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Elliptic curves

An elliptic curve over a field F is a smooth projective curve E of genus
one, equipped with a fixed point O defined over F.

X

y

They are one of the simplest non-trivial objects in arithmetic geometry.
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Weierstrass equations

In mathlib, an elliptic curve E over an integral domain R is a tuple
(a1, a2, a3, a1, 36) € R®, with an extra condition that A € R*, where

b,

= af + 4ay,
by :
be 1=
bg :=
A

234 + 2133,

a% + 43¢,

a%aﬁ + 4arag — ai1azas + aza§ — aﬁ,
—b3bg — 8b3 — 27bZ + 9by by bg.
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Weierstrass equations

In mathlib, an elliptic curve E over an integral domain R is a tuple
(a1, a2, a3, a1, 36) € R®, with an extra condition that A € R*, where

by := a} + 4ap,
by :=2a4 + a1 a3,
be 1= a§ + 43¢,

bg := a%aﬁ + 4arag — ajazas + aza§ - aﬁ,
A := —b3bg — 8b; — 27b% + 9by by bs.

A point on E is either O or an affine point (x,y), € R? such that
y2 + aixy + a3y = x3 + 32X2 + a4x3 + a6,
so the points on E vanish on the polynomial £ € R[X, Y] given by

&= Y2 + 31XY+ 33Y — (X3 + 22X2 + 84X + 36)-
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Group law

The points on E can be endowed with a geometric addition law.
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Group law

The points on E can be endowed with a geometric addition law.

In 2023, we formalised a novel algebraic proof of the group law on E.
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Group law

The points on E can be endowed with a geometric addition law.

In 2023, we formalised a novel algebraic proof of the group law on E.

Is there an explicit formula for [n]P in terms of P?
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An impossible exercise

The Arithmetic of Elliptic Curves by Silverman gives an answer.

Exercise (3.7(d))
Let n € Z. Prove that for any point (x,y), on E,

__ an()<a)/) an(}<7)/)
[nl(x, )a = (z/;n(x, )2’ wn(x,y)3)a'

Silverman gives inductive definitions for ¢, w,, ¥, € F[X, Y].
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An impossible exercise
The Arithmetic of Elliptic Curves by Silverman gives an answer.
Exercise (3.7(d))
Let n € Z. Prove that for any point (x,y), on E,

_ [ 9nl5y) walx,y)
[nl(x, )a = (¢n(x, )2’ wn(x,y)3)a'

Silverman gives inductive definitions for ¢, w,, ¥, € F[X, Y].

This formula leads to a proof that

{Z% char(F) #

T,E- =
P7F 7 10orz, char(F)

p
p

These polynomials also feature in Schoof's algorithm.
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Multiplication by 2

If (x,y)a is a generic affine point on E, then

_{ P2xy) wax,y)
[2](x,¥)a = <¢2(x7y)2’ ¢2(X7}’)3>a7

where ¢o,wa, 105 € F[X, Y] are given by

P :=2Y + a1 X + as,

P2 = X¢§ - Ov
Wy 1= %(A — (12 + a3)13),

for some O, A € F[X].
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Multiplication by 2

If (x,y)a is a generic affine point on E, then

_{ P2xy) wax,y)
[2](x,¥)a = (qu(x,y)27 ¢2(X7}’)3>a7

where ¢o,wa, 105 € F[X, Y] are given by

Py :=2Y + a1 X + az,

P2 = )<1b§ - <:>v
Wy 1= %(A — (12 + a3)13),

for some O, A € F[X]. If (x,y), is a 2-torsion affine point on E, then
(x:¥)a=—(x,y)a = (x,—y — a1x — a3)a,

so Pa(x,y) =2y + a1x + a3 = 0.
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Projective coordinates

Let (x,y)a, be an affine point on E. In projective coordinates,

[2](X7y)a = (¢2(X,}’)1/)2(X7}’) : w2(Xay) : w2(X7}/)3)P'
In mathlib, a projective point on E is a class of (x,y, z) € F3 such that

y22 + aixyz + ag,yz2 =x3 + a2x22 + a4xz2 + 3623.

The point at infinity on E is (0:1:0),.
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Projective coordinates
Let (x,y)a, be an affine point on E. In projective coordinates,
[2](X7y)a = (¢2(X,}’)1/)2(X7)’) : w2(Xay) : w2(X7}/)3)P'

In mathlib, a projective point on E is a class of (x,y, z) € F3 such that

y22 + aixyz + ‘:113yz2 =x3 + a2x22 + a4xz2 + 3623.

The point at infinity on E is (0:1:0),.

More naturally, in Jacobian coordinates with weights (2 : 3 : 1),

[21(x, y)a = (62(x, ) : w2(x,y) = a(x, ¥));-
In mathlib, a Jacobian point on E is a class of (x,y,z) € F? such that

y2 + aixyz + a3yz3 =x3 + 82X2Z2 + a4xz4 + 3626.

The point at infinity on E is (1:1:0);.
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Multiplication by n

Exercise (3.7(d), corrected)
Let n € Z. Prove that for any point (x,y), on E,

[M(%,¥)a = (¢n(x,¥) s wnl(X,¥) 2 ¥n(x, ¥));)-
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Multiplication by n

Exercise (3.7(d), corrected)
Let n € Z. Prove that for any point (x,y), on E,

[M(%,¥)a = (¢n(x,¥) s wnl(X,¥) 2 ¥n(x, ¥));)-

If (x:y:2z)jis a point on E, then x =y = 1 whenever z =0, so

ker[n] = {O} U {(x,¥)a | ¥n(x,y) = 0}.
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Multiplication by n

Exercise (3.7(d), corrected)
Let n € Z. Prove that for any point (x,y), on E,

[M(%,¥)a = (¢n(x,¥) s wnl(X,¥) 2 ¥n(x, ¥));)-
If (x:y:2z)jis a point on E, then x =y = 1 whenever z =0, so

ker[n] = {O} U {(x,¥)a | ¥n(x,y) = 0}.

Conjecture
No one has done Exercise 3.7(d) purely inductively.
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Multiplication by n

Exercise (3.7(d), corrected)
Let n € Z. Prove that for any point (x,y), on E,

[M(%,¥)a = (¢n(x,¥) s wnl(X,¥) 2 ¥n(x, ¥));)-
If (x:y:2z)jis a point on E, then x =y = 1 whenever z =0, so

ker[n] = {O} U {(x,¥)a | ¥n(x,y) = 0}.

Conjecture
No one has done Exercise 3.7(d) purely inductively.

Xu gave a complete answer to this exercise and formalised it in Lean.

| will define ¢,,, wn, ©¥,, and their auxiliary polynomials.
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The polynomials 1,
The n-th division polynomial v, € R[X, Y] is given by

Yo =0,
1 =1,
Vo :=2Y 4+ a1 X + a3,
Y3:=0
where O 1= 3X* 4 by X3 + 3b,X? 4 3bs X + b,
Vg 1= P2 A
where A = 2X6 15y X5 154 X*+10b6 X3 +10bg X2+ (b bg — by bg ) X+(bg by — b2)

Poni1 = Y2y — Yn 1051,
71)2 — ¢571wnwn+2 - ¢n—2¢n'(/},21+1

P2
/wfn = _wn'

In mathlib, ¢, is defined in terms of W, € R[X].
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The polynomials WV,
The polynomial W, € R[X] is given by

Vo =0,
V=1,
v, =1,
V3 =0,
Y, = A,

{wn+2\u?, — 02V, W3, if nis odd
\U2n+1 =

O2W, W3 — W, W3, if nis even
where 0 := 4X3 + byX? + 2b, X + b,
Yy, = w,zyflwnwn+2 - \Un,2\|/,,\|},2.,+1,
V_,:=-V,.

Then v, = V,, when n is odd and ¥, = ¥»» WV, when n is even.
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The polynomials ¢, and &,
In the coordinate ring of E,
Y3 = (2Y + a1 X + a3)?
=4(Y?+ a1 XY +a3Y) + a2 X? + 2a123X + a3

=4X3 4+ boX? +2b4,X + bg mod E.
O

In particular, 12 and 1, 1%,_1 are congruent to polynomials in R[X].

20/40



The polynomials ¢, and &,
In the coordinate ring of E,
Y3 = (2Y + a1 X + a3)?
=4(Y?+ a1 XY +a3Y) + a2 X? + 2a123X + a3

=4X3 4+ boX? +2b4,X + bg mod E.
O

In particular, 12 and 1, 1%,_1 are congruent to polynomials in R[X].

The polynomial ¢, € R[X, Y] is given by
b = Xy — Ynp1tn-1,
so that ¢, = ®, mod &, where ¢, € R[X] is given by
o {Xwi — OV, 1V, if nis odd
TUOXOW2 — W, W, ifnis even
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The polynomials w,

The polynomial w, € R[X, Y] is given by

Wy = % (122 — a1 Pnthy — a3w3> )
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The polynomials w,

The polynomial w, € R[X, Y] is given by

Wp 1= % <1f;nn - 31¢n2/1n - aﬂ/’i) .

Lemma (Xu)
Let n € Z. Then Y, /vn — a1bnthn — a3 is divisible by 2 in Z[a;, X, Y].
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The polynomials w,

The polynomial w, € R[X, Y] is given by

Wp = % <1f;nn - 31¢n2/1n - aﬂ/’i) .

Lemma (Xu)
Let n € Z. Then Y, /vn — a1bnthn — a3 is divisible by 2 in Z[a;, X, Y].
Example (a; = a3 = 0)

v, 2X® 442, X5 +10a4 X*+40a6 X3 +10bg X2+ (4 a2 bg —8asas) X +(2a4 b —16a7)
Wy = —— = .
2 2
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The polynomials w,

The polynomial w, € R[X, Y] is given by

Wp 1= % <1f;nn - 31¢n7/1n - 331/)3> .

Lemma (Xu)
Let n € Z. Then Y, /vn — a1bnthn — a3 is divisible by 2 in Z[a;, X, Y].
Example (a; = a3 = 0)

v, 2X® 442, X5 +10a4 X*+40a6 X3 +10bg X2+ (4 a2 bg —8asas) X +(2a4 b —16a7)
Wy = —— = .
2 2

Define w, as the image of the quotient under Z[a;, X, Y] — R[X, Y].
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The polynomials w,
The polynomial w, € R[X, Y] is given by

Wp 1= % <1f;nn - al¢n¢n - 831/)3> .

Lemma (Xu)
Let n € Z. Then Y, /vn — a1bnthn — a3 is divisible by 2 in Z[a;, X, Y].
Example (a; = a3 = 0)

v, 2X® 442, X5 +10a4 X*+40a6 X3 +10bg X2+ (4 a2 bg —8asas) X +(2a4 b —16a7)
Wy = —— = .
2 2

Define w, as the image of the quotient under Z[a;, X, Y] — R[X, Y].

When n = 4, this quotient has 15,049 terms.
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Elliptic divisibility sequences
Integrality relies on the fact that ¢, is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r € Z, prove that 1, | ¥pnm and

wn+mwn—mw$ = '(/)n—krwn—rwrzn - wm+rwm—rw%~

Note that this generalises the recursive definitions of 12,11 and ¥5,.
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Elliptic divisibility sequences
Integrality relies on the fact that ¢, is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r € Z, prove that 1, | ¥pnm and

2 2 2
wn+mwn—mwr = '(/)n—krwn—rwm - wm-t-rwm—rw,r
Note that this generalises the recursive definitions of 12,11 and ¥5,.

Surprisingly, this needs the stronger result that v, is an elliptic net.

Theorem (Xu)
Let nym,r,s € Z. Then

1/’n+mwn—mwr+sd)r—s = 'L/)n-&-ﬂ/}n—ﬂ/}m-&—swm—s - wm-s—r?/}m—ri/}n-&—s'wn—s-
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Elliptic divisibility sequences
Integrality relies on the fact that ¢, is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r € Z, prove that 1, | ¥pnm and

2 2 2
wn+mwn—mwr = '(/)n—krwn—rwm - wm-ﬁ-rwm—rwm
Note that this generalises the recursive definitions of 12,11 and ¥5,.

Surprisingly, this needs the stronger result that v, is an elliptic net.

Theorem (Xu)
Let nym,r,s € Z. Then

1/’n+mwn—mwr+sd)r—s = 'L/)n-&-ﬂ/}n—ﬂ/}m-&—swm—s - wm-s—r?/}m—ri/}n-&—s'wn—s-

Xu gave an elegant proof of this on Math Stack Exchange.
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence

¢n+2wnf2 = 1/)51/1n+17/1n—1 - ¢31/13
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence
2 2
¢n+2¢n72 = 7/)21/1n+17/)n—1 - ¢31/}n'
An easy induction gives an invariant

w%71¢n+2 + wn—2w5+1 + 1[’%%03
wn+1wn¢nfl .

Z(n):=
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence
2 2
¢n+2¢n72 = ¢2¢n+1'¢}n71 - ¢31/Jn'
An easy induction gives an invariant

w%71¢n+2 + wn—2w5+1 + 111577/13
wn+1wn¢nfl .

Z(n):=

When n =2,

:¢4+¢g

1) Y312
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence

¢n+2¢n72 = ¢§¢n+17/)n—1 - ¢31/J§

An easy induction gives an invariant

w%71¢n+2 + wn—2w5+1 + 111577/13

Z(n):=

wn+1wn¢nfl
When n = 2, an explicit computation gives
Vs + 13
I(2)= = a;yp, mod 2.
@) VY312 .
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence

¢n+2¢n72 = ¢§¢n+17/)n—1 - ¢31/J§

An easy induction gives an invariant

w%71¢n+2 + wn—2w5+1 + 111577/13

Z(n):=

wn+1wn¢nfl
When n = 2, an explicit computation gives
Vs + 13
I(2) = =a mod 2.
(2) Va2 192

Being an invariant means that Z(n) = Z(2), so

¢%71¢%+24‘¢M—2¢%+1+'¢§¢%
¢n+lwnwn—l

= 31’(/}2 mod 2.
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The Somos-4 invariant

As an elliptic sequence, 1, satisfies the Somos-4 recurrence

¢n+2¢n72 = ¢§¢n+17/)n—1 - w3¢§

An easy induction gives an invariant

Z(n):=

wn+1wn¢nfl
When n = 2, an explicit computation gives
Vs + 13
I(2) = =a mod 2.
(2) Va2 192

Being an invariant means that Z(n) = Z(2), so

5 2 2,3
Yn_1¥ni2 + w;;zwnﬂ + 3ty = a1 Vp1Untn_1

¢§71¢n+2 + wn—2w5+1 + 1[1%7;[}3

mod 2.
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Integrality of w,

In particular,
2 _ 2
Yan _ Yn1¥nt2 = Yn—2¥nia by definition of 1o,
d)n 1,[}2
= o) + a1¥n1¥ntPn—1  mod 2 by Z(n) = Z(2)
= 2Y43 + a1 (XY + Gnsrthn_1)dn + 303 by definition of 1.
| ———

®n

Thus w2n/"/}n — a1¢nPn — 831113 =0 mod 2.
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Integrality of w,

In particular,
2 _ 2
Yan _ Yn1¥nt2 = Yn—2¥nia by definition of 1o,
d)n 1,[}2
= Yo + a1Upi1¥nPp—1 mod 2 by Z(n) = Z(2)
=2Y Y] + a1 (XY) + Ypp1¥hn—1)¥n + a3t by definition of 1.
—_—
bn
Thus 2,/%n — a1¢nbn — @33 =0 mod 2. In Lean,
¢%+1¢nwnfl
Wy = W@g(zg +0) + ¢s(ary2 — 55))
2
B e
o

which is well-defined, since ¢, is a divisibility sequence.
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Other formalised results
The polynomial v e R[X] is given by

@ . V2 if nis odd
T | OW2 ifniseven’

so that wgz) = and \|l£,2) = 1/),2, mod €£.
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Other formalised results

The polynomial v e R[X] is given by

@ . V2 if nis odd
T | OW2 ifniseven’

so that \Ilgz) = and \|l£,2) = 1/),2, mod €£.
Exercise (3.7(b))

Show that &, = X™ + ... and V® = X714 .

This is an inductive computation of natDegree and leadingCoeff.
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Other formalised results
The polynomial v e R[X] is given by

\IIS,2) =

V2 if nis odd
Ow2 if nis even’

so that wgz) = and \|l£,2) = 1/),2, mod €£.

Exercise (3.7(b))
Show that &, = X™ + ... and V® = X714 .

This is an inductive computation of natDegree and leadingCoeff.

Exercise (3.7(c))
Prove that ®, and \UE,2) are relatively prime.

Surprisingly, this needs Exercise 3.7(d) and the assumption that A # 0.
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