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Mordell’s theorem

Let E be an elliptic curve over Q given by a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ Q.

Its rational points forms a group E (Q) under a geometric addition law.

Theorem (Mordell)

E (Q) ∼= tor(E )⊕ Zrk(E).

The torsion subgroup tor(E ) is well understood.

Theorem (Mazur)

tor(E ) ∼=

{
Cn n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12

C2 ⊕ C2n n = 1, 2, 3, 4
.

The rank rk(E ) is somewhat mysterious.
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The Birch–Swinnerton-Dyer conjecture

Assume E has conductor N. The L-function of E is the infinite product

L(E , s) :=
∏
p

1

Lp(E , p−s)
.

Here,

Lp(E ,T ) :=

{
1± ϵT if p | N
1− ap(E )T + pT 2 if p ∤ N

,

where ap(E ) := 1 + p −#E (Fp) and ϵ ∈ {−1, 0, 1}.

Conjecture (weak Birch–Swinnerton-Dyer)

ords=1L(E , s) = rk(E ).

This is known for ords=1L(E , s) ≤ 1. Assume that ords=1L(E , s) = 0.
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The Birch–Swinnerton-Dyer quotient

Conjecture (strong Birch–Swinnerton-Dyer)

L(E , 1)

Ω(E )
=

Tam(E ) ·#X(E )

#tor(E )2
.
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The LHS is the algebraic L-value and the RHS is the BSD quotient.
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where E0(Qp) is the subgroup of points of E (Qp) whose reduction is
nonsingular. It can be computed by Tate’s algorithm.
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p|N

[E (Qp) : E0(Qp)],

where E0(Qp) is the subgroup of points of E (Qp) whose reduction is
nonsingular. It can be computed by Tate’s algorithm.

▶ The Tate–Shafarevich group is the finite group

X(E ) := ker

(
H2(Q,E ) → H2(R,E )×

∏
p

H2(Qp,E )

)
.
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The Birch–Swinnerton-Dyer quotient

Conjecture (strong Birch–Swinnerton-Dyer)

L(E , 1)

Ω(E )
=

Tam(E ) ·#X(E )

#tor(E )2
.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

▶ The real period is the integral

Ω(E ) :=

∫
E(R)

ωE ,

where ωE is the Néron differential. If E is given by a minimal
Weierstrass equation y2 + a1xy + a3y = x3 + a2x

2 + a4x + a6,

ωE =
dx

2y + a1x + a3
.

It is the least positive element of the real period lattice of E .
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L(E, 1)

Ω(E)
=

Tam(E) · #X(E)

#tor(E)2
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Denominator bounds

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

tor(E ) ∼=

{
Cn n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12

C2 ⊕ C2n n = 1, 2, 3, 4
.

Corollary

ordp

(
Tam(E ) ·#X(E )

#tor(E )2

)
≥


−8 if p = 2

−4 if p = 3

−2 if p = 5, 7

0 if p ≥ 11

.

There are typically cancellations between tor(E ) and Tam(E ).
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Torsion cancellations

Theorem (Lorenzini, 2010)
Assume that tor(E ) has a point of order n ≥ 4.

▶ If n = 4, then 2 | Tam(E ), except for 15a7, 15a8, 17a4.

▶ If n ≥ 5, then n | Tam(E ), except for 11a3, 14a4, 14a6, 20a2.

▶ If n = 9, then 27 | Tam(E ).

Corollary
With seven exceptions,

ordp

(
Tam(E ) ·#X(E )

#tor(E )2

)
≥



−5 if p = 2 and tor(E ) ∼= C2 ⊕ C2n

−3 if p = 2 and tor(E ) ̸∼= C2 ⊕ C2n

−2 if p = 3 and tor(E ) ∼= C3

−1 if p = 3 and tor(E ) ̸∼= C3

−1 if p = 5, 7

0 if p ≥ 11

.
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The seven exceptions

Let BSD(E ) denote the BSD quotient.

E 11a3 14a4 14a6 15a7 15a8 17a4 20a2

tor(E ) C5 C6 C6 C4 C4 C4 C6

Tam(E ) 1 2 2 1 1 1 3

X(E ) 1 1 1 1 1 1 1

BSD(E ) 1
52

1
2·32

1
2·32

1
24

1
24

1
24

1
22·3

c0(E ) 5 3 3 2 4 4 2

c0(E )BSD(E ) 1
5

1
2·3

1
2·3

1
23

1
22

1
22

1
2·3

Here, c0(E ) is the Manin constant in the LMFDB.
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The Manin constant

Theorem (Modularity, version L)
There is an eigenform fE ∈ S2(Γ0(N)) with eigenvalues ap(E ) such that

L(fE , s) = L(E , s).

In particular, this defines a differential fE (q)dq on X0(N).

Theorem (Modularity, version XQ)
There is a finite morphism ϕE : X0(N) ↠ E defined over Q such that

ϕ∗
EωE = c0(E ) · fE (q)dq,

for some positive integer c0(E ).

Conjecturally c0(E ) = 1 for all Γ0(N)-optimal elliptic curves (known in
the semistable case!), but the seven exceptions are not Γ0(N)-optimal.
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A refined conjecture

Conjecture
With no exceptions,

ordp

(
c0(E ) · Tam(E ) ·#X(E )

#tor(E )2

)
≥


−3 p = 2

−1 p = 3, 5, 7

0 p ≥ 11

.

This follows from Lorenzini’s theorem, but the bound for p = 2 holds for
tor(E ) ∼= C2 ⊕ C2n, and the bound for p = 3 holds for tor(E ) ∼= C3.

Conjecture
Assume that tor(E ) ∼= C3. Then 3 | c0(E ) · Tam(E ) ·#X(E ).

I can prove this under the strong Birch–Swinnerton-Dyer conjecture.
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Modular symbols

If f ∈ S2(Γ0(N)) and p ∤ N, the Hecke operator Tp acts on periods by

(1 + p − Tp) ·
∫ ∞

0

f (q)dq =

p−1∑
a=1

∫ a
p

0

f (q)dq.

If f = fE and p is odd, this says that

(1 + p − ap(E )) · (−L(E , 1)) =
Ω(E )

c0(E )
· n, n ∈ Z.

If the strong Birch–Swinnerton-Dyer conjecture holds,

(1 + p − ap(E )) ·
c0(E ) · Tam(E ) ·#X(E )

#tor(E )2
∈ Z.

If tor(E ) ∼= C3, it suffices to find an odd prime p ∤ N such that

1 + p − ap(E ) ≡ 3 mod 9.
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3-adic Galois images

In terms of ρE ,3 : Gal(Q/Q) → GL2(Q3),

p = det(ρE ,3(Frp)), ap(E ) = tr(ρE ,3(Frp)).

Chebotarev’s density theorem says that Frp is uniformly distributed in
im(ρE ,3), so it suffices to find a matrix M ∈ im(ρE ,3) such that

3 = 1 + det(M)− tr(M).

Theorem (Rouse–Sutherland–Zureick-Brown, 2022)
Assume that tor(E ) ∼= C3. Then im(ρE ,3) is one of the explicit matrix
subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10,
27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

Each im(ρE ,3) contains a matrix M such that 3 = 1 + det(M)− tr(M),
except for 9.72.0.1, but Tate’s algorithm shows 3 | Tam(E ) in this case.
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Concluding remarks

Theorem (A., 2023)
Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

ordp

(
c0(E ) · Tam(E ) ·#X(E )

#tor(E )2

)
≥


−3 p = 2

−1 p = 3, 5, 7

0 p ≥ 11

.

Note the similarity to a conjecture by Agashe–Stein (2005) that

2 · c0(E ) · Tam(E ) ·#X(E )

#tor(E )
∈ Z.

This is known for semistable optimal elliptic curves by Melistas (2023),
building upon Česnavičius (2018) and Byeon–Kim–Yhee (2020).

Does this generalise to Fq(C ) or ords=1L(E , s) ≥ 1?
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