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Elliptic curves

An elliptic curve over a field F is a smooth projective curve E of genus
one, equipped with a fixed point O defined over F.
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They are one of the simplest non-trivial objects in arithmetic geometry.
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Weierstrass equations

In mathlib, an elliptic curve E over an integral domain R is a tuple
(a1, a2, a3, a1, 36) € R®, with an extra condition that A € R*, where

by := a} + 4ap,
by :=2a4 + a1 a3,
be 1= a§ + 43¢,

bg := a%aﬁ + 4arag — ajazas + aza§ - aﬁ,
A := —b3bg — 8b; — 27b% + 9by by bs.

A point on E is either O or an affine point (x,y), € R? such that
y2 + aixy + azy = x3 + 32X2 + a4x3 + a6,
so the points on E vanish on the polynomial £ € R[X, Y] given by

E = Y2 + 31XY+ 33Y — (X3 + 22X2 + 84X + 36)-
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Group law

The points on E can be endowed with a geometric addition law.

In 2023, we formalised a novel algebraic proof of the group law on E.

Is there an explicit formula for [n]P in terms of P?

4/16



An impossible exercise
The Arithmetic of Elliptic Curves by Silverman gives an answer.
Exercise (3.7(d))
Let n € Z. Prove that for any point (x,y), on E,

_ [ 9nl5y) walx,y)
[nl(x, )a = (¢n(x, )2’ wn(x,y)3)a'

Silverman gives inductive definitions for ¢, w,, ¥, € F[X, Y].

This formula leads to a proof that

T E o ZIQJ if char(F) # p,
P7F 7 10orz, if char(F)=p.

These polynomials also feature in Schoof's algorithm.
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Multiplication by 2

If (x,y)a is a generic affine point on E, then

_{ P2xy) wax,y)
[2](x,¥)a = (qu(x,y)27 ¢2(X7}’)3>a7

where ¢o,wa, 105 € F[X, Y] are given by

P :=2Y + a1 X + as,

P2 = X¢§ - Ov
Wy 1= %(A — (12 + a3)13),

for some O, A € F[X]. If (x,y), is a 2-torsion affine point on E, then
(x:¥)a=—(x,¥)a = (x,—y — a1x — a3)a,

so Pa(x,y) =2y + a1x + a3 = 0.
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Projective coordinates
Let (x,y)a, be an affine point on E. In projective coordinates,
[2](X7y)a = (¢2(X,}’)1/)2(X7)’) : w2(Xay) : w2(X7}/)3)P'

In mathlib, a projective point on E is a class of (x,y, z) € F3 such that
y22 + aixyz + ‘:113yz2 =x3 + a2x22 + a4xz2 + 3623.
The point at infinity on E is (0:1:0),.
More naturally, in Jacobian coordinates with weights (2 : 3 : 1),
[21(x,y)a = (¢2(x, ) : wa(x, y) : a(x, ¥));-
In mathlib, a Jacobian point on E is a class of (x,y,z) € F3 such that
6

y2 + ai1xyz + a3yz3 =x3 + azxzz2 + a4xz4 + asz" .

The point at infinity on E is (1:1:0);.
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Multiplication by n

Exercise (3.7(d), corrected)
Let n € Z. Prove that for any point (x,y), on E,

[P](x,¥)a = (@n(x,¥) : wnlx, ) = ¥a(x, ¥)))-
If (x:y:2z)jis a point on E, then x =y = 1 whenever z =0, so
ker[n] = {O} U{(x,y)a : ¢n(x,y) = 0}.

Conjecture
No one has done Exercise 3.7(d) purely inductively.

Xu gave a complete answer to this exercise and formalised it in Lean.

| will define ¢, wy,, 1, and their auxiliary polynomials.
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The polynomials 1,
The n-th division polynomial v, € R[X, Y] is given by

Yo =0,
1 =1,
Vo :=2Y 4+ a1 X + a3,
Y3:=0
where O 1= 3X* 4 by X3 + 3b,X? 4 3bs X + b,
Vg 1= P2 A
where A = 2X6 15y X5 154 X*+10b6 X3 +10bg X2+ (b bg — by bg ) X+(bg by — b2)

Poni1 = Y2y — Yn 1051,
71)2 — ¢571wnwn+2 - ¢n—2¢n'(/},21+1

P2
/wfn = _wn'

In mathlib, ¢, is defined in terms of W, € R[X].
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The polynomials WV,
The polynomial W, € R[X] is given by

Wy =0,
V=1,
v, =1,
V3 =0,
Y, = A,

{wn+2w3 — PV, W3, if nis odd,
\U2n+1 =

O?W, W3 — W, W3 if nis even,
where 0 := 4X3 + by X? 4 2b, X + b,
Vs, 1= w%-,flwnwmﬂ - wn72wnw,27+17
V_,.=-V,.

Then v, = V,, when n is odd and ¥, = ¥»» WV, when n is even.
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The polynomials ¢, and &,
In the coordinate ring of E,
Y3 = (2Y + a1 X + a3)?
=4(Y?+ a1 XY +a3Y) + a2 X? + 2a123X + a3

=4X3 4+ boX? +2b4,X + bg mod E.
O

In particular, 12 and 1, 1%,_1 are congruent to polynomials in R[X].
The polynomial ¢, € R[X, Y] is given by
G = X = Ypp1tn-1,
so that ¢, = ®, mod &, where ¢, € R[X] is given by
o, {xw3 — OV, WV, 1 if nis odd,

XD\IJ% —V,1V,_1 if nis even.
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The polynomials w,
The polynomial w, € R[X, Y] is given by

Wp 1= % <1f;nn - al¢n¢n - 83’ll)3> .

Lemma (Xu)
Let n € Z. Then Y, /vn — a1bnthn — a3 is divisible by 2 in Z[a;, X, Y].
Example (a; = a3 = 0)

v, 2X® 442, X5 +10a4 X*+40a6 X3 +10bg X2+ (4 a2 bg —8asas) X +(2a4 b —16a7)
Wy = —— = .
2 2

Define w, as the image of the quotient under Z[a;, X, Y] — R[X, Y].

When n = 4, this quotient has 15,049 terms.
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Elliptic divisibility sequences
Integrality relies on the fact that ¢, is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r € Z, prove that 1, | ¥pnm and

2 2 2
wn+mwn—mwr = '(/)n—krwn—rwm - wm-ﬁ-rwm—rwm
Note that this generalises the recursive definitions of 12,11 and ¥5,.

Surprisingly, this needs the stronger result that v, is an elliptic net.

Theorem (Xu)
Let nym,r,s € Z. Then

wn+m¢nfm¢r+swrfs = 1l)n+r7vbnfrwm+swmfs - ¢m+r¢m7ﬂ/1n+s¢nfs.

Xu gave an elegant proof of this on Math Stack Exchange.
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence

¢n+2¢n72 = ¢§¢n+17/)n—1 - ¢31/J§

An easy induction gives an invariant

Z(n):=

wn+1wn¢nfl
When n = 2, an explicit computation gives
Vs + 13
I(2)= = a;p, mod 2.
@) VY312 B

Being an invariant means that Z(n) = Z(2), so

5 2 2,/,3
¢n71¢n+2 + ’(/};;2'(/)n+1 + %% = a11ﬁn+11/fn1/1n71

w%71¢n+2 + wn—2w5+1 + 111577/13

mod 2.
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Integrality of w,

In particular,
2 _ 2
Yan _ Yn1¥nt2 = Yn—2¥nia by definition of 1o,
d)n 1,[}2
= Yo + a1Upi1¥nPp—1 mod 2 by Z(n) = Z(2)
=2Y Y] + a1 (XY) + Ypp1¥hn—1)¥n + a3t by definition of 1.
—_—
bn
Thus o, /1y — a1¢nbn — @33 =0 mod 2. In Lean,
1/}n+17/)nwn71
Wy = W@g(zg +0) + ¢3(arye — 95))
2
Py g,
(0

which is well-defined, since ¢, is a divisibility sequence.
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Other formalised results

The polynomial v e R[X] is given by

v . {wg if nis odd,

OW2  if nis even,

so that wgz) = and \|l£,2) = 1/),2, mod €£.

Exercise (3.7(b))
Show that &, = X" + ... and WP = p2x-1 1 .

This is an inductive computation of natDegree and leadingCoeff.

Exercise (3.7(c))
Prove that ¢, and \IIE,2) are relatively prime.

Surprisingly, this needs Exercise 3.7(d) and the assumption that A # 0.
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