defining all the relevant objects (elliptic curves,
modular forms) and rigorously verifying all the details of the proof.

https://imperialcollegelondon.github.io/FLT/

This is a huge amount of work, and we need all the help we can get!

To get started, check out MATH0109 Theorem Proving in Lean!
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