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Elliptic curves

An elliptic curve over a field F is a smooth projective curve E of genus
one, equipped with a fixed point O defined over F .

They are one of the simplest non-trivial objects in arithmetic geometry.
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Weierstrass equations

In mathlib, an elliptic curve E over an integral domain R is a tuple
(a1, a2, a3, a4, a6) ∈ R5, with an extra condition that ∆ ∈ R×, where

b2 := a21 + 4a2,

b4 := 2a4 + a1a3,

b6 := a23 + 4a6,

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24,

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6.

A point on E is either O or an affine point (x , y)a ∈ R2 such that

y2 + a1xy + a3y = x3 + a2x
2 + a4x

3 + a6,

so the points on E vanish on the polynomial E ∈ R[X ,Y ] given by

E := Y 2 + a1XY + a3Y − (X 3 + a2X
2 + a4X + a6).
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Group law

The points on E can be endowed with a geometric addition law.

In 2023, we formalised a novel algebraic proof of the group law on E .

Is there an explicit formula for [n]P in terms of P?
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An impossible exercise

The Arithmetic of Elliptic Curves by Silverman gives an answer.

Exercise (3.7(d))
Let n ∈ Z. Prove that for any point (x , y)a on E,

[n](x , y)a =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
a

.

Silverman gives inductive definitions for ϕn, ωn, ψn ∈ F [X ,Y ].

This formula leads to a proof that

TpEF
∼=

{
Z2
p char(F ) ̸= p

0 or Zp char(F ) = p
.

These polynomials also feature in Schoof’s algorithm.
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Multiplication by 2

If (x , y)a is a generic affine point on E , then

[2](x , y)a =

(
ϕ2(x , y)

ψ2(x , y)2
,
ω2(x , y)

ψ2(x , y)3

)
a

,

where ϕ2, ω2, ψ2 ∈ F [X ,Y ] are given by

ψ2 := 2Y + a1X + a3,

ϕ2 := Xψ2
2 −⃝,

ω2 :=
1

2
(△− (a1ϕ2 + a3)ψ

3
2),

for some ⃝,△ ∈ F [X ].

If (x , y)a is a 2-torsion affine point on E , then

(x , y)a = −(x , y)a = (x ,−y − a1x − a3)a,

so ψ2(x , y) = 2y + a1x + a3 = 0.
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Projective coordinates

Let (x , y)a be an affine point on E . In projective coordinates,

[2](x , y)a = (ϕ2(x , y)ψ2(x , y) : ω2(x , y) : ψ2(x , y)
3)p.

In mathlib, a projective point on E is a class of (x , y , z) ∈ F 3 such that

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3.

The point at infinity on E is (0 : 1 : 0)p.

More naturally, in Jacobian coordinates with weights (2 : 3 : 1),

[2](x , y)a = (ϕ2(x , y) : ω2(x , y) : ψ2(x , y))j .

In mathlib, a Jacobian point on E is a class of (x , y , z) ∈ F 3 such that

y2 + a1xyz + a3yz
3 = x3 + a2x

2z2 + a4xz
4 + a6z

6.

The point at infinity on E is (1 : 1 : 0)j .
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Multiplication by n

Exercise (3.7(d), corrected)
Let n ∈ Z. Prove that for any point (x , y)a on E,

[n](x , y)a = (ϕn(x , y) : ωn(x , y) : ψn(x , y))j .

If (x : y : z)j is a point on E , then x = y = 1 whenever z = 0, so

ker[n] = {O} ∪ {(x , y)a | ψn(x , y) = 0}.

Conjecture
No one has done Exercise 3.7(d) purely inductively.

Xu gave a complete answer to this exercise and formalised it in Lean.

I will define ϕn, ωn, ψn, and their auxiliary polynomials.
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The polynomials ψn

The n-th division polynomial ψn ∈ R[X ,Y ] is given by

ψ0 := 0,

ψ1 := 1,

ψ2 := 2Y + a1X + a3,

ψ3 := ⃝
where ⃝ := 3X 4 + b2X

3 + 3b4X
2 + 3b6X + b8,

ψ4 := ψ2△
where △ := 2X6+b2X

5+5b4X
4+10b6X

3+10b8X
2+(b2b8−b4b6)X+(b4b8−b26),

ψ2n+1 := ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2n :=
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
,

ψ−n := −ψn.

In mathlib, ψn is defined in terms of Ψn ∈ R[X ].
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The polynomials Ψn

The polynomial Ψn ∈ R[X ] is given by

Ψ0 := 0,

Ψ1 := 1,

Ψ2 := 1,

Ψ3 := ⃝,

Ψ4 := △,

Ψ2n+1 :=

{
Ψn+2Ψ

3
n −□2Ψn−1Ψ

3
n+1 if n is odd

□2Ψn+2Ψ
3
n −Ψn−1Ψ

3
n+1 if n is even

where □ := 4X 3 + b2X
2 + 2b4X + b6,

Ψ2n := Ψ2
n−1ΨnΨn+2 −Ψn−2ΨnΨ

2
n+1,

Ψ−n := −Ψn.

Then ψn = Ψn when n is odd and ψn = ψ2Ψn when n is even.
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The polynomials ϕn and Φn

In the coordinate ring of E ,

ψ2
2 = (2Y + a1X + a3)

2

= 4(Y 2 + a1XY + a3Y ) + a21X
2 + 2a1a3X + a23

≡ 4X 3 + b2X
2 + 2b4X + b6︸ ︷︷ ︸
□

mod E .

In particular, ψ2
n and ψn+1ψn−1 are congruent to polynomials in R[X ].

The polynomial ϕn ∈ R[X ,Y ] is given by

ϕn := Xψ2
n − ψn+1ψn−1,

so that ϕn ≡ Φn mod E , where Φn ∈ R[X ] is given by

Φn :=

{
XΨ2

n −□Ψn+1Ψn−1 if n is odd

X□Ψ2
n −Ψn+1Ψn−1 if n is even

.
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The polynomials ωn

The polynomial ωn ∈ R[X ,Y ] is given by

ωn :=
1

2

(
ψ2n

ψn
− a1ϕnψn − a3ψ

3
n

)
.

Lemma (Xu)
Let n ∈ Z. Then ψ2n/ψn − a1ϕnψn − a3ψ

3
n is divisible by 2 in Z[ai ,X ,Y ].

Example (a1 = a3 = 0)

ω2 =
Ψ4

2
=

2X 6+4a2X
5+10a4X

4+40a6X
3+10b8X

2+(4a2b8−8a4a6)X+(2a4b8−16a26)

2
.

Define ωn as the image of the quotient under Z[ai ,X ,Y ] → R[X ,Y ].

When n = 4, this quotient has 15,049 terms.
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Elliptic divisibility sequences

Integrality relies on the fact that ψn is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r ∈ Z, prove that ψn | ψnm and

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

Note that this generalises the recursive definitions of ψ2n+1 and ψ2n.

Surprisingly, this needs the stronger result that ψn is an elliptic net.

Theorem (Xu)
Let n,m, r , s ∈ Z. Then

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

Xu gave an elegant proof of this on Math Stack Exchange.
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The Somos-4 invariant

As an elliptic sequence, ψn satisfies the Somos-4 recurrence

ψn+2ψn−2 = ψ2
2ψn+1ψn−1 − ψ3ψ

2
n.
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The Somos-4 invariant

As an elliptic sequence, ψn satisfies the Somos-4 recurrence

ψn+2ψn−2 = ψ2
2ψn+1ψn−1 − ψ3ψ

2
n.

An easy induction gives an invariant

I(n) :=
ψ2
n−1ψn+2 + ψn−2ψ

2
n+1 + ψ2

2ψ
3
n

ψn+1ψnψn−1
.
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Integrality of ωn

In particular,

ψ2n

ψn
=
ψ2
n−1ψn+2 − ψn−2ψ

2
n+1

ψ2
by definition of ψ2n

≡ ψ2ψ
3
n + a1ψn+1ψnψn−1 mod 2 by I(n) = I(2)

= 2Yψ3
n + a1(Xψ

2
n + ψn+1ψn−1︸ ︷︷ ︸

ϕn

)ψn + a3ψ
3
n by definition of ψ2.

Thus ψ2n/ψn − a1ϕnψn − a3ψ
3
n ≡ 0 mod 2.

In Lean,

ωn :=
ψn+1ψnψn−1

ψ2ψ3
(4E(2E +□) + ψ3(a1ψ2 − ∂E

∂X ))

−
ψn−2ψ

2
n+1

ψ2
+ (Y − ψ2)ψ

3
n,

which is well-defined, since ψn is a divisibility sequence.
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Other formalised results

The polynomial Ψ
(2)
n ∈ R[X ] is given by

Ψ(2)
n :=

{
Ψ2

n if n is odd

□Ψ2
n if n is even

,

so that Ψ
(2)
2 = □ and Ψ

(2)
n ≡ ψ2

n mod E .

Exercise (3.7(b))
Show that Φn = X n2 + . . . and Ψ

(2)
n = n2X n2−1 + . . . .

This is an inductive computation of natDegree and leadingCoeff.

Exercise (3.7(c))
Prove that Φn and Ψ

(2)
n are relatively prime.

Surprisingly, this needs Exercise 3.7(d) and the assumption that ∆ ̸= 0.
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