Denominators of BSD quotients

David Ang

London School of Geometry and Number Theory

Wednesday, 31 July 2024

< □ > < 部 > < 言 > < 言 > こ = の Q () 1/45

Let *E* be an elliptic curve over \mathbb{Q} given by a Weierstrass equation

$$y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,\qquad a_i\in\mathbb{Q}.$$

Let E be an elliptic curve over \mathbb{Q} given by a Weierstrass equation

$$y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,\qquad a_i\in\mathbb{Q}.$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \operatorname{tor}(E) \oplus \mathbb{Z}^{\operatorname{rk}(E)}.$

Let E be an elliptic curve over \mathbb{Q} given by a Weierstrass equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \qquad a_i \in \mathbb{Q}.$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \operatorname{tor}(E) \oplus \mathbb{Z}^{\operatorname{rk}(E)}.$

The torsion subgroup tor(E) is well understood.

Theorem (Mazur)

$$\operatorname{tor}(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}$$

٠

イロト 不得 トイヨト イヨト ニヨー

Let E be an elliptic curve over \mathbb{Q} given by a Weierstrass equation

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \qquad a_i \in \mathbb{Q}.$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \operatorname{tor}(E) \oplus \mathbb{Z}^{\operatorname{rk}(E)}.$

The torsion subgroup tor(E) is well understood.

Theorem (Mazur)

$$\operatorname{tor}(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}$$

The **rank** rk(E) is somewhat mysterious.

The Birch–Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

$$L(E,s) := \prod_{p} \frac{1}{L_p(E,p^{-s})}$$

The Birch–Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

$$L(E,s):=\prod_{p}\frac{1}{L_{p}(E,p^{-s})}.$$

Here,

$$L_p(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_p(E)T + pT^2 & \text{if } p \nmid N \end{cases},$$

where $a_{p}(E) := 1 + p - \#E(\mathbb{F}_{p})$ and $\epsilon \in \{-1, 0, 1\}$.

The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

$$L(E,s) := \prod_{p} \frac{1}{L_p(E,p^{-s})}$$

Here,

$$L_p(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_p(E)T + pT^2 & \text{if } p \nmid N \end{cases},$$

・ロト ・ 四 ト ・ 日 ト ・ 日 ト

8/45

where $a_p(E) := 1 + p - \#E(\mathbb{F}_p)$ and $\epsilon \in \{-1, 0, 1\}$.

Conjecture (weak Birch–Swinnerton-Dyer) $\operatorname{ord}_{s=1}L(E, s) = \operatorname{rk}(E).$

The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

$$L(E,s) := \prod_{p} \frac{1}{L_p(E,p^{-s})}$$

Here,

$$L_{\rho}(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_{\rho}(E)T + pT^2 & \text{if } p \nmid N \end{cases},$$

where $a_p(E) := 1 + p - \#E(\mathbb{F}_p)$ and $\epsilon \in \{-1, 0, 1\}$.

Conjecture (weak Birch–Swinnerton-Dyer) $\operatorname{ord}_{s=1} L(E, s) = \operatorname{rk}(E).$

This is known for $\operatorname{ord}_{s=1} L(E, s) \leq 1$. Assume that $\operatorname{ord}_{s=1} L(E, s) = 0$.

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

The Tamagawa product is the finite product

$$\operatorname{Tam}(E) := \prod_{p \mid N} [E(\mathbb{Q}_p) : E_0(\mathbb{Q}_p)],$$

where $E_0(\mathbb{Q}_p)$ is the subgroup of points of $E(\mathbb{Q}_p)$ whose reduction is *nonsingular*. It can be computed by *Tate's algorithm*.

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

The Tamagawa product is the finite product

$$\operatorname{Tam}(E) := \prod_{p \mid N} [E(\mathbb{Q}_p) : E_0(\mathbb{Q}_p)],$$

where $E_0(\mathbb{Q}_p)$ is the subgroup of points of $E(\mathbb{Q}_p)$ whose reduction is *nonsingular*. It can be computed by *Tate's algorithm*.

The Tate-Shafarevich group is the finite group

$$\mathrm{III}(E) := \ker \left(H^2(\mathbb{Q}, E) \to H^2(\mathbb{R}, E) \times \prod_p H^2(\mathbb{Q}_p, E) \right).$$

13/45

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

The real period is the integral

$$\Omega(E) := \int_{E(\mathbb{R})} \omega_E,$$

where ω_E is the **Néron differential**.

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

The real period is the integral

$$\Omega(E) := \int_{E(\mathbb{R})} \omega_E,$$

where ω_E is the **Néron differential**. If *E* is given by a *minimal* Weierstrass equation $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$,

$$\omega_E = \frac{\mathrm{d}x}{2y + a_1 x + a_3}$$

15 / 45

イロト 不得 トイヨト イヨト ニヨー

Conjecture (strong Birch–Swinnerton-Dyer) $\frac{L(E,1)}{\Omega(E)} = \frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^2}.$

The LHS is the algebraic L-value and the RHS is the BSD quotient.

The real period is the integral

$$\Omega(E) := \int_{E(\mathbb{R})} \omega_E,$$

where ω_E is the **Néron differential**. If *E* is given by a *minimal* Weierstrass equation $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$,

$$\omega_E = \frac{\mathrm{d}x}{2y + a_1 x + a_3}$$

It is the least positive element of the real period lattice of E.

MFDB

$\triangle \rightarrow \text{Elliptic curves} \rightarrow \bigcirc \rightarrow 90 \rightarrow c \rightarrow 7$ Citation - Feedback - Hide Menu Elliptic curve with Cremona label 90c3 (LMFDB label 90.c7)

Minimal Weierstrass equation Show commands: Magma / Oscar / PariGP / SageMath Properties Introduction Label 90c3 Overview Random $y^{2} + xy + y = x^{3} - x^{2} - 122x + 1721$ (homogenize, simplify) Knowledge Mordell-Weil group structure L-functions Rational All $\mathbb{Z}/12\mathbb{Z}$ Modular forms **Torsion generators** Classical Maass Hilbert Bianchi (-9, 49)Conductor 90 -1119744000Varieties Discriminant - 273359449 Integral points i-invariant Elliptic curves over O СМ no Elliptic curves over $\mathbb{O}(\alpha)$ (-15, 7), (-9, 49), (-9, -41), (1, 39), (1, -41), (9, 31), (9, -41), (21, 79), (21, -101), (81, 679), (81, -761)Rank Genus 2 curves over O Torsion structure $\mathbb{Z}/12\mathbb{Z}$ Higher genus families Invariants Related objects Abelian varieties over Fa 90 $2 \cdot 3^2 \cdot 5$ Conductor: = Isogeny class 90c Fields $-1 \cdot 2^{12} \cdot 3^7 \cdot 5^3$ Discriminant: -1119744000_ Minimal quadratic twist 30a3 273359449 Number fields $-1 \cdot 2^{-12} \cdot 3^{-1} \cdot 5^{-3} \cdot 11^3 \cdot 59^3$ All twists i-invariant L-function p-adic fields Endomorphism ring Symmetric square L-function Geometric endomorphism (no potential complex Modular form 90.2 a.c. Representations multiplication) rina: Dirichlet characters Downloads Sato-Tate group: SU(2) Artin representations Faltings height: 0.42032494899046121656963281857... q-expansion to text Stable Faltings height: -0.12898119534359362912798979989.... All stored data to text Groups Code to Magma abc quality: 1 0401071880140842 Galois groups Code to Oscar Szpiro ratio: 6.308958268204... Sato-Tate groups Code to PariGP Code to SageMath **BSD** invariants Database Underlying data 0 Analytic rank: Learn more Regulator: L(E, 1) $\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)$ Source and acknowledgments Real period: 1.3375959945886485057653424429.... $\#tor(E)^2$ $\Omega(E)$ Completeness of the data $144 = (2^2 \cdot 3) \cdot 2^2 \cdot 3$ Tamagawa product: Reliability of the data 12 Torsion order: Elliptic curve labels Analytic order of Ш: 1 (exact) Congregent number curves Q Q $L(E, 1) \approx 1.3375959945886485057653424429$ Special value: Picture description

17 / 45

Observe that BSD quotients have bounded denominators.

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$\operatorname{tor}(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}$$

٠

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$\operatorname{tor}(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}$$

Corollary

$$\operatorname{ord}_{p}\left(\frac{\operatorname{Tam}(E) \cdot \#\operatorname{III}(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -8 & \text{if } p = 2\\ -4 & \text{if } p = 3\\ -2 & \text{if } p = 5, 7\\ 0 & \text{if } p \geq 11 \end{cases}$$

٠

•

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$\operatorname{tor}(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}$$

Corollary

$$\operatorname{ord}_{p}\left(\frac{\operatorname{Tam}(E) \cdot \#\operatorname{III}(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -8 & \text{if } p = 2\\ -4 & \text{if } p = 3\\ -2 & \text{if } p = 5, 7\\ 0 & \text{if } p \geq 11 \end{cases}$$

There are typically cancellations between tor(E) and Tam(E).

٠

Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order $n \ge 4$.

- If n = 4, then 2 | Tam(E), except for 15a7, 15a8, 17a4.
- ▶ If $n \ge 5$, then $n \mid \text{Tam}(E)$, except for 11a3, 14a4, 14a6, 20a2.
- ▶ If n = 9, then 27 | Tam(E).

Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order $n \ge 4$.

- ▶ If n = 4, then 2 | Tam(E), except for 15a7, 15a8, 17a4.
- ▶ If $n \ge 5$, then $n \mid \text{Tam}(E)$, except for 11a3, 14a4, 14a6, 20a2.
- ▶ If n = 9, then 27 | Tam(E).

Corollary

With seven exceptions,

$$\operatorname{ord}_{p}\left(\frac{\operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -5 & \text{if } p = 2 \text{ and } \operatorname{tor}(E) \cong C_{2} \oplus C_{2n} \\ -3 & \text{if } p = 2 \text{ and } \operatorname{tor}(E) \ncong C_{2} \oplus C_{2n} \\ -2 & \text{if } p = 3 \text{ and } \operatorname{tor}(E) \cong C_{3} \\ -1 & \text{if } p = 3 \text{ and } \operatorname{tor}(E) \ncong C_{3} \\ -1 & \text{if } p = 5, 7 \\ 0 & \text{if } p \ge 11 \end{cases}$$

The seven exceptions

Let BSD(E) denote the BSD quotient.

E	11 <i>a</i> 3	14 <i>a</i> 4	14 <i>a</i> 6	15 <i>a</i> 7	15 <i>a</i> 8	17 <i>a</i> 4	20 <i>a</i> 2
tor(E)	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₆	<i>C</i> ₄	<i>C</i> ₄	<i>C</i> ₄	<i>C</i> ₆
$\operatorname{Tam}(E)$	1	2	2	1	1 1		3
Ш(<i>E</i>)	1	1	1	1	1	1	1
BSD(<i>E</i>)	$\frac{1}{5^2}$	$\frac{1}{2\cdot 3^2}$	$\frac{1}{2\cdot 3^2}$	$\frac{1}{2^4}$	$\frac{1}{2^4}$	$\frac{1}{2^4}$	$\frac{1}{2^2 \cdot 3}$

24 / 45

The seven exceptions

Let BSD(E) denote the BSD quotient.

E	11 <i>a</i> 3	14 <i>a</i> 4	14 <i>a</i> 6	15 <i>a</i> 7	15 <i>a</i> 8	17 <i>a</i> 4	20 <i>a</i> 2
tor(E)	<i>C</i> ₅	<i>C</i> ₆	<i>C</i> ₆	<i>C</i> ₄	<i>C</i> ₄	<i>C</i> ₄	<i>C</i> ₆
$\operatorname{Tam}(E)$	1	2	2	1	1	1	3
Ш(E)	1	1	1	1	1	1	1
$\mathrm{BSD}(E)$	$\frac{1}{5^2}$	$\frac{1}{2\cdot 3^2}$	$\frac{1}{2\cdot 3^2}$	$\frac{1}{2^4}$	$\frac{1}{2^4}$	$\frac{1}{2^4}$	$\frac{1}{2^2 \cdot 3}$
$c_0(E)$	5	3	3	2	4	4	2
$c_0(E) BSD(E)$	$\frac{1}{5}$	$\frac{1}{2\cdot 3}$	$\frac{1}{2\cdot 3}$	$\frac{1}{2^{3}}$	$\frac{1}{2^2}$	$\frac{1}{2^2}$	$\frac{1}{2\cdot 3}$

Here, $c_0(E)$ is the **Manin constant** in the LMFDB.

LMFDB

Introduc Overview Universe L-function Rational Modular Classica Hilbert Varieties Elliptic c Elliptic c Genus 2 Higher g Abelian Fields Number p-adic fie Represe Dirichlet Artin rep Groups Galois q Sato-Tat Databas

Citation · Feedback · Hide Menu

Elliptic curve with Cremona label 11a3 (LMFDB label 11.a3)

tion		BSD invariants			Show comman	ds: Magma / C	Oscar / Pari	GP / Sage	Math 💿	Properties	\bigcirc
-	Random Knowledge	Analytic rank: Regulator:	0 1							Label	11a3
ns		Real period:	6.346046521397	7671084439730838						1	
	All	Tamagawa product:	1								15 19
	7.01	Torsion order:	5								_
form	IS	Analytic order of LU:	1 (exact)								\sim
	Maass	Special value:	$L(E, 1) \approx 0.2538$	34186085591068433	3775892335					and the second se	
	Bianchi	BSD formula								Conductor	11
irves irves curv	over \mathbb{Q} over $\mathbb{Q}(\alpha)$ es over \mathbb{Q}	0.253841861 pprox L(E, 1 Modular invariant	$= \frac{\#\operatorname{III}(E/\mathbb{Q}) \cdot \mathfrak{g}}{\mathfrak{g}}$	$\Omega_E \cdot \operatorname{Reg}(E/\mathbb{Q}) \cdot \prod_{\#E(\mathbb{Q})^2_{tor}}$	$\frac{p}{p}c_p}{p} \approx \frac{1 \cdot 6.346047 \cdot 5^2}{5^2}$	$\frac{1.000000 \cdot 1}{2} \approx$	0.25384186	1		Discriminant j-invariant CM Rank Torsion structure	-11 -4096 no 0 Z/5Z
enus	families	Modular form 11.2.a	а							Balance a chile see	
ariet	ies over \mathbb{F}_q	- 2 2 - 4	5 - 6 - 7 -	0 = 10 11 =	12 . 12 . 14	15 . 16 1	7 . 19 .	- (20)		Related objects	
		$q - 2q^2 - q^3 + 2q^4 + q^5 + 2q^5 - 2q^i - 2q^{i0} + q^{11} - 2q^{12} + 4q^{13} + 4q^{14} - q^{15} - 4q^{16} - 2q^{11} + 4q^{18} + O(q^{20})$								Isogeny class 11a Minimal quadratic twist 11a3	
rielas		T of more coefficients,		as sector to the	ign.					L-function	
ius		Modular degree: 5								Symmetric square L-	function
ntati	ons	$\Gamma_0(N)$ -optimal: no								Symmetric cube L-fu	nction
char	acters	Manin constant: 5								Modular form 11.2.a.	а
reser	ntations	Local data								Downloads	
		Eoouradu								q-expansion to text	
ouns		This elliptic curve is s	emistable. There	is only one prime	of bad reduction:					All stored data to tex	t
e aro	uns									Code to Magma	
9.0		prime	amagawa numb	er Kodaira symb	ol Reduction typ	e Root num	ber ord(N)	ord(Δ)	$\operatorname{ord}(j)_{-}$	Code to Oscal	
•		11	1	I_1	Split multiplicati	/e -1	1	1	1	Code to SageMath	
										Underlying data	
		Galois representa	tions							Learn more	
		The <u><i>l</i>-adic Galois rep</u> prime <i>l</i>	resentation has n	naximal image for <i>L</i> -adic image	all primes ℓ except t	hose listed in t	the table be	low.		Source and acknowle Completeness of the Reliability of the data	edgments data
		5	5B.1.1	25.120.0.1						Elliptic curve labels	
							4 m b	<	4 E 6	Congruent number c	urves

The Manin constant

Theorem (Modularity, version L)

There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that

```
L(f_E,s)=L(E,s).
```

In particular, this defines a differential $f_E(q)dq$ on $X_0(N)$.

The Manin constant

Theorem (Modularity, version *L*) There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that $L(f_E, s) = L(E, s).$

In particular, this defines a differential $f_E(q)dq$ on $X_0(N)$.

Theorem (Modularity, version $X_{\mathbb{Q}}$) There is a finite morphism $\phi_E : X_0(N) \twoheadrightarrow E$ defined over \mathbb{Q} such that

$$\phi_E^*\omega_E = c_0(E) \cdot f_E(q) \mathrm{d}q,$$

for some positive integer $c_0(E)$.

The Manin constant

Theorem (Modularity, version *L*) There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that $L(f_E, s) = L(E, s).$

In particular, this defines a differential $f_E(q)dq$ on $X_0(N)$.

Theorem (Modularity, version $X_{\mathbb{Q}}$) There is a finite morphism $\phi_E : X_0(N) \rightarrow E$ defined over \mathbb{Q} such that

$$\phi_E^*\omega_E = c_0(E) \cdot f_E(q) \mathrm{d}q,$$

for some positive integer $c_0(E)$.

Conjecturally $c_0(E) = 1$ for all $\Gamma_0(N)$ -optimal elliptic curves (known in the semistable case!), but the seven exceptions are not $\Gamma_0(N)$ -optimal.

Conjecture

With no exceptions,

$$\operatorname{ord}_{\rho}\left(\frac{c_0(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}\right) \geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}$$

Conjecture

With no exceptions,

$$\operatorname{ord}_{p}\left(\frac{c_{0}(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}$$

This follows from Lorenzini's theorem, but the bound for p = 2 holds for $tor(E) \cong C_2 \oplus C_{2n}$, and the bound for p = 3 holds for $tor(E) \cong C_3$.

Conjecture

With no exceptions,

$$\operatorname{ord}_{p}\left(\frac{c_{0}(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}$$

This follows from Lorenzini's theorem, but the bound for p = 2 holds for $tor(E) \cong C_2 \oplus C_{2n}$, and the bound for p = 3 holds for $tor(E) \cong C_3$.

Conjecture

Assume that $tor(E) \cong C_3$. Then $3 \mid c_0(E) \cdot Tam(E) \cdot \#III(E)$.

Conjecture

With no exceptions,

$$\operatorname{ord}_{p}\left(\frac{c_{0}(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}$$

This follows from Lorenzini's theorem, but the bound for p = 2 holds for $tor(E) \cong C_2 \oplus C_{2n}$, and the bound for p = 3 holds for $tor(E) \cong C_3$.

Conjecture

Assume that $tor(E) \cong C_3$. Then $3 \mid c_0(E) \cdot Tam(E) \cdot \#III(E)$.

I can prove this under the strong Birch–Swinnerton-Dyer conjecture.

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$(1+p-T_p)\cdot\int_0^\infty f(q)\mathrm{d}q=\sum_{a=1}^{p-1}\int_0^{a\over p}f(q)\mathrm{d}q.$$

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$(1+p-T_p)\cdot\int_0^\infty f(q)\mathrm{d}q=\sum_{a=1}^{p-1}\int_0^{\frac{a}{p}}f(q)\mathrm{d}q.$$

If $f = f_E$ and p is odd, this says that

$$(1+p-a_p(E))\cdot(-L(E,1))=rac{\Omega(E)}{c_0(E)}\cdot n,\quad n\in\mathbb{Z}.$$

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$(1+p-T_p)\cdot\int_0^\infty f(q)\mathrm{d}q=\sum_{a=1}^{p-1}\int_0^{a\over p}f(q)\mathrm{d}q.$$

If $f = f_E$ and p is odd, this says that

$$(1+p-a_p(E))\cdot(-L(E,1))=rac{\Omega(E)}{c_0(E)}\cdot n,\quad n\in\mathbb{Z}.$$

If the strong Birch-Swinnerton-Dyer conjecture holds,

$$(1+p-a_p(E))\cdot rac{c_0(E)\cdot \operatorname{Tam}(E)\cdot \#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}\in \mathbb{Z}.$$

4 ロ ト () + () +

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$(1+p-T_p)\cdot\int_0^\infty f(q)\mathrm{d}q = \sum_{a=1}^{p-1}\int_0^{a\over p}f(q)\mathrm{d}q.$$

If $f = f_E$ and p is odd, this says that

$$(1+p-a_p(E))\cdot(-L(E,1))=rac{\Omega(E)}{c_0(E)}\cdot n,\quad n\in\mathbb{Z}.$$

If the strong Birch-Swinnerton-Dyer conjecture holds,

$$(1+p-a_p(E))\cdot rac{c_0(E)\cdot \operatorname{Tam}(E)\cdot \#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}\in \mathbb{Z}.$$

If $tor(E) \cong C_3$, it suffices to find an odd prime $p \nmid N$ such that

$$1+p-a_p(E)\equiv 3 \mod 9.$$

In terms of $\rho_{E,3}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_3)$,

 $p = \det(\rho_{E,3}(\operatorname{Fr}_p)), \qquad a_p(E) = \operatorname{tr}(\rho_{E,3}(\operatorname{Fr}_p)).$

In terms of $\rho_{E,3}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_3)$,

$$p = \det(\rho_{E,3}(\operatorname{Fr}_p)), \qquad a_p(E) = \operatorname{tr}(\rho_{E,3}(\operatorname{Fr}_p)).$$

Chebotarev's density theorem says that Fr_{p} is uniformly distributed in $\operatorname{im}(\rho_{E,3})$, so it suffices to find a matrix $M \in \operatorname{im}(\rho_{E,3})$ such that

$$3 = 1 + \det(M) - \operatorname{tr}(M).$$

In terms of $\rho_{E,3}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_3)$,

$$p = \det(\rho_{E,3}(\operatorname{Fr}_p)), \qquad a_p(E) = \operatorname{tr}(\rho_{E,3}(\operatorname{Fr}_p)).$$

Chebotarev's density theorem says that Fr_{p} is uniformly distributed in $\operatorname{im}(\rho_{E,3})$, so it suffices to find a matrix $M \in \operatorname{im}(\rho_{E,3})$ such that

$$3 = 1 + \det(M) - \operatorname{tr}(M).$$

Theorem (Rouse-Sutherland-Zureick-Brown, 2022)

Assume that $tor(E) \cong C_3$. Then $im(\rho_{E,3})$ is one of the explicit matrix subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10, 27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

In terms of $\rho_{E,3}$: $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\mathbb{Q}_3)$,

$$p = \det(\rho_{E,3}(\operatorname{Fr}_p)), \qquad a_p(E) = \operatorname{tr}(\rho_{E,3}(\operatorname{Fr}_p)).$$

Chebotarev's density theorem says that Fr_{p} is uniformly distributed in $\operatorname{im}(\rho_{E,3})$, so it suffices to find a matrix $M \in \operatorname{im}(\rho_{E,3})$ such that

$$3 = 1 + \det(M) - \operatorname{tr}(M).$$

Theorem (Rouse-Sutherland-Zureick-Brown, 2022)

Assume that $tor(E) \cong C_3$. Then $im(\rho_{E,3})$ is one of the explicit matrix subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10, 27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

Each $im(\rho_{E,3})$ contains a matrix M such that 3 = 1 + det(M) - tr(M), except for 9.72.0.1, but Tate's algorithm shows $3 \mid Tam(E)$ in this case.

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$\operatorname{ord}_p\left(rac{c_0(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}
ight)\geq egin{cases} -3&p=2\\ -1&p=3,5,7\\ 0&p\geq 11 \end{cases}$$

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$\operatorname{ord}_p\left(rac{c_0(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}
ight)\geq egin{cases} -3&p=2\\ -1&p=3,5,7\\ 0&p\geq 11 \end{cases}$$

Note the similarity to a conjecture by Agashe-Stein (2005) that

$$\frac{2 \cdot c_0(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)} \in \mathbb{Z}.$$

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$\operatorname{ord}_p\left(rac{c_0(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}
ight)\geq egin{cases} -3&p=2\\ -1&p=3,5,7\\ 0&p\geq 11 \end{cases}$$

Note the similarity to a conjecture by Agashe-Stein (2005) that

$$\frac{2 \cdot c_0(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)} \in \mathbb{Z}.$$

This is known for semistable optimal elliptic curves by Melistas (2023), building upon Česnavičius (2018) and Byeon–Kim–Yhee (2020).

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$\operatorname{ord}_p\left(rac{c_0(E)\cdot\operatorname{Tam}(E)\cdot\#\operatorname{III}(E)}{\#\operatorname{tor}(E)^2}
ight)\geq egin{cases} -3&p=2\\ -1&p=3,5,7\\ 0&p\geq 11 \end{cases}$$

Note the similarity to a conjecture by Agashe-Stein (2005) that

$$\frac{2 \cdot c_0(E) \cdot \operatorname{Tam}(E) \cdot \# \operatorname{III}(E)}{\# \operatorname{tor}(E)} \in \mathbb{Z}.$$

This is known for semistable optimal elliptic curves by Melistas (2023), building upon Česnavičius (2018) and Byeon–Kim–Yhee (2020).

Does this generalise to $\mathbb{F}_q(C)$ or $\operatorname{ord}_{s=1}L(E,s) \ge 1$?