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Integer solutions

Consider Mordell's equation
y? =x3+k, keZ.

What are the integer solutions?

k | #{(x,y) € 7% y?> = x3 + k}
_264 8 » k =7: none
:5 0 (mod 4 and 8)
3 ) > k=16: (0,+4)
7 0 (use UF of Z)
11 0 > k=—1: (1,0)
16 2 (use UF of Z[i])

Siegel’s theorem says that there are only finitely many integer solutions.
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Rational solutions

Consider Mordell's equation
y? =x3+k, keZ.

What about the rational solutions?

k | #{xy) e y> =X+ k} | #{(x,y) € Q*: y* = x> + k}
24 0 0

6 0 0

-5 0 0

1 1 1

7 0 0

11 0 00

16 2 2

k =11:

( 7 + 19 )7 (41825 + 8676719 ), ( 6179109049 3747956961949325 ), o

T4 -8 5776 > — 438976 10788145956 > ~ 1120521567865896

Mordell’s theorem says that the rational solutions are finitely generated.
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Elliptic curves

If k # 0, Mordell’s equation defines an elliptic curve.

A
M\

More generally, an elliptic curve over a field F is a pair (E, O) of

» a smooth projective curve E of genus one defined over F, and
» a distinguished point O on E defined over F.

4/18



Weierstrass equations

By the Riemann-Roch theorem, any elliptic curve over a field F is the
projective closure of a plane cubic equation of the form

y2+alxy+a3y:x3+agx2+a4x+a6, a; € F,

where A # 0, ! and the distinguished point is the unique point at infinity.

With this definition, an elliptic curve over F is precisely the data of the
five coefficients ay, a, a3, a4, 3¢ € F and a proof that A # 0.

def A_aux {R: Type} [comm_ring R] (a; @, a3 as as : R) : R :=
let
by := a; "2 + 4*ay,
bs := 2*a; + aj*agz,
be a3”2 + 4*ag,
bg a; "2*ag + 4*ar*ag — aj*az*as + ar*az3”2 — as"2
in
—by " 2%bg — 8%bs "3 — 27*b6"2 + 9*br*bs*bs

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (A : units R) (A_eq: TA = A_aux aj ap a3 as ap)

Ta.= — (a3 +4ap)? (a2 a6 +4apag — a1 3324 +apa3 — a3) —B(2ag +a1 23)° — 27(a3 +425)% +9(aF +4a7) (234 +a1 33) (23 +435)
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K-rational points

With this definition, a point on an elliptic curve E over F is either
» the unique point at infinity, or
> the data of its coordinates x,y € F and a proof that (x,y) € E.

However, it will be important to also consider points defined over a field
extension K of F, the K-rational points E(K) of E.

Thus, a K-rational point on E is either

» the unique point at infinity, or

> the data of its coordinates x, y € K and a proof that (x,y) € E(K).

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy : K) (w:y 2 + Ear*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K
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Group law

More importantly, E(K) can be endowed with a group structure.

Group operations are characterised by

P+Q@+R=0 — P, Q, R are collinear.

Note that if a; = a3 = 0, then E is symmetric about the x-axis, so (x, y)

lies in the 2-torsion subgroup E[2] := ker(E 2, E) precisely if y = 0.
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|dentity and negation

More importantly, E(K) can be endowed with a group structure.

Identity is trivial.

instance : has_zero E(K) := (zero)

Negation is easy.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3)
begin
W [+ W],
ring
end

instance : has_neg E(K) := (neg)
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Addition

More importantly, E(K) can be endowed with a group structure.

Addition is complicated.

def add : E(K) — E(K) — E(K)
| zero P := P

| P zero := P
| (some x1 y1 w1) (some x5 y2 w2) :=
1 X1 # % then

if x_ne :
let
L:=(y1 —y2) / (1 — x2),
x3 :=L"2 + E.a;*L — E.ap — x1 — X2,
y3 := —L¥x3 — E.a;*x3 — y1 + L¥x; — E.a3
in
—— 100 lines

some X3 y3 ...
y1 + y2 + E.ai1*xy + E.ag # 0 then

else if y_ne :
let
L := (3*x1"2 4+ 2*E.ax*x; + E.as — E.a1*y1) / (2*y1 + E.a1*x; + E.a3),

x3 1= L"2 + E.a;*L — E.ap — 2%x,,
y3 := —L*x3 — E.a1*x3 — y1 + L¥x; — E.a3
in
some x3 y3 ... —— 100 lines
else
zero
instance : has_add E(K) := (add)
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Group axioms

More importantly, E(K) can be endowed with a group structure.

The remaining group axioms are doable except associativity.

lemma zero_add (P: E(K)): 0 + P =P := ... —— trivial

lemma add_zero (P : E(K)) : P+ 0 =P :=... —— trivial

lemma add_left_neg (P : E(K)) : —P + P =0 := ... —— trivial

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:E(K)):(P+Q) +R=P+ (Q+R):=... —— 77 lines

Associativity is known to be mathematically difficult with several proofs.
» Just bash out the algebra!
» Via the uniformisation theorem in complex analysis.
» Via the Cayley-Bacharach theorem in projective geometry.
» Via identification with the degree zero Picard group.
All methods require significant further work.
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Functoriality and Galois module structure

Modulo associativity, what basic properties can be stated or proven?

Functoriality from field extensions to abelian groups.

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (¢ x) (py)$by {...}
lemma point_hom.id (P : E(K)) : point_hom (K—[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L—[F]M) (point_hom (K—[F]L) P) = point_hom ((L—[F]M).comp (K—[F]L)) P

Structure of invariants under a Galois action.

def point_gal (o : L ~,[K] L) : E(L) — E(L)
| zero := zero
| (some x y w) := some (o -x) (o -y)$by{...}

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L ~,[K] L) E(L) = (point_hom (K—[F|L)).range
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Isomorphism of elliptic curves

Modulo associativity, what basic properties can be stated or proven?

Isomorphism given by an admissible change of variables.

variables (u: units F) (r st :F)

def cov : EllipticCurve F :=

{ a1 := w.inv¥*(E.a; + 2*s),
a := w.inv"2¥(E.ay — s*E.a; + 3*r — s72),
a3z := w.inv"3*(E.az + r*E.a; + 2*t),
ag u.inv"4*(E.as — s*E.az + 2*r*E.ap — (t + r*s)*E.a; + 3%r"2 — 2*¥s*t),
ag := u.inv"6*(E.ag + r*E.as + r"2*E.ap + r"3 — t*E.a3 — t"2 — r*t*E.ay),
disc := (u.inv"12*E.disc.val, u.val"12*E.disc.inv, by { ... }, by { ... }),
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.covur s t)(K) — E(K)
| zero := zero
| (some x y w) := some (u.val"2*x + r) (u.val"3*y + uval™2*s*x +t) $by { ... }

def cov.inv_fun : E(K) — (E.covur s t)(K)
| zero := zero
| (some x y w) := some (w.inv"2¥*(x — r)) (w.inv"3*(y — s*x + r*s —t)) $by { ... }

def cov.equiv_add : (E.cov ur s t)(K) ~+ E(K) :=
(cov.to_funurst, coviinv_funurst, by {... },by{... },by {... })
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2-division polynomial and 2-torsion subgroup

Modulo associativity, what basic properties can be stated or proven?

Polynomial determining points in the 2-torsion subgroup.

def 1y_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t)p_x.disc_eq_disc : (¢po_x E K).disc = 16*E.disc

Structure and cardinality of the 2-torsion subgroup.

notation E(K)[n] := ((-) n : E(K) —+ E(K)).ker

lemma Ep.x {x y w} : some x y w € E(K)[2] +> x € (¥2_x E K).roots
theorem Ep.card_le_four : fintype.card E(K)[2] < 4

variables [algebra ((¢)2_x E F).splitting_field) K]

theorem E.card_eq_four : fintype.card E(K)[2] = 4

lemma Ep.gal_fixed (o : L ~,[K]L) (P:E(L)[2]) : 0 - P =P
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Mordell's theorem

Modulo associativity, what basic properties can be stated or proven?

Theorem (Mordell)
E(Q) is finitely generated.

instance : add_group.fg E(Q)

As a consequence of the structure theorem, E(Q) can be written as the
product of a finite group and a finite number of copies of Z.

Proof of Mordell's theorem.
Three steps.

» Weak Mordell: £E(Q)/2E(Q) is finite.
» Heights: E(Q) can be endowed with a “height function”.

» Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated.
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Weak Mordell

Proof that E(Q)/2E(Q) is finite.

>
>
>

v

Reduce to a; = a3 = 0, so that y? = x3 4+ ayx? + asx + as.
Reduce to E[2] C K, so that y? = (x — e1)(x — &)(x — e3).
Define a homomorphism

§ © E(K) —  KX/(K*)?x KX/(K*)?
O — (1,1)
(e1,0) — ((e1 —e)(e1 — &), 61 — &) .
(€,0) — (e2— e, (e2—ea)(e—e))
(x,y) +— (x — e, x — &)

Prove ker(d) = 2E(K) by an explicit computation.
Prove im(d) C K(S,2) by a simple p-adic analysis.
Prove K(S,2) is finite by classical algebraic number theory.
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Selmer groups

Here K(S,2) is a Selmer group, more generally given by
K(S,n) :={x(K*)"e K*/(K*)":Vp¢ S, ordp(x) =0 mod n},

where S is a finite set of primes of K.

The finiteness of K(S, n) reduces to the finiteness of K(f, n), which boils
down to two fundamental results in classical algebraic number theory.

» The class group Clg is finite.
» The unit group O is finitely generated.

Then K((, n) can be nested in a short exact sequence
0— 0g/(0)" — K(0,n) — Clk[n] — 0,

whose flanking groups are both finite, so K(), n) is also finite.
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Heights and descent

Proof that E(Q)/2E(Q) finite implies E(Q) finitely generated.
There is a function h: E(Q) — R with the following three properties.

> For all Q € E(Q), there exists C; € R such that for all P € E(Q),
h(P+ Q) <2h(P)+ G.
» There exists C; € R such that for all P € E(Q),
4h(P) < h(2P) + G,.
» For all Gz € R, the set
{P € E(Q): h(P) <G}
is finite.

To prove that an abelian group A endowed with such a function, such
that A/2A is finite, is finitely generated is an exercise in algebra. O
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Future

Potential future projects:

>

vvyVvyy

v

>

Generalise 2-division polynomials into n-division polynomials to
determine the structure of n-torsion subgroups in general.

Explore the theory over finite fields and prove the Hasse-Weil bound.
Verify the correctness of Schoof’s and Lenstra's algorithms.
Explore the theory over local fields via defining formal groups.

Define the classical Selmer group and the Tate-Shafarevich group
with Galois cohomology of elliptic curves.

Define an elliptic curve as a projective scheme and reprove all results
using this definition and some form of the Riemann-Roch theorem.

Explore the theory over global function fields.

Explore the complex theory to prove the uniformisation theorem and
state some version of the modularity theorem.

Thank you!
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