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Integer solutions

Consider Mordell's equation
y? =x3+k, keZ.

What are the integer solutions?

k | #{(x,y) € 7% y?> = x3 + k}
_264 8 » k =7: none
:5 0 (mod 4 and 8)
3 ) > k=16: (0,+4)
7 0 (use UF of Z)
11 0 > k=—1: (1,0)
16 2 (use UF of Z[i])

Siegel’s theorem says that there are only finitely many integer solutions.
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Rational solutions

Consider Mordell's equation
y? =x3+k, keZ.

What about the rational solutions?

k | #{xy) e y> =X+ k} | #{(x,y) € Q*: y* = x> + k}
24 0 0

6 0 0

-5 0 0

1 1 1

7 0 0

11 0 00

16 2 2

k =11:

( 7 + 19 )7 (41825 + 8676719 ), ( 6179109049 3747956961949325 ), o

T4 -8 5776 > — 438976 10788145956 > ~ 1120521567865896

Mordell’s theorem says that the rational solutions are finitely generated.
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Elliptic curves

If k # 0, Mordell’s equation defines an elliptic curve.

A
M\

More generally, an elliptic curve over a field F is a pair (E, O) of

» a smooth projective curve E of genus one defined over F, and
» a distinguished point O on E defined over F.
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Weierstrass equations

By the Riemann—Roch theorem, any elliptic curve over a field F is the
projective closure of a plane cubic equation of the form

y2+alxy+a3y:x3+agx2+a4x+a6, a; € F,
where A # 0, ! and the distinguished point is the unique point at infinity.

With this definition, an elliptic curve over F is precisely the data of the
five coefficients ay, a, a3, a4, 3¢ € F and a proof that A # 0.

def A_aux {R: Type} [comm_ring R] (a; a, a3 as ag : R) : R 1=
let
by = a; "2 + 4*ay,
by := 2*%a; + aj*agz,
be := a3"2 + 4*ag,
bg := a; "2*ag + 4*ar*ag — ar;*az*as + ar*az3"2 — az"2
in
—by"2%bg — 8%bs "3 — 27*bg "2 + 9*by*bs*bg

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 ag : R) (A : units R) (A_eq: TA = A_aux aj a a3 as as)

]'A = —(a% +4ay )2(3%26+4a2 ag — a123a4+a22§ — 312‘)7 8(2a4 +21a3)3 727(.3% +4a6)2 +9(a%+4a2)(2a4 +21a3)(a§ +43g)
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K-rational points

With this definition, a point on an elliptic curve E over F is either
» the unique point at infinity, or
> the data of its coordinates x,y € F and a proof that (x,y) € E.

However, it will be important to also consider points defined over a field
extension K of F, the K-rational points E(K) of E.

Thus, a K-rational point on E is either
» the unique point at infinity, or

> the data of its coordinates x, y € K and a proof that (x,y) € E(K).

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy:K) (w:y 2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K
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Group law

More importantly, E(K) can be endowed with a group structure.

Group operations are characterised by

P+Q+R=0 = P, Q, R are collinear.

Note that if a; = a3 = 0, then E is symmetric about the x-axis, so (x, y)

lies in the 2-torsion subgroup E[2] := ker(E 2 E) precisely if y = 0.
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|dentity and negation

More importantly, E(K) can be endowed with a group structure.

Identity is trivial.

instance : has_zero E(K) := (zero)

Negation is easy.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3)
begin
W [+ W],
ring
end

instance : has_neg E(K) := (neg)
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Addition

More importantly, E(K) can be endowed with a group structure.

Addition is complicated.

def add : E(K) — E(K) — E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) :=
if x_ne : x; # X then
let
L:=(y1 —y2) / (}1 — x2),
x3 :=L"2 + E.a1*L. — E.ap — X1 — Xo,
y3 = —L*x3 — E.a;*x3 — y1 + L*x; — E.a3
in
some x3 y3 ... —— 100 lines
else if y_ne : y1 + y2 + E.a;*x» + E.a3 # 0 then
let
L := (3*x1"2 4+ 2*E.ax*x; + E.ag — E.a;*y1) / (2*y1 + E.a1*x; + E.a3),

x3 := L"2 4+ E.a1*L. — E.ap — 2%x,
y3 := —L*x3 — E.a1*x3 — y1 + L¥x; — E.a3
in
some x3 y3 ... —— 100 lines
else
zero
instance : has_add E(K) := (add)
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Group axioms

More importantly, E(K) can be endowed with a group structure.

The remaining group axioms are doable except associativity.

lemma zero_add (P : E(K)): 0 + P =P := ... —— trivial

lemma add_zero (P: E(K)): P+ 0 =P := ... —— trivial

lemma add_left_neg (P : E(K)) : —P + P =0 := ... —— trivial

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q+R):=... —— 7?7 lines

Associativity is known to be mathematically difficult with several proofs.
» Just bash out the algebra!
» Via the uniformisation theorem in complex analysis.
» Via the Cayley—Bacharach theorem in projective geometry.
» Via identification with the degree zero Picard group.
All methods require significant further work.
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Functoriality and Galois module structure

Modulo associativity, what basic properties can be stated or proven?

Functoriality from field extensions to abelian groups.

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (%) (9 y) Sby { ... }
lemma point_hom.id (P : E(K)) : point_hom (K—[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L—[F]M) (point_hom (K—[F]L) P) = point_hom ((L—[F]M).comp (K—[F]L)) P

Structure of invariants under a Galois action.

def point_gal (o : L ~,[K] L) : E(L) — E(L)
| zero := zero
| (some x y w) := some (o -x) (o -y)$by{...}

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L ~,[K] L) E(L) = (point_hom (K—[F|L)).range
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Isomorphism of elliptic curves

Modulo associativity, what basic properties can be stated or proven?

Isomorphism given by an admissible change of variables.

variables (u: units F) (r st : F)

def cov : EllipticCurve F :=

{ a1 := u.inv*(E.a; + 2*s),
a, := w.inv"2*(E.ap — s*E.a; + 3*r — s72),
a3z := w.inv"3*(E.a3 + r*E.a; + 2*t),
as = w.inv"4*(E.ay — s*E.az + 2*r*E.ap — (t + r¥s)*E.a; + 3*r"2 — 2¥s*t),
ag := u.inv"6*(E.ag + r*E.as + r"2*E.ap + r"3 — t*E.a3 — t"2 — r*t*E.ay),
disc := (u.inv"12*E.disc.val, u.val"12*E.disc.inv, by { ... }, by { ... }),
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.covur s t)(K) — E(K)
| zero := zero
| (some x y w) := some (w.val"2*x + r) (u.val"3*y + u.val™2*s*x +t) $ by { ... }

def cov.inv_fun : E(K) — (E.covur s t)(K)

| zero := zero
| (some x y w) := some (w.inv"2¥(x — r)) (w.inv"3*(y — s*x + r*s —t)) $by { ... }

def cov.equiv_add : (E.cov ur s t)(K) ~+ E(K) :=
(cov.to_funurst, coviinv_funurst, by {... },by{... }, by {... })
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2-division polynomial and 2-torsion subgroup

Modulo associativity, what basic properties can be stated or proven?

Polynomial determining points in the 2-torsion subgroup.

def 1p_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t),_x.disc_eq_disc : (o_x E K).disc = 16*E.disc

Structure and cardinality of the 2-torsion subgroup.

notation E(K)[n] := ((-) n : E(K) =+ E(K)).ker

lemma Eo.x {x y w} : some x y w € E(K)[2] <> x € (¢)2_x E K).roots
theorem Ep.card_le_four : fintype.card E(K)[2] < 4

variables [algebra ((¢2_x E F).splitting_field) K]

theorem Ej.card_eq_four : fintype.card E(K)[2] = 4

lemma Ep.gal_fixed (o : L ~,[K] L) (P:E(L)[2]): 0 -P =P
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Mordell's theorem

Modulo associativity, what basic properties can be stated or proven?

Theorem (Mordell)
E(Q) is finitely generated.

instance : add_group.fg E(Q)

As a consequence of the structure theorem, E(Q) can be written as the
product of a finite group and a finite number of copies of Z.

Proof of Mordell’'s theorem.
Three steps.

> Weak Mordell: £(Q)/2E(Q) is finite.
> Heights: E(Q) can be endowed with a “height function”.

» Descent: An abelian group A endowed with a “height function”
such that A/2A is finite, is necessarily finitely generated. OJ

1
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Weak Mordell

Proof that E(Q)/2E(Q) is finite.

>
>
>

v

Reduce to a; = a3 = 0, so that y? = x3 4+ ayx? + asx + as.
Reduce to E[2] C K, so that y? = (x — e1)(x — &)(x — e3).
Define a homomorphism

§ © E(K) —  KX/(K*)?2x K*/(K*)?
O — (1,1)
(e1,0) +— ((e1 —e)(e1 — &3),e1 — &)
(€2,0) — (e2—e1,(e2—e)(e2— &)
(x,y) +— (x —e1,x — &).

Prove ker(d) = 2E(K) by an explicit computation.
Prove im(d) C K(S,2) by a simple p-adic analysis.
Prove K(S,2) is finite by classical algebraic number theory. O
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Selmer groups

Here K(S,2) is a Selmer group, more generally given by
K(S,n) :={x(K*)"e K*/(K*)":Vp ¢S, ordp(x) =0 mod n},
where S is a finite set of primes of K.

The finiteness of K(S, n) reduces to the finiteness of K(f, n), which boils
down to two fundamental results in classical algebraic number theory.

» The class group Clk is finite.
» The unit group Oy is finitely generated.

Then K((, n) can be nested in a short exact sequence
0— Ox/(0)" — K(0,n) — Clk[n] — 0,

whose flanking groups are both finite, so K(f, n) is also finite.
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Heights and descent

Proof that E(Q)/2E(Q) finite implies E(Q) finitely generated.
There is a function h: E(Q) — R with the following three properties.

> For all Q € E(Q), there exists C; € R such that for all P € E(Q),
h(P+ Q) <2h(P)+ G.
» There exists C; € R such that for all P € E(Q),
4h(P) < h(2P) + G,.
» For all Gz € R, the set
{P € E(Q): h(P) <G}
is finite.

To prove that an abelian group A endowed with such a function, such
that A/2A is finite, is finitely generated is an exercise in algebra. O
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Future

Potential future projects:

>

vvyyvyy

v

Generalise 2-division polynomials into n-division polynomials to
determine the structure of n-torsion subgroups in general.

Explore the theory over finite fields and prove the Hasse—Weil bound.
Verify the correctness of Schoof’s and Lenstra's algorithms.
Explore the theory over local fields via defining formal groups.

Define the classical Selmer group and the Tate—Shafarevich group
with Galois cohomology of elliptic curves.

Define an elliptic curve as a projective scheme and reprove all results
using this definition and some form of the Riemann—Roch theorem.

» Explore the theory over global function fields.

Explore the complex theory to prove the uniformisation theorem and
state some version of the modularity theorem.
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