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Integer solutions

Consider Mordell’s equation

y2 = x3 + k , k ∈ Z.

What are the integer solutions?

k #{(x , y) ∈ Z2 : y2 = x3 + k}
−24 0
−6 0
−5 0
−1 1
7 0

11 0
16 2

I k = 7: none
(mod 4 and 8)

I k = 16: (0,±4)
(use UF of Z)

I k = −1: (1, 0)
(use UF of Z[i ])

Siegel’s theorem says that there are only finitely many integer solutions.
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Rational solutions

Consider Mordell’s equation

y2 = x3 + k , k ∈ Z.

What about the rational solutions?

k #{(x , y) ∈ Z2 : y2 = x3 + k} #{(x , y) ∈ Q2 : y2 = x3 + k}
−24 0 0
−6 0 0
−5 0 0
−1 1 1
7 0 0

11 0 ∞
16 2 2

k = 11:

(− 7
4 ,±

19
8 ), ( 41825

5776 ,±
8676719
438976 ), ( 6179109049

10788145956 ,±
3747956961949325
1120521567865896 ), . . .

Mordell’s theorem says that the rational solutions are finitely generated.
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Elliptic curves

If k 6= 0, Mordell’s equation defines an elliptic curve.

More generally, an elliptic curve over a field F is a pair (E ,O) of

I a smooth projective curve E of genus one defined over F , and

I a distinguished point O on E defined over F .
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Weierstrass equations

By the Riemann-Roch theorem, any elliptic curve over a field F is the
projective closure of a plane cubic equation of the form

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ F ,

where ∆ 6= 0, 1 and the distinguished point is the unique point at infinity.

With this definition, an elliptic curve over F is precisely the data of the
five coefficients a1, a2, a3, a4, a6 ∈ F and a proof that ∆ 6= 0.

def ∆_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
let
b2 := a1ˆ2 + 4*a2,
b4 := 2*a4 + a1*a3,
b6 := a3ˆ2 + 4*a6,
b8 := a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2

in
=b2ˆ2*b8 = 8*b4ˆ3 = 27*b6ˆ2 + 9*b2*b4*b6

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (∆ : units R) (∆_eq : ↑∆ = ∆_aux a1 a2 a3 a4 a6)

1
∆ := −(a2

1 +4a2)2(a2
1a6 +4a2a6−a1a3a4 +a2a

2
3−a2

4)−8(2a4 +a1a3)3−27(a2
3 +4a6)2 +9(a2

1 +4a2)(2a4 +a1a3)(a2
3 +4a6)
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K -rational points

With this definition, a point on an elliptic curve E over F is either

I the unique point at infinity, or

I the data of its coordinates x , y ∈ F and a proof that (x , y) ∈ E .

However, it will be important to also consider points defined over a field
extension K of F , the K -rational points E (K ) of E .

Thus, a K -rational point on E is either

I the unique point at infinity, or

I the data of its coordinates x , y ∈ K and a proof that (x , y) ∈ E (K ).

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K
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Group law

More importantly, E (K ) can be endowed with a group structure.

Group operations are characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.

Note that if a1 = a3 = 0, then E is symmetric about the x-axis, so (x , y)

lies in the 2-torsion subgroup E [2] := ker(E
·2−→ E ) precisely if y = 0.
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Identity and negation

More importantly, E (K ) can be endowed with a group structure.

Identity is trivial.

instance : has_zero E(K) := 〈zero〉

Negation is easy.

def neg : E(K) → E(K)
| zero := zero
| (some x y w) := some x (=y = E.a1*x = E.a3)
begin
rw [← w],
ring

end

instance : has_neg E(K) := 〈neg〉
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Addition

More importantly, E (K ) can be endowed with a group structure.

Addition is complicated.

def add : E(K) → E(K) → E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some x2 y2 w2) :=
if x_ne : x1 6= x2 then
let
L := (y1 = y2) / (x1 = x2),
x3 := Lˆ2 + E.a1*L = E.a2 = x1 = x2,
y3 := =L*x3 = E.a1*x3 = y1 + L*x1 = E.a3

in
some x3 y3 . . . == 100 lines

else if y_ne : y1 + y2 + E.a1*x2 + E.a3 6= 0 then
let
L := (3*x1ˆ2 + 2*E.a2*x1 + E.a4 = E.a1*y1) / (2*y1 + E.a1*x1 + E.a3),
x3 := Lˆ2 + E.a1*L = E.a2 = 2*x1,
y3 := =L*x3 = E.a1*x3 = y1 + L*x1 = E.a3

in
some x3 y3 . . . == 100 lines

else
zero

instance : has_add E(K) := 〈add〉
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Group axioms

More importantly, E (K ) can be endowed with a group structure.

The remaining group axioms are doable except associativity.

lemma zero_add (P : E(K)) : 0 + P = P := . . . == trivial

lemma add_zero (P : E(K)) : P + 0 = P := . . . == trivial

lemma add_left_neg (P : E(K)) : =P + P = 0 := . . . == trivial

lemma add_comm (P Q : E(K)) : P + Q = Q + P := . . . == 100 lines

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) := . . . == ?? lines

Associativity is known to be mathematically difficult with several proofs.

I Just bash out the algebra!

I Via the uniformisation theorem in complex analysis.

I Via the Cayley-Bacharach theorem in projective geometry.

I Via identification with the degree zero Picard group.

All methods require significant further work.
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Functoriality and Galois module structure

Modulo associativity, what basic properties can be stated or proven?

Functoriality from field extensions to abelian groups.

def point_hom (ϕ : K →a[F] L) : E(K) → E(L)
| zero := zero
| (some x y w) := some (ϕ x) (ϕ y) $ by { . . . }

lemma point_hom.id (P : E(K)) : point_hom (K→[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L→[F]M) (point_hom (K→[F]L) P) = point_hom ((L→[F]M).comp (K→[F]L)) P

Structure of invariants under a Galois action.

def point_gal (σ : L 'a[K] L) : E(L) → E(L)
| zero := zero
| (some x y w) := some (σ · x) (σ · y) $ by { . . . }

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L 'a[K] L) E(L) = (point_hom (K→[F]L)).range
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Isomorphism of elliptic curves

Modulo associativity, what basic properties can be stated or proven?

Isomorphism given by an admissible change of variables.

variables (u : units F) (r s t : F)

def cov : EllipticCurve F :=
{ a1 := u.inv*(E.a1 + 2*s),
a2 := u.invˆ2*(E.a2 = s*E.a1 + 3*r = sˆ2),
a3 := u.invˆ3*(E.a3 + r*E.a1 + 2*t),
a4 := u.invˆ4*(E.a4 = s*E.a3 + 2*r*E.a2 = (t + r*s)*E.a1 + 3*rˆ2 = 2*s*t),
a6 := u.invˆ6*(E.a6 + r*E.a4 + rˆ2*E.a2 + rˆ3 = t*E.a3 = tˆ2 = r*t*E.a1),
disc := 〈u.invˆ12*E.disc.val, u.valˆ12*E.disc.inv, by { . . . }, by { . . . }〉,
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.cov u r s t)(K) → E(K)
| zero := zero
| (some x y w) := some (u.valˆ2*x + r) (u.valˆ3*y + u.valˆ2*s*x + t) $ by { . . . }

def cov.inv_fun : E(K) → (E.cov u r s t)(K)
| zero := zero
| (some x y w) := some (u.invˆ2*(x = r)) (u.invˆ3*(y = s*x + r*s = t)) $ by { . . . }

def cov.equiv_add : (E.cov u r s t)(K) '+ E(K) :=
〈cov.to_fun u r s t, cov.inv_fun u r s t, by { . . . }, by { . . . }, by { . . . }〉

12 / 18



2-division polynomial and 2-torsion subgroup

Modulo associativity, what basic properties can be stated or proven?

Polynomial determining points in the 2-torsion subgroup.

def ψ2_x : cubic K := 〈4, E.a1ˆ2 + 4*E.a2, 4*E.a4 + 2*E.a1*E.a3, E.a3ˆ2 + 4*E.a6〉

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc

Structure and cardinality of the 2-torsion subgroup.

notation E(K)[n] := ((·) n : E(K) →+ E(K)).ker

lemma E2.x {x y w} : some x y w ∈ E(K)[2] ↔ x ∈ (ψ2_x E K).roots

theorem E2.card_le_four : fintype.card E(K)[2] ≤ 4

variables [algebra ((ψ2_x E F).splitting_field) K]

theorem E2.card_eq_four : fintype.card E(K)[2] = 4

lemma E2.gal_fixed (σ : L 'a[K] L) (P : E(L)[2]) : σ · P = P
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Mordell’s theorem

Modulo associativity, what basic properties can be stated or proven?

Theorem (Mordell)
E (Q) is finitely generated.

instance : add_group.fg E(Q)

As a consequence of the structure theorem, E (Q) can be written as the
product of a finite group and a finite number of copies of Z.

Proof of Mordell’s theorem.
Three steps.

I Weak Mordell: E (Q)/2E (Q) is finite.

I Heights: E (Q) can be endowed with a “height function”.

I Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated.
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Weak Mordell

Proof that E (Q)/2E (Q) is finite.

I Reduce to a1 = a3 = 0, so that y2 = x3 + a2x
2 + a4x + a6.

I Reduce to E [2] ⊂ K , so that y2 = (x − e1)(x − e2)(x − e3).

I Define a homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(e1, 0) 7−→ ((e1 − e2)(e1 − e3), e1 − e2)
(e2, 0) 7−→ (e2 − e1, (e2 − e1)(e2 − e3))
(x , y) 7−→ (x − e1, x − e2)

.

I Prove ker(δ) = 2E (K ) by an explicit computation.

I Prove im(δ) ⊆ K (S , 2) by a simple p-adic analysis.

I Prove K (S , 2) is finite by classical algebraic number theory.
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Selmer groups

Here K (S , 2) is a Selmer group, more generally given by

K (S , n) := {x(K×)n ∈ K×/(K×)n : ∀p /∈ S , ordp(x) ≡ 0 mod n},

where S is a finite set of primes of K .

The finiteness of K (S , n) reduces to the finiteness of K (∅, n), which boils
down to two fundamental results in classical algebraic number theory.

I The class group ClK is finite.

I The unit group O×K is finitely generated.

Then K (∅, n) can be nested in a short exact sequence

0→ O×K /(O×K )n → K (∅, n)→ ClK [n]→ 0,

whose flanking groups are both finite, so K (∅, n) is also finite.
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Heights and descent

Proof that E (Q)/2E (Q) finite implies E (Q) finitely generated.
There is a function h : E (Q)→ R with the following three properties.

I For all Q ∈ E (Q), there exists C1 ∈ R such that for all P ∈ E (Q),

h(P + Q) ≤ 2h(P) + C1.

I There exists C2 ∈ R such that for all P ∈ E (Q),

4h(P) ≤ h(2P) + C2.

I For all C3 ∈ R, the set

{P ∈ E (Q) : h(P) ≤ C3}

is finite.

To prove that an abelian group A endowed with such a function, such
that A/2A is finite, is finitely generated is an exercise in algebra.
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Future

Potential future projects:

I Generalise 2-division polynomials into n-division polynomials to
determine the structure of n-torsion subgroups in general.

I Explore the theory over finite fields and prove the Hasse-Weil bound.

I Verify the correctness of Schoof’s and Lenstra’s algorithms.

I Explore the theory over local fields via defining formal groups.

I Define the classical Selmer group and the Tate-Shafarevich group
with Galois cohomology of elliptic curves.

I Define an elliptic curve as a projective scheme and reprove all results
using this definition and some form of the Riemann-Roch theorem.

I Explore the theory over global function fields.

I Explore the complex theory to prove the uniformisation theorem and
state some version of the modularity theorem.

Thank you!
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