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Mordell's theorem

Let E be an elliptic curve over QQ given by a Weierstrass equation

y2—|—alxy—|—a3y:X3+32x2+a4x+ae, a; € Q.
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Mordell's theorem
Let E be an elliptic curve over QQ given by a Weierstrass equation
y2—|—alxy—|—a3y:X3+32x2+a4x+ae, a; € Q.

Its rational points forms a group E(Q) under a geometric addition law.

Theorem (Mordell)
E(Q) 2 tor(E) & Z(5),
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Mordell's theorem
Let E be an elliptic curve over QQ given by a Weierstrass equation
y2—|—alxy—|—a3y:X3+32x2+a4x+35, a; € Q.

Its rational points forms a group E(Q) under a geometric addition law.

Theorem (Mordell)
E(Q) 2 tor(E) & Z(5),

The torsion subgroup tor(E) is well understood.

Theorem (Mazur)

C, n=1,23,4,5,67,8,9,10,12

tor(E) =
Or( ) {CQ@CQ,-, n=1,234
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Mordell's theorem
Let E be an elliptic curve over QQ given by a Weierstrass equation
y2—|—alxy—|—a3y:X3+32x2+a4x+36, a; € Q.

Its rational points forms a group E(Q) under a geometric addition law.

Theorem (Mordell)
E(Q) 2 tor(E) & Z(5),

The torsion subgroup tor(E) is well understood.

Theorem (Mazur)

C, n=1,23,4,5,67,8,9,10,12

tor(E) =
Or( ) {CQ@CQ,-, n=1,234

The rank rk(E) is somewhat mysterious.
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The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

1
L(E,s) ::HW.
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The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product
L(E,s) := H _
’ . p LP(Ea pis) .

Here,
1+eT ifp| N

L,(E, T):= ;
o(E.T) {lap(E)T+pT2 if pt N

where a,(E) :=1+ p— #E(F,) and e € {—1,0,1}.
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The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product
L(E,s) := H _
’ . p LP(Ea pis) .

Here,
1+eT ifp| N

L,(E, T):= ;
o(E.T) {lap(E)T+pT2 if pt N

where a,(E) :=1+ p— #E(F,) and e € {—1,0,1}.

Conjecture (weak Birch-Swinnerton-Dyer)
ords—1L(E,s) = rk(E).
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The Birch-Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product
L(E,s) := H _
’ . p LP(Ea pis) .

Here,
1+eT ifp| N

L,(E,T):= . )
ol ) {lap(E)TerT2 if pt N
where a,(E) :=1+ p— #E(F,) and e € {—1,0,1}.

Conjecture (weak Birch-Swinnerton-Dyer)
ords—1L(E,s) = rk(E).

This is known for ords—;L(E,s) < 1. Assume that ords_;L(E,s) = 0.
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)

L(E,1)  Tam(E)-#III(E)
Q) #tor(E)>?
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.
» The Tamagawa product is the finite product

Tam(E) := H[E(Qp)  Eo(Qp)]s

pIN

where Eo(Q),) is the subgroup of points of £(Q,) whose reduction is
nonsingular. 1t can be computed by Tate's algorithm.
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.
» The Tamagawa product is the finite product

Tam(E) := H[E(Qp) 1 Bo(Qp)],

pIN

where Eo(Q),) is the subgroup of points of £(Q,) whose reduction is
nonsingular. 1t can be computed by Tate's algorithm.

» The Tate—Shafarevich group is the finite group

II(E) := ker <H2(Q, E) = H*(R, E) x [ H*(Qp, E)> .

p
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.
» The real period is the integral

Q(E)::L/, WE,
E(R)

where wg is the Néron differential.
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.
» The real period is the integral

Q(E) = / WE,
E(R)

where wg is the Néron differential. If E is given by a minimal
Weierstrass equation y? 4+ aixy + asy = x> + aox® + asx + ag,

dx

wE:2y+alx+33'
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The Birch-Swinnerton-Dyer quotient

Conjecture (strong Birch—Swinnerton-Dyer)
L(E,1)  Tam(E)- #II(E)

Q(E) #tor(E)>?

The LHS is the algebraic L-value and the RHS is the BSD quotient.

» The real period is the integral

Q(E) = / WE,
E(R)

where wg is the Néron differential. If E is given by a minimal
Weierstrass equation y? 4+ aixy + asy = x> + aox® + asx + ag,

dx

wE:2y+alx+33'

It is the least positive element of the real period lattice of E.
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_ Minimal Weierstrass equation

Overview  Random
Universe Knowledge

Lfunctions | Mordell-Weil group structure

P4y +y=a® -2 - 122c + 1721 (homogenize, simplify)

Rational All z/12z
G=ge] | [ Torsion generators
Hilbert Bianchi

(-9,49)

Elliptic curves over
Elliptic curves over Q{a)

(~15,7), (—9,49), (-9, -41), (1,39), (1, -41), (9,31), (9, —41), (21,79), (21, -101), (81,679), (81, -761)
Genus 2 curves over

Show commands: Magma / Oscar / PariGP / SageMath

Higher genus families Invariants
Abelian varieties over Fy
Conductor 920 = 235
_ i t 1110744000 = -1.2%.37.58
Number fields J-invariant - i = 12723159118 509
p-adic fields Endomorphism ring Z
_ Geometric endomorphism - (no potential complex
ring: multiplication)
Dirichlet characters Sato-Tate group: SU(2)
Artin representations Faltings height 0.42032494800046121656063281857 ...
_ Stable Faltings height: ~0.12808119534359362912708079989 . ..
Galos groups abe quality: 1.0401971880140842. ..
Sato-Tate groups Szpirg ratio: 6.308058268204 ...
Databsse BSD invariants
Analytic rank 0
Regulator: 1 L(E, 1) Tam(E) - #1I(E)
Real period: 1.3375059045886485057653424420. ., - T . =2
Tam;;:wa product 144 = (22.3).22.3 QUAE) #tor(E)>
Torsion order: 12
W: 1 (exact) =] 5

Special value:

L(E, 1) = 1.3375059945886485057653424420

‘Conductor 90
Discriminant 1110744000
jrinvariant e
cm no

Rank 0

Torsion structure  Z/127

Isogeny class 90C

Minimal quadratic twist 30a3
Al twists

L-function

‘Symmetric square L-function
Modular form 90.2.a.c

g-expansion to text
All stored data to text
Code to Magma
Code to Oscar

Code to ParGP
Code to SageMath
Underlying data

Source and acknowledgments
Completeness of the data
Reliability of the data

Elliptic curve labels

Cengrdent numbeFcunves) O (v
Picture description 17/45



Denominator bounds

Observe that BSD quotients have bounded denominators.
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Denominator bounds

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

C, n=1,23,4,56,78,9, 10,12

tor(E) =
OI'( ) {CQ@CQ,, n:1,2,374
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Denominator bounds

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

C, n=1,23,4,567,8,9,10,12
tor(E) = :
G G, n:1,2,374
Corollary
-8 ifp=2
ord Tam(E) - #11(E) < —4 ifp=3
P #tor(E)? “)1-2 ifp=5,7"

0 ifp>11
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Denominator bounds

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

C, n=1,2,3,4,5,6,7,8,9,10,12
tor(E) = :
GG, n= 1, 2,3,4
Corollary
-8 ifp=2
ord <Tam(E) . #H_I(E)) < —4 ifp=3
P #tor(E)? “)1-2 ifp=5,7"

0 ifp>11

There are typically cancellations between tor(E) and Tam(E).

21/45



Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order n > 4.
» |fn=4, then 2 | Tam(E), except for 15a7, 15a8, 17a4.
» /fn>5, then n| Tam(E), except for 11a3, 14a4, 14a6, 20a2.
» |fn=09, then 27 | Tam(E).

22/45



Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order n > 4.
» |fn=4, then 2 | Tam(E), except for 15a7, 15a8, 17a4.
» /fn>5, then n| Tam(E), except for 11a3, 14a4, 14a6, 20a2.
» |fn=09, then 27 | Tam(E).

Corollary
With seven exceptions,

—5 ifp=2andtor(E) = G ® G
-3 ifp=2andtor(E) % G @ G
d (Tam(E) : #HI(E)> _ )2 ifp=3andtor(E)= G
P #tor(E)? “|-1 ifp=3andtor(E) ¥ G
—1 ifp=5,7
0 ifp>11
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The seven exceptions

Let BSD(E) denote the BSD quotient.

E 11a3 | 14a4 | 1426 | 15a7 | 15a8 | 17a4 | 20a2
tor(E) Gs Ge (@5 Gy Gy Gy Gs
Tam(E) 1 2 2 1 1 1 3
II(E) 1 1 1 1 1 1 1
BSD(E) | & |33 |33 | o | 2 | 5 | 23
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The seven exceptions

Let BSD(E) denote the BSD quotient.

E 11a3 | 1424 | 14a6 | 15a7 | 15a8 | 17a4 | 20a2
tor(E) G | G| G| G| G| G| G
Tam(E) 1 2 2 1 1 1 3
I(E) 1 1 1 1 1 1 1
BSD(E) | & | | o | k| k| 4|
co(E) 5 3 3 2 4 4 2
cw(E)BSD(E) | % I O L 1| &

Here, co(E) is the Manin constant in the LMFDB.
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O — Elliptic curves - @ — 11 —a—3 Citation - Feedback - Hide Menu

MFD Elliptic curve with Cremona label 11a3 (LMFDB label 11.a3)
Introduction BSD invariants Show commands: Magma / Oscar / PariGP / SageMath Properties @
Overview  Random Analytic rank: 0 Label 11a3
Universe Knowledge Regu\amr 1
i Real period: 6.3460465213077671084439730835 ...
e ——— Tamagawa product: 1
Torsion order: 5 ~
Medular forms Analytic order of LLI: 1 ( exact)
Classical Maass Special value L(E.1) = 0.253841860853501068433775802335
Hilbert Bianchi BSD formula ST 1
Varieties , Discriminant 1
. FLU(E/Q) Qg -Reg(E/Q) - [, 1-6.346047 -1.000000 - 1 N o
e —— 0.253841861 ~ L(E,1) = ZEO ~ = = 0.253841861 Jc-l’ljlvarlﬂm o
Elliptic curves over Q(a) . R
) Modular invariants Rank
e T G  Tocular invariants e
Higher genus families Modular form 11.2.a.a T ——
Abelian varieties over i . i ) ated objects
- 02 20+ 2 202 200+ 240+ g%+ dg™ ¢ 4g® 207+ 4¢™ 4 O(g™) Isogeny class 11a
Fields Minimal quadratic twist 1123
Number fields For more coefficients, see the Downloads section to the right. All wists
L-function
DELSIESD Modular degree: 5 Symmetric square L-function
Representations Lo(NV)-optimal no Symmetric cube L-function
Diichiet chamciers Manin constant: 5 Modular form 11.2.2.a
Atin representations Local data Downloads
Groups g-expansion to text
This elliptic curve is semistable. There is only one prime of bad reduction All stored data to text
Galois groups P Y P - Code 1o Magma
STHEBEELS prime Tamagawa number Kodaira symbol Reduction type Root number ord(N) ord(4) ord(j) Code 1o Oscar
Code to PariGP
il n 1 I Split multiplicative -1 1 1 1 Code to SageMath
Underlying data
Galois representations [ —
The {-adic Galois representation has maximal image for all primes ¢ except those listed in the table below. Source and acknowledgments
Completeness of the data
prime / med-{ image /-adic image Reliability of the data
Elliptic curve labels
5 5811 2512001 "

Congruent number curves
Picture descripion
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The Manin constant

Theorem (Modularity, version L)
There is an eigenform fg € S,(T'o(N)) with eigenvalues a,(E) such that

L(fe,s) = L(E,s).

In particular, this defines a differential fg(q)dg on Xp(N).
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The Manin constant

Theorem (Modularity, version L)
There is an eigenform fg € S,(T'o(N)) with eigenvalues a,(E) such that

L(fe,s) = L(E,s).

In particular, this defines a differential fg(q)dg on Xp(N).

Theorem (Modularity, version Xp)
There is a finite morphism ¢ : Xo(N) — E defined over Q such that

¢ewe = co(E) - fe(q)dq,

for some positive integer co(E).

28/45



The Manin constant

Theorem (Modularity, version L)

There is an eigenform fg € S,(T'o(N)) with eigenvalues a,(E) such that
L(fe,s) = L(E,s).

In particular, this defines a differential fg(q)dg on Xp(N).

Theorem (Modularity, version Xp)
There is a finite morphism ¢ : Xo(N) — E defined over Q such that

¢ewe = co(E) - fe(q)dq,

for some positive integer co(E).

Conjecturally ¢o(E) =1 for all To(N)-optimal elliptic curves (known in
the semistable case!), but the seven exceptions are not I'g(/N)-optimal.
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A refined conjecture

Conjecture
With no exceptions,

-3 p=2
-1 p=3,57.
0 p>11

c(E) - Tam(E) - #111(E)
orty () 2
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A refined conjecture

Conjecture
With no exceptions,

-3 p=2
o(E) - Tam(E) - #111(E) -
ord, ( Jtor(EY? ) > 0—1 p ; i),15,7 .
p>

This follows from Lorenzini's theorem, but the bound for p = 2 holds for
tor(E) = G, @ Gy, and the bound for p = 3 holds for tor(E) & Gs.
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A refined conjecture

Conjecture
With no exceptions,

-3 p=2
o(E) - Tam(E) - #111(E) -
ord, ( Jtor(EY? ) > 0—1 p ; i),15,7 .
p>

This follows from Lorenzini's theorem, but the bound for p = 2 holds for
tor(E) = G, @ Gy, and the bound for p = 3 holds for tor(E) & Gs.

Conjecture
Assume that tor(E) = C3. Then 3| ¢(E) - Tam(E) - #III(E).
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A refined conjecture

Conjecture
With no exceptions,

-3 p=2
o(E) - Tam(E) - #111(E) -
ord, ( Jtor(EY? ) > 0—1 p ; i),15,7 .
p>

This follows from Lorenzini's theorem, but the bound for p = 2 holds for
tor(E) = G, @ Gy, and the bound for p = 3 holds for tor(E) & Gs.

Conjecture
Assume that tor(E) = C3. Then 3| ¢(E) - Tam(E) - #III(E).

| can prove this under the strong Birch—Swinnerton-Dyer conjecture.
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Modular symbols
If f € Sy(To(N)) and pt N, the Hecke operator T, acts on periods by

o] p—1 a
(1+p- Tp)-/o f(q)dq = Z/Op f(q)dgq.
a=1
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Modular symbols
If f € Sy(To(N)) and pt N, the Hecke operator T, acts on periods by

[e%s} p—1 a
(1+p-T,) /0 f(q)dg = Z/Op f(q)dg.
a=1

If f = fe and p is odd, this says that

(1+p—ap(E)) - (—L(E, 1)) =
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Modular symbols
If f € Sy(To(N)) and pt N, the Hecke operator T, acts on periods by

[e%s} p—1 a
(1+p-T,) /0 f(q)dg = Z/Op f(q)dg.
a=1

If f = fe and p is odd, this says that

aE)
cw(E) 7

If the strong Birch—Swinnerton-Dyer conjecture holds,

(14 p—ap(E)) - (—L(E,1)) = nez.

co(E) - Tam(E) - #11I(E)
#tor(E)?

(14+p—ap(E))- €Z.
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Modular symbols

If f € Sy(To(N)) and pt N, the Hecke operator T, acts on periods by

[e%s} p—1 a
(1+p-T,) /0 f(q)dg = Z/Op f(q)dg.
a=1

If f = fe and p is odd, this says that

aE)
cw(E) 7

If the strong Birch—Swinnerton-Dyer conjecture holds,

(14 p—ap(E)) - (—L(E,1)) = nez.

co(E) - Tam(E) - #11I(E)
#tor(E)?

If tor(E) = G, it suffices to find an odd prime p t N such that

(14+p—ap(E))- €Z.

1+p—ap(E)=3 mod 9.

37/45



3-adic Galois images
In terms of pe 3 : Gal(Q/Q) — GL2(Qj3),

p =det(pes(Frp)),  ap(E) = tr(pes(Frp)).
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3-adic Galois images
In terms of pe 3 : Gal(Q/Q) — GL2(Qj3),
p =det(pes(Frp)),  ap(E) = tr(pes(Frp)).

Chebotarev's density theorem says that Fr, is uniformly distributed in
im(pg 3), so it suffices to find a matrix M € im(pg 3) such that

3 =1+det(M) — tr(M).
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3-adic Galois images
In terms of pe 3 : Gal(Q/Q) — GL2(Qj3),
p =det(pes(Frp)),  ap(E) = tr(pes(Frp)).

Chebotarev's density theorem says that Fr, is uniformly distributed in
im(pg 3), so it suffices to find a matrix M € im(pg 3) such that

3 =1+det(M) — tr(M).

Theorem (Rouse-Sutherland—Zureick-Brown, 2022)

Assume that tor(E) = C3. Then im(pg3) is one of the explicit matrix
subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10,
27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.
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3-adic Galois images
In terms of pe 3 : Gal(Q/Q) — GL2(Qj3),
p =det(pes(Frp)),  ap(E) = tr(pes(Frp)).

Chebotarev's density theorem says that Fr, is uniformly distributed in
im(pg 3), so it suffices to find a matrix M € im(pg 3) such that

3 =1+det(M) — tr(M).

Theorem (Rouse-Sutherland—Zureick-Brown, 2022)

Assume that tor(E) = C3. Then im(pg3) is one of the explicit matrix
subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10,
27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

Each im(pg 3) contains a matrix M such that 3 = 1 4 det(M) — tr(M),
except for 9.72.0.1, but Tate's algorithm shows 3 | Tam(E) in this case.
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Concluding remarks

Theorem (A., 2023)

Assume the 3-part of the strong Birch-Swinnerton-Dyer conjecture. Then

-3 p=2
-1 p=3,57.
0 p>11

&(E) - Tam(E) - #111(E)
ordy < #tor(E)? ) =
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Concluding remarks

Theorem (A., 2023)

Assume the 3-part of the strong Birch—-Swinnerton-Dyer conjecture

-3 p=2
co(E) - Tam(E) - #III(E) B
oty (L )2 o b
p>

Note the similarity to a conjecture by Agashe-Stein (2005) that

2-¢o(E) - Tam(E) - #I11(E)
#tor(E)

€ Z.

. Then
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Concluding remarks

Theorem (A., 2023)

Assume the 3-part of the strong Birch-Swinnerton-Dyer conjecture. Then

-3 p=2
co(E) - Tam(E) - #III(E) B
oty (L )2 o b
p>

Note the similarity to a conjecture by Agashe-Stein (2005) that

2-¢o(E) - Tam(E) - #I11(E)
#tor(E)

This is known for semistable optimal elliptic curves by Melistas (2023),
building upon Cesnavitius (2018) and Byeon—Kim—Yhee (2020).

€ Z.
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Concluding remarks

Theorem (A., 2023)

Assume the 3-part of the strong Birch-Swinnerton-Dyer conjecture. Then

-3 p=2
co(E) - Tam(E) - #III(E) B
oty (L )2 o b
p>

Note the similarity to a conjecture by Agashe-Stein (2005) that

2-¢o(E) - Tam(E) - #I11(E)
#tor(E)

This is known for semistable optimal elliptic curves by Melistas (2023),
building upon Cesnavitius (2018) and Byeon—Kim—Yhee (2020).

€ Z.

Does this generalise to Fy(C) or ords—1L(E,s) > 17?
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