Elliptic curves and the Mordell-Weil theorem

London Learning Lean

David Kurniadi Angdinata
London School of Geometry and Number Theory

Thursday, 26 May 2022

1/30

Overview

vVvyvVvyVvyVvyVvYyYyvyy

Introduction

Abstract definition
Concrete definition
Implementation
Associativity

The Mordell-Weil theorem
Selmer groups

Future

2/30

Introduction — informally

What are elliptic curves?

» A curve — solutions to y? = x3 4+ Ax + B for fixed A and B.

A
M

» A group — notion of addition of points!

3/30

Introduction — applications

Why do we care?

Make or break cryptography.
> Lenstra’s integer factorisation algorithm (RSA).
» Discrete logarithm problem — solve nQ = P given P and Q (DH).
» Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.
» The simplest non-trivial objects in algebraic geometry.
> Abelian variety of dimension one, projective curve of genus one, etc...
» Rational elliptic curve associated to aP + b? = cP is not modular.
» But modularity theorem — rational elliptic curves are modular!
» Distribution of ranks of rational elliptic curves.
» The BSD conjecture — analytic rank equals algebraic rank?

4/30

Abstract definition — globally

An elliptic curve E over a scheme S is a diagram

E
fl)0
S

with a few technical conditions. !

For a scheme T over S, define the set of T-points of E by

E(T) := Homg(T, E),
which is naturally identified with a Picard group Pic%/s(T) of E.
This defines a contravariant functor Schs — Ab given by T — E(T).

Good for algebraic geometry, but not very friendly...

1f is smooth, proper, and all its geometric fibres are integral curves of genus one
5/30

Abstract definition — locally
Let S = Spec(F) and T = Spec(K) for a field extension K/F. 2
An elliptic curve E over a field F is a tuple (E,0).
» E is a nice 3 genus one curve over F.
» 0is an F-point.
The Picard group is

d divi f E K
Pic(,)_:/F(K) _ {degree zero divisors of E over K}

{principal divisors of E over K}

This defines a covariant functor Algs — Ab given by K — E(K).

Group law is free, but still need equations...

2or even a ring extension K/F whose class group has no 12-torsion

3smooth, proper, and geometrically integral
6/30

Concrete definition — Weierstrass equations

The Riemann—Roch theorem gives Weierstrass equations.

Corollary (of Riemann—Roch)
An elliptic curve E over a field F is a projective plane curve

Y2Z + a XYZ + a3YZ? = X3 + 2 X?Z + ayXZ? + as Z°, aj € F,

with A # 0. *

If char(F) # 2,3, can reduce this to
Y2Z = X3 + AXZ? + BZ3, A BeF,
with A :=4A3 +27B% # 0.

Note the unique point at infinity when Z = 0! Call this point 0.

4A = —(a% +432)2(a%26+4a2 ag — ala3a4+aza% — 312‘)7 8(2a4 +21a3)3 727(.3% +4a6)2 +9(a%+4a2)(2a4 +21a3)(a§ +43g)

7/30

Concrete definition — group law

The group law from E(K) = Pic%/F(K) is reduced to drawing lines.

Operations are characterised by

P+Q+R=0 = P, Q, R are collinear.

Note that (x,y) € E[2] := ker(E 2 E)ifand only if y = 0. °

Many cases... but all completely explicit!

5Assume a; = az = 0.

8/30

Implementation — the curve

Three definitions of elliptic curves:
1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. D 2. RR 3.
» 1. & 2. require much algebraic geometry (properness, genus, ...).
» 2. = 3. also requires algebraic geometry (divisors, differentials, ...).
> 3. requires just five coefficients (and A # 0)!

def disc_aux {R: Type} [comm_ring R] (a; a; a3 as ag : R) : R :=
—(a172 + 4*ap)"2¥%(a; "2*%as + 4*ar*ag — ar*az*ay + ap*az”2 — as"2)
— 8*%(2%ay + a;*a3z)"3 — 27*(a3"2 + 4%ap)"2
+ 9*(a1"2 =+ 4*a2)*(2*a4 + 31*33)*(213’\2 + 4*a5)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3z a4 ag : R) (disc : units R) (disc_eq : disc.val = disc_aux aj a a3 a4 as)

This is the curve E — what about the group E(K)?

9/30

Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Identity is trivial!

instance : has_zero E(K) := (zero)

» Negation is easy.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3) $§
begin
w [« W],
ring
end

instance : has_neg E(K) := (neg)

10/30

Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point

| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Addition is complicated...

def add : E(K) — E(K) — E(K)
| zero P :=P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) :=
if x_ne : x3 # xp then
let L:= (y1 — y2) / (x1 — x2),
x3 :=L"2 4+ E.a1*L — E.ap — x1 — X2,
y3 := —L*x3 — E.a;*x3 — y1 + L*x3 — E.a3
in some x3y3 $by { ...}
else if y_ne:y; + yo + E.a;*xp + E.ag # 0 then —— double a point

—— add distinct points

else —— draw vertical line
zero

instance : has_add E(K) := (add)

11/30

Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Commutativity is... doable.

lemma add_comm (P Q : E(K)) : P4+ Q=0Q + P :=

begin
rcases (P, Q) with (_ | _, _ | _),
... —— six cases

end

» Associativity is... impossible?

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q +R):=

begin
rcases (P, Q, R) with (_ | _, _ | _, _ | _),
. —— 777 cases
end

12/30

Associativity — explaining the problem

Known to be difficult with several proofs:
» Just do it!
> Probably(?) times out with 130,000(!) coefficients.
» Uniformisation.
» Requires theory of elliptic functions.
» Cayley—Bacharach.
> Requires intersection multiplicity and Bézout's theorem.

> E(K) = Picg /£(K).

» Requires divisors, differentials, and the Riemann—Roch theorem.

Current status:
> Left as a sorry.
» Ongoing attempt (by Marc Masdeu) to bash it out.

» Proof in Coq (by Evmorfia-Iro Bartzia and Pierre-Yves Strub °)
that E(K) = Picg,(K) but only for char(F) # 2, 3.

SA Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)

13/30

Associativity — ignoring the problem

Modulo associativity, what has been done?
» Functoriality Alg — Ab.

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (¢ x) (py)Sby {...}
lemma point_hom.id (P : E(K)) : point_hom (K—[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L—[F]M) (point_hom (K—[F]L) P) = point_hom ((L—[F]M).comp (K—[F]L)) P

> Galois module structure Gal(L/K) ~ E(L).

def point_gal (o : L ~,[K] L) : E(L) — E(L)
| zero := zero
| (some x y w) := some (o -x) (o -y)$by{...}

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L ~,[K] L) E(L) = (point_hom (K—[F|L)).range

14/30

Associativity — ignoring the problem

Modulo associativity, what has been done?
» Isomorphisms (x,y) + (t?x + r,udy + u?sx + t).

variables (u: units F) (r st : F)

def cov : EllipticCurve F :=

{ a1 := uw.inv*(E.a; + 2*s),
a := w.inv"2¥(E.ay — s*E.a; + 3*r — s72),
a3z := w.inv"3*(E.az + r*E.a; + 2*t),
ay = w.inv"4*(E.ay — s*E.az + 2*r*E.ay — (t + r¥s)*E.a; + 3*r"2 — 2*s*t),
ag := u.inv"6*(E.ag + r*E.as + r"2*E.ap + r"3 — t*E.a3 — t"2 — r*t*E.ay),
disc := (u.inv"12*E.disc.val, u.val"12*E.disc.inv, by { ... }, by { ... }),
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.covur s t)(K) — E(K)
| zero := zero
some x y w) := some (u.val™2*x + r) (u.val"3*y + u.val™2*s*x + t) $ b L.
y y y

def cov.inv_fun : E(K) — (E.covur s t)(K)
| zero := zero
| (some x y w) := some (w.inv"2¥(x — r)) (w.inv"3*(y — s*x + r*s —t)) $by { ... }

def cov.equiv_add : (E.cov ur s t)(K) ~+ E(K) :=
(cov.to_funurst, coviinv_funurst, by {... },by{... }, by {... })

15/30

Associativity — ignoring the problem

Modulo associativity, what has been done?
» 2-division polynomial t,(x).

def 1p_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t),_x.disc_eq_disc : (¢p_x E K).disc = 16*E.disc

> Structure of E(K)[2].

notation E(K)[n] := ((-) n : E(K) =+ E(K)).ker

lemma Eo.x {x y w} : some x y w € E(K)[2] <> x € (¢)2_x E K).roots
theorem Ep.card_le_four : fintype.card E(K)[2] < 4

variables [algebra ((¢2_x E F).splitting_field) K]

theorem Ej.card_eq_four : fintype.card E(K)[2] = 4

lemma Ep.gal_fixed (o : L ~,[K] L) (P:E(L)[2]): 0 -P =P

16/30

The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

Here, T is a finite torsion subgroup and r € N is the algebraic rank.

Proof.
Three steps.

» Weak Mordell-Weil: E(K)/2E(K) is finite.
> Heights: E(K) can be endowed with a "height function”.

» Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated. OJ

The descent step is done (Jujian Zhang).

17/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x,y) : y* + axy + asy = x* + ayx® + asx + a} U {0}
» Reduce to a; = a3 = 0.

Completing the square is an isomorphism

E(K) — E(K)
(X7Y) — (va*

Thus

E(K)/2E(K) finite <= E'(K)/2E'(K) finite.

def covp.equiv_add : (E.cov _ _ _ _)(K) ~+ E(K) := cov.equiv_add 1 0 (—E.a;/2) (—E.a3/2)

18/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K)={(x,y): y*> = x>+ apx®> + asx + ag} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

Let L = K(E[2]). Suffices to show
E(L)/2E(L) finite = E(K)/2E(K) finite.
Suffices to show finiteness of
& = ker(E(K)/2E(K) — E(L)/2E(L)).
Define an injection

Kk ® — Hom(Gal(L/K), E(L)[2]).

19/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K)={(x,y): y*> = x>+ apx®> + asx + ag} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

variables [finite_dimensional K L] [is_galois K L] (n : N)
lemma range_le_comap_range : n-E(K) < add_subgroup.comap (point_hom _) n-E(L)

def ® : add_subgroup E(K)/n :=
(quotient_add_group.map _ _ _ $ range_le_comap_range n).ker

lemma ®_mem_range (P: ® n EL) : point_hom _ P.val.out’ € n-E(L)

def K : ®nEL — L ~,[K] L — E(L)[n] :=
APo, (o (P_mem_range n P).some — (P_mem_range n P).some, by { ... })

lemma k.injective : function.injective $ K n

def coker_2_of_fg_extension.fintype : fintype E(L)/2 — fintype E(K)/2

20/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x.y) 1 ¥* = (x — e1)(x — e2)(x — &5)} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).
» Define a complete 2-descent homomorphism

5 E(K) — KX/(K¥)2 x K*/(K*)?,

by
0 — (1 , 1)
(xy) — (x—e , x—e)
€1 — €
(e1,0) — (a-= , e1—e)
€ — &
(£,0) — (eo-—ea , 25

€& — &

21/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x.y) 1 ¥* = (x — e1)(x — e2)(x — &5)} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).
» Define a complete 2-descent homomorphism

§ : E(K) — KX/(KX)*x KX/(K*)2.

variables (ha; : E.a; = 0) (has : E.ag3 = 0) (h3 : (1)2_x E K).roots = {e1, e2, e3})

def ¢ : E(K) — (units K) / (units K)"2 X (units K) / (units K)"2
| zero :=1
| (some x y w) :=
if he; : x = e; then
(units.mkO ((e1 —e3) / (e1 —e2)) $by { ...}, unitsmkO (e1 —ex) $by { ... })
else if hey : x = e then
(units.mkO (e; —e1) $by { ... }, units.mkO ((e2 —e3) /(e2 —e1))$by {...})
else
(units.mkO (x —e;) $ by { ... }, unitsmkO (x —ep) $by { ... })

22/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x.y) 1 ¥* = (x — e1)(x — e2)(x — &5)} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).
» Define a complete 2-descent homomorphism

§ : E(K) — KX/(KX)*x KX/(K*)2.
> Prove ker§ = 2E(K).

Here DO is obvious, while C is long but constructive.

lemma §.ker : (§ ha; haz h3).ker = 2-E(K) :=
begin

... —— completely constructive proof

end

23/30

The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x.y) 1 ¥* = (x — e1)(x — e2)(x — &5)} U {0}

» Reduce to a; = a3 = 0.
Reduce to E[2] C E(K).
» Define a complete 2-descent homomorphism

v

§ : E(K) — KX/(KX)*x KX/(K*)2.

> Prove ker§ = 2E(K).
> Prove imd < K(S,2) x K(S,2) for some K(S,2) < K*/(K*)2.

Here S is a finite set of “ramified” places of K.

lemma §.range_le : (§ ha; haz h3).range < K(S, 2) x K(S, 2) := sorry —— ramification theory? ‘

24/30

Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)":Vp ¢S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

There is a homomorphism

K(S,n) — (Z/nZ)
x(K*)" — (ordp(x))pes

with kernel K(@, n). Thus

K(S, n) finite = K (0, n) finite.

25/30

Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is

K(S,n) :={x(K*)"e K*/(K*)":Vp ¢S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

def selmer : subgroup $ (units K) / (units K)"n :=
{ carrier := {x | Vp ¢ S, val_of __ne_zero_mod p x = 1},
one_mem' :=by { ... },
mul_mem’ :
inv_mem’ :

notation K(S, n) := selmer K Sn

def selmer.val : K(S, n) —* S — multiplicative (zmod n) :=
{ to_fun := A\ x p, val_of_ne_zero_mod p X,
map_one’ :=by { ... },
map_mul’ :=by { ...} }

lemma selmer.val_ker : selmer.val.ker = K({), n).subgroup_of K(S, n)

26/30

Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)":Vp ¢S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= OO0 5 K(0,n) & Clk.

def £ : units (0 K) —* K(0, n) :=
{ to_fun := X x, (quotient_group.mk $ ne_zero_of_unit x, A p _, val_of_unit_mod p x),
map_one’ := rfl,
map_mul’ := X ({_, _), (L, _), -, =) ((o,) (L)) o 2), el } —— ol
lemma f_ker : f.ker = (units (0 K))"n
def g : K(0, n) —* class_group (0K)K := ... —— hmm

lemma g_ker : g.ker = f.range

27/30

Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)":Vp ¢S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).
» Define an exact sequence

0= OO0 5 K(0,n) & Clk.

» Prove Clk is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
> Prove O /(Og)" is finite. Suffices to show O is finitely generated.

Consequence of Dirichlet’s unit theorem (help wanted!).
Note the classical n-Selmer group of E is

Sel(K, E[n]) < K(S,n) x K(S, n).

28/30

The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.

A height function h: E(K) — R satisfies the following.
> For all Q € E(K), there exists ¢; € R such that for all P € E(K),

h(P+ Q) < 2h(P) + G.
» There exists C; € R such that for all P € E(K),
4h(P) < h(2P) + G,.
» For all G € R, the set
{P e E(K):h(P) < G}
is finite.

Ongoing for K = Q. Probably not ready for general K?

29/30

Future

Potential future projects:

2

vvyVvyvyy

n-division polynomials and structure of E(K)[n]

formal groups and local theory

ramification theory = full Mordell-Weil theorem

Galois cohomology = Selmer and Tate—Shafarevich groups
modular functions = complex theory

algebraic geometry = associativity, finally

30/30

