Denominators of BSD quotients

David Ang

London School of Geometry and Number Theory

Wednesday, 31 July 2024

1 / 45

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q Q

Let E be an elliptic curve over $\mathbb Q$ given by a Weierstrass equation

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \qquad a_i \in \mathbb{Q}.
$$

Let E be an elliptic curve over $\mathbb Q$ given by a Weierstrass equation

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \qquad a_i \in \mathbb{Q}.
$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \text{tor}(E) \oplus \mathbb{Z}^{\text{rk}(E)}.$

Let E be an elliptic curve over $\mathbb Q$ given by a Weierstrass equation

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \qquad a_i \in \mathbb{Q}.
$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \text{tor}(E) \oplus \mathbb{Z}^{\text{rk}(E)}.$

The torsion subgroup $\text{tor}(E)$ is well understood.

Theorem (Mazur)

$$
tor(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}
$$

4 / 45

.

イロメ イ団 メイミメイ ヨメー ヨー

Let E be an elliptic curve over $\mathbb Q$ given by a Weierstrass equation

$$
y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6, \qquad a_i \in \mathbb{Q}.
$$

Its rational points forms a group $E(\mathbb{Q})$ under a geometric addition law. Theorem (Mordell)

 $E(\mathbb{Q}) \cong \text{tor}(E) \oplus \mathbb{Z}^{\text{rk}(E)}.$

The torsion subgroup $\text{tor}(E)$ is well understood.

Theorem (Mazur)

$$
tor(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}
$$

The rank $rk(E)$ is somewhat mysterious.

Assume E has conductor N . The L-function of E is the infinite product

$$
L(E,s):=\prod_{p}\frac{1}{L_{p}(E,p^{-s})}.
$$

Assume E has conductor N . The L-function of E is the infinite product

$$
L(E,s):=\prod_{p}\frac{1}{L_{p}(E,p^{-s})}.
$$

Here,

$$
L_p(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_p(E)T + pT^2 & \text{if } p \nmid N \end{cases}
$$

where $a_p(E) := 1 + p - \#E(\mathbb{F}_p)$ and $\epsilon \in \{-1, 0, 1\}$.

Assume E has conductor N . The L-function of E is the infinite product

$$
L(E,s):=\prod_{p}\frac{1}{L_{p}(E,p^{-s})}.
$$

Here,

$$
L_p(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_p(E)T + pT^2 & \text{if } p \nmid N \end{cases}
$$

8 / 45

where $a_p(E) := 1 + p - \#E(\mathbb{F}_p)$ and $\epsilon \in \{-1, 0, 1\}$.

Conjecture (weak Birch–Swinnerton-Dyer) $\operatorname{ord}_{s=1}L(E,s) = \operatorname{rk}(E).$

Assume E has conductor N . The L-function of E is the infinite product

$$
L(E,s):=\prod_{p}\frac{1}{L_{p}(E,p^{-s})}.
$$

Here,

$$
L_p(E, T) := \begin{cases} 1 \pm \epsilon T & \text{if } p \mid N \\ 1 - a_p(E)T + pT^2 & \text{if } p \nmid N \end{cases}
$$

where $a_p(E) := 1 + p - \#E(\mathbb{F}_p)$ and $\epsilon \in \{-1, 0, 1\}$.

Conjecture (weak Birch–Swinnerton-Dyer) $\operatorname{ord}_{s=1}L(E,s) = \operatorname{rk}(E).$

This is known for $\text{ord}_{s=1}L(E,s) \leq 1$. Assume that $\text{ord}_{s=1}L(E,s) = 0$.

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

 \blacktriangleright The Tamagawa product is the finite product

$$
\mathrm{Tam}(E):=\prod_{\rho|N}[E(\mathbb{Q}_\rho):E_0(\mathbb{Q}_\rho)],
$$

where $E_0(\mathbb{Q}_p)$ is the subgroup of points of $E(\mathbb{Q}_p)$ whose reduction is nonsingular. It can be computed by Tate's algorithm.

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

 \blacktriangleright The Tamagawa product is the finite product

$$
\mathrm{Tam}(E):=\prod_{\rho|N}[E(\mathbb{Q}_\rho):E_0(\mathbb{Q}_\rho)],
$$

where $E_0(\mathbb{Q}_p)$ is the subgroup of points of $E(\mathbb{Q}_p)$ whose reduction is nonsingular. It can be computed by Tate's algorithm.

 \blacktriangleright The Tate–Shafarevich group is the finite group

$$
\mathrm{III}(E) := \ker \left(H^2(\mathbb{Q}, E) \to H^2(\mathbb{R}, E) \times \prod_p H^2(\mathbb{Q}_p, E) \right).
$$

13 / 45

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

 \blacktriangleright The real period is the integral

$$
\Omega(E):=\int_{E(\mathbb{R})}\omega_E,
$$

where ω_F is the **Néron differential**.

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

 \blacktriangleright The real period is the integral

$$
\Omega(E):=\int_{E(\mathbb{R})}\omega_E,
$$

where ω_F is the **Néron differential**. If E is given by a *minimal* Weierstrass equation $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$,

$$
\omega_E = \frac{\mathrm{d}x}{2y + a_1x + a_3}
$$

.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

15 / 45

Conjecture (strong Birch–Swinnerton-Dyer) $L(E, 1)$ $\frac{I(E,1)}{\Omega(E)} = \frac{\mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\# \mathrm{tor}(E)^2}$ $\frac{m}{\text{#tor}(E)^2}$.

The LHS is the algebraic L-value and the RHS is the BSD quotient.

 \blacktriangleright The real period is the integral

$$
\Omega(E):=\int_{E(\mathbb{R})}\omega_E,
$$

where ω_F is the **Néron differential**. If E is given by a *minimal* Weierstrass equation $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$,

$$
\omega_E = \frac{\mathrm{d}x}{2y + a_1x + a_3}.
$$

It is the least positive element of the real period lattice of E.

LMFDB

$\hat{\Box} \rightarrow$ Elliptic curves \rightarrow 0 \rightarrow 90 \rightarrow c \rightarrow 7 Elliptic curve with Cremona label 90c3 (LMFDB label 90.c7)

17 / 45

Observe that BSD quotients have bounded denominators.

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$
tor(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}
$$

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$
tor(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}
$$

Corollary

$$
\operatorname{ord}_p\left(\frac{\operatorname{Tam}(E)\cdot\#\amalg(E)}{\#\operatorname{tor}(E)^2}\right) \ge \begin{cases} -8 & \text{if } p=2\\ -4 & \text{if } p=3\\ -2 & \text{if } p=5,7\\ 0 & \text{if } p\ge 11 \end{cases}
$$

.

Observe that BSD quotients have bounded denominators.

Theorem (Mazur)

$$
tor(E) \cong \begin{cases} C_n & n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12 \\ C_2 \oplus C_{2n} & n = 1, 2, 3, 4 \end{cases}
$$

Corollary

$$
\operatorname{ord}_{p}\left(\frac{\operatorname{Tam}(E) \cdot \#\amalg(E)}{\#\operatorname{tor}(E)^{2}}\right) \geq \begin{cases} -8 & \text{if } p = 2 \\ -4 & \text{if } p = 3 \\ -2 & \text{if } p = 5, 7 \\ 0 & \text{if } p \geq 11 \end{cases}.
$$

There are typically cancellations between $\text{tor}(E)$ and $\text{Tam}(E)$.

Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order $n \geq 4$.

- ▶ If $n = 4$, then $2 | \text{Tam}(E)$, except for 15a7, 15a8, 17a4.
- ▶ If $n \ge 5$, then $n | \text{Tam}(E)$, except for 11a3, 14a4, 14a6, 20a2.
- If $n = 9$, then $27 | \text{Tam}(E)$.

Torsion cancellations

Theorem (Lorenzini, 2010)

Assume that tor(E) has a point of order $n \geq 4$.

- If $n = 4$, then $2 | \text{Tam}(E)$, except for 15a7, 15a8, 17a4.
- ▶ If $n \ge 5$, then $n | \text{Tam}(E)$, except for 11a3, 14a4, 14a6, 20a2.
- If $n = 9$, then $27 | \text{Tam}(E)$.

Corollary

With seven exceptions,

$$
\operatorname{ord}_p\left(\frac{\operatorname{Tam}(E)\cdot\#\amalg(E)}{\#\operatorname{tor}(E)^2}\right)\geq \begin{cases}\n-5 & \text{if } p=2 \text{ and } \operatorname{tor}(E) \cong C_2 \oplus C_{2n} \\
-3 & \text{if } p=2 \text{ and } \operatorname{tor}(E) \ncong C_2 \oplus C_{2n} \\
-2 & \text{if } p=3 \text{ and } \operatorname{tor}(E) \cong C_3 \\
-1 & \text{if } p=3 \text{ and } \operatorname{tor}(E) \ncong C_3 \\
-1 & \text{if } p=5,7 \\
0 & \text{if } p\geq 11\n\end{cases}
$$

メロトメ 御 メメモトメモト 一番

The seven exceptions

Let $\text{BSD}(E)$ denote the BSD quotient.

The seven exceptions

Let $\text{BSD}(E)$ denote the BSD quotient.

Here, $c_0(E)$ is the **Manin constant** in the LMFDB.

$\hat{\Box} \rightarrow$ Elliptic curves $\rightarrow Q \rightarrow 11 \rightarrow a \rightarrow 3$

LMFDB

Introd Oven Unive L-fun Ratio Modu Class Hilber Variet Ellipti Ellipti Genu Highe Abelia Fields Numb p -adio Repre Dirich Artin i Grou Galoi: Sato-Datab

Citation - Feedback - Hide Menu

Elliptic curve with Cremona label 11a3 (LMFDB label 11.a3)

The Manin constant

Theorem (Modularity, version L) There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that

 $L(f_E, s) = L(E, s).$

In particular, this defines a differential $f_E(q) \mathrm{d}q$ on $X_0(N)$.

The Manin constant

Theorem (Modularity, version L) There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that

$$
L(f_E,s)=L(E,s).
$$

In particular, this defines a differential $f_E(q) dq$ on $X_0(N)$.

Theorem (Modularity, version X_{\odot}) There is a finite morphism $\phi_E : X_0(N) \rightarrow E$ defined over $\mathbb Q$ such that

$$
\phi_E^* \omega_E = c_0(E) \cdot f_E(q) \mathrm{d} q,
$$

28 / 45

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

for some positive integer $c_0(E)$.

The Manin constant

Theorem (Modularity, version L) There is an eigenform $f_E \in S_2(\Gamma_0(N))$ with eigenvalues $a_p(E)$ such that

$$
L(f_E,s)=L(E,s).
$$

In particular, this defines a differential $f_E(q) dq$ on $X_0(N)$.

Theorem (Modularity, version X_{\odot}) There is a finite morphism $\phi_E : X_0(N) \rightarrow E$ defined over $\mathbb Q$ such that

$$
\phi_E^* \omega_E = c_0(E) \cdot f_E(q) \mathrm{d} q,
$$

for some positive integer $c_0(E)$.

Conjecturally $c_0(E) = 1$ for all $\Gamma_0(N)$ -optimal elliptic curves (known in the semistable case!), but the seven exceptions are not $\Gamma_0(N)$ -optimal.

Conjecture With no exceptions,

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

Conjecture With no exceptions,

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

This follows from Lorenzini's theorem, but the bound for $p = 2$ holds for $\text{tor}(E) \cong C_2 \oplus C_{2n}$, and the bound for $p = 3$ holds for $\text{tor}(E) \cong C_3$.

Conjecture With no exceptions,

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq\begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

This follows from Lorenzini's theorem, but the bound for $p = 2$ holds for $\text{tor}(E) \cong C_2 \oplus C_{2n}$, and the bound for $p = 3$ holds for $\text{tor}(E) \cong C_3$.

Conjecture

Assume that tor(E) \cong C₃. Then 3 | c₀(E) · Tam(E) · #III(E).

Conjecture With no exceptions,

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq\begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

This follows from Lorenzini's theorem, but the bound for $p = 2$ holds for $\text{tor}(E) \cong C_2 \oplus C_{2n}$, and the bound for $p = 3$ holds for $\text{tor}(E) \cong C_3$.

Conjecture

Assume that tor(E) \cong C₃. Then 3 | c₀(E) · Tam(E) · #III(E).

I can prove this under the strong Birch–Swinnerton-Dyer conjecture.

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$
(1+p-T_p)\cdot \int_0^\infty f(q)\mathrm{d}q = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} f(q)\mathrm{d}q.
$$

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$
(1+p-T_p)\cdot \int_0^\infty f(q)\mathrm{d}q = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} f(q)\mathrm{d}q.
$$

If $f = f_F$ and p is odd, this says that

$$
(1+p-a_p(E))\cdot (-L(E,1))=\frac{\Omega(E)}{c_0(E)}\cdot n,\quad n\in\mathbb{Z}.
$$

35 / 45

 Ω

メロメメ 御きメモ メモド 一番

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$
(1+p-T_p)\cdot \int_0^\infty f(q)\mathrm{d}q = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} f(q)\mathrm{d}q.
$$

If $f = f_F$ and p is odd, this says that

$$
(1 + p - a_p(E)) \cdot (-L(E, 1)) = \frac{\Omega(E)}{c_0(E)} \cdot n, \quad n \in \mathbb{Z}.
$$

If the strong Birch–Swinnerton-Dyer conjecture holds,

$$
(1+p-a_p(E))\cdot \frac{c_0(E)\cdot \mathrm{Tam}(E)\cdot \#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\in \mathbb{Z}.
$$

36 / 45

If $f \in S_2(\Gamma_0(N))$ and $p \nmid N$, the Hecke operator T_p acts on periods by

$$
(1+p-T_p)\cdot \int_0^\infty f(q)\mathrm{d}q = \sum_{a=1}^{p-1} \int_0^{\frac{a}{p}} f(q)\mathrm{d}q.
$$

If $f = f_F$ and p is odd, this says that

$$
(1+p-a_p(E))\cdot (-L(E,1))=\frac{\Omega(E)}{c_0(E)}\cdot n,\quad n\in\mathbb{Z}.
$$

If the strong Birch–Swinnerton-Dyer conjecture holds,

$$
(1 + p - a_p(E)) \cdot \frac{c_0(E) \cdot \text{Tam}(E) \cdot \# \text{III}(E)}{\# \text{tor}(E)^2} \in \mathbb{Z}.
$$

If tor(E) \cong C₃, it suffices to find an odd prime $p \nmid N$ such that

$$
1 + p - a_p(E) \equiv 3 \mod 9.
$$

In terms of $\rho_{E,3}$: $Gal(\overline{\mathbb{Q}}/\mathbb{Q}) \to GL_2(\mathbb{Q}_3)$,

 $p = det(\rho_{E,3}(\text{Fr}_p)), \qquad a_p(E) = tr(\rho_{E,3}(\text{Fr}_p)).$

In terms of $\rho_{E,3}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow GL₂(\mathbb{Q}_3),

$$
p = \det(\rho_{E,3}(\mathrm{Fr}_p)), \qquad a_p(E) = \mathrm{tr}(\rho_{E,3}(\mathrm{Fr}_p)).
$$

Chebotarev's density theorem says that Fr_p is uniformly distributed in $\lim(\rho_{E,3})$, so it suffices to find a matrix $M \in \text{im}(\rho_{E,3})$ such that

$$
3 = 1 + \det(M) - \mathrm{tr}(M).
$$

In terms of $\rho_{E,3}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow GL₂(\mathbb{Q}_3),

$$
p = \det(\rho_{E,3}(\mathrm{Fr}_p)), \qquad a_p(E) = \mathrm{tr}(\rho_{E,3}(\mathrm{Fr}_p)).
$$

Chebotarev's density theorem says that Fr_p is uniformly distributed in $\text{im}(\rho_{E,3})$, so it suffices to find a matrix $M \in \text{im}(\rho_{E,3})$ such that

$$
3 = 1 + \det(M) - \mathrm{tr}(M).
$$

Theorem (Rouse–Sutherland–Zureick-Brown, 2022)

Assume that tor(E) \cong C₃. Then im($\rho_{E,3}$) is one of the explicit matrix subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10, 27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

In terms of $\rho_{E,3}$: Gal($\overline{\mathbb{Q}}/\mathbb{Q}$) \rightarrow GL₂(\mathbb{Q}_3),

$$
p = \det(\rho_{E,3}(\mathrm{Fr}_p)), \qquad a_p(E) = \mathrm{tr}(\rho_{E,3}(\mathrm{Fr}_p)).
$$

Chebotarev's density theorem says that Fr_p is uniformly distributed in $\text{im}(\rho_{E,3})$, so it suffices to find a matrix $M \in \text{im}(\rho_{E,3})$ such that

$$
3 = 1 + \det(M) - \mathrm{tr}(M).
$$

Theorem (Rouse–Sutherland–Zureick-Brown, 2022)

Assume that tor(E) \cong C₃. Then im($\rho_{E,3}$) is one of the explicit matrix subgroups 3.8.0.1, 3.24.0.1, 9.24.0.1/2, 9.72.0.1/2/3/4/6/7/8/9/10, 27.72.0.1, 27.648.13.25, 27.648.18.1, or 27.1944.55.31/37/43/44.

Each im($\rho_{E,3}$) contains a matrix M such that $3 = 1 + \det(M) - \text{tr}(M)$, except for 9.72.0.1, but Tate's algorithm shows $3 | \text{Tam}(E)$ in this case.

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq\begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq \begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

Note the similarity to a conjecture by Agashe–Stein (2005) that

$$
\frac{2 \cdot c_0(E) \cdot \mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\#\mathrm{tor}(E)} \in \mathbb{Z}.
$$

43 / 45

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq\begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

Note the similarity to a conjecture by Agashe–Stein (2005) that

$$
\frac{2 \cdot c_0(E) \cdot \mathrm{Tam}(E) \cdot \# \mathrm{III}(E)}{\#\mathrm{tor}(E)} \in \mathbb{Z}.
$$

This is known for semistable optimal elliptic curves by Melistas (2023), building upon Česnavičius (2018) and Byeon–Kim–Yhee (2020).

Theorem (A., 2023)

Assume the 3-part of the strong Birch–Swinnerton-Dyer conjecture. Then

$$
\mathrm{ord}_p\left(\frac{c_0(E)\cdot\mathrm{Tam}(E)\cdot\#\mathrm{III}(E)}{\#\mathrm{tor}(E)^2}\right)\geq\begin{cases} -3 & p=2\\ -1 & p=3,5,7\\ 0 & p\geq 11 \end{cases}.
$$

Note the similarity to a conjecture by Agashe–Stein (2005) that

$$
\frac{2\cdot c_0(E)\cdot \operatorname{Tam}(E)\cdot \#\mathrm{III}(E)}{\#\mathrm{tor}(E)}\in \mathbb{Z}.
$$

This is known for semistable optimal elliptic curves by Melistas (2023), building upon Česnavičius (2018) and Byeon–Kim–Yhee (2020).

Does this generalise to $\mathbb{F}_q(C)$ or $\mathrm{ord}_{s=1}L(E,s) \geq 1$?