London School of Geometry and Number Theory

London Learning Lean

Elliptic curves and the Mordell-Weil theorem

David Ang

Thursday, 26 May 2022

Overview

- Introduction
- Abstract definition
- Concrete definition
- Implementation
- Associativity
- The Mordell-Weil theorem
- Selmer groups
- Future

Introduction - informally

What are elliptic curves?

Introduction - informally

What are elliptic curves?

- A curve - solutions to $y^{2}=x^{3}+A x+B$ for fixed A and B.

Introduction - informally

What are elliptic curves?

- A curve - solutions to $y^{2}=x^{3}+A x+B$ for fixed A and B.

Introduction - informally

What are elliptic curves?

- A curve - solutions to $y^{2}=x^{3}+A x+B$ for fixed A and B.

- A group - notion of addition of points!

Introduction - applications

Why do we care?

Introduction - applications

Why do we care?

Make or break cryptography.

Introduction - applications

Why do we care?
Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).

Introduction - applications

Why do we care?
Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and $Q(D H)$.

Introduction - applications

Why do we care?
Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and Q (DH).
- Post-quantum cryptography (SIDH).

Introduction - applications

Why do we care?
Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and Q (DH).
- Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.

Introduction - applications

Why do we care?

Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and $Q(\mathrm{DH})$.
- Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.

- The simplest non-trivial objects in algebraic geometry.
- Abelian variety of dimension one, projective curve of genus one, etc...

Introduction - applications

Why do we care?

Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and $Q(\mathrm{DH})$.
- Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.

- The simplest non-trivial objects in algebraic geometry.
- Abelian variety of dimension one, projective curve of genus one, etc...
- Rational elliptic curve associated to $a^{p}+b^{p}=c^{p}$ is not modular.
- But modularity theorem - rational elliptic curves are modular!

Introduction - applications

Why do we care?

Make or break cryptography.

- Lenstra's integer factorisation algorithm (RSA).
- Discrete logarithm problem - solve $n Q=P$ given P and $Q(\mathrm{DH})$.
- Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.

- The simplest non-trivial objects in algebraic geometry.
- Abelian variety of dimension one, projective curve of genus one, etc...
- Rational elliptic curve associated to $a^{p}+b^{p}=c^{p}$ is not modular.
- But modularity theorem - rational elliptic curves are modular!
- Distribution of ranks of rational elliptic curves.
- The BSD conjecture - analytic rank equals algebraic rank?

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

$$
\begin{gathered}
E \\
f \downarrow \\
S
\end{gathered}
$$

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\bar{\Xi}}$

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme T over S,
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\underline{\bar{B}}}$

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme T over S, define the set of T-points of E by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\underline{\bar{E}}}$

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme T over S, define the set of T-points of E by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of E.
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\bar{\Xi}}$

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme T over S, define the set of T-points of E by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of E.
This defines a contravariant functor $\mathbf{S c h}_{S} \rightarrow \mathbf{A b}$ given by $T \mapsto E(T)$.
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one

Abstract definition - globally

An elliptic curve E over a scheme S is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme T over S, define the set of T-points of E by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of E.
This defines a contravariant functor $\mathbf{S c h}_{S} \rightarrow \mathbf{A b}$ given by $T \mapsto E(T)$.
Good for algebraic geometry, but not very friendly...
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
${ }^{2}$ or even a ring extension K / F whose class group has no 12-torsion

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).
${ }^{2}$ or even a ring extension K / F whose class group has no 12-torsion

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).

- E is a nice ${ }^{3}$ genus one curve over F.
${ }^{2}$ or even a ring extension K / F whose class group has no 12 -torsion
${ }^{3}$ smooth, proper, and geometrically integral

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).

- E is a nice ${ }^{3}$ genus one curve over F.
- 0 is an F-point.
${ }^{2}$ or even a ring extension K / F whose class group has no 12 -torsion
${ }^{3}$ smooth, proper, and geometrically integral

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).

- E is a nice ${ }^{3}$ genus one curve over F.
- 0 is an F-point.

The Picard group is

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}} .
$$

${ }^{2}$ or even a ring extension K / F whose class group has no 12 -torsion ${ }^{3}$ smooth, proper, and geometrically integral

Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).

- E is a nice ${ }^{3}$ genus one curve over F.
- 0 is an F-point.

The Picard group is

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}} .
$$

This defines a covariant functor $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$ given by $K \mapsto E(K)$.

[^0]
Abstract definition - locally

Let $S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$ for a field extension $K / F .{ }^{2}$
An elliptic curve E over a field F is a tuple ($E, 0$).

- E is a nice ${ }^{3}$ genus one curve over F.
- 0 is an F-point.

The Picard group is

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}} .
$$

This defines a covariant functor $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$ given by $K \mapsto E(K)$.
Group law is free, but still need equations...
${ }^{2}$ or even a ring extension K / F whose class group has no 12-torsion ${ }^{3}$ smooth, proper, and geometrically integral

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \quad a_{i} \in F,
$$

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \quad a_{i} \in F,
$$

with $\Delta \neq 0 .{ }^{4}$

$$
{ }^{4} \Delta:=-\left(a_{1}^{2}+4 a_{2}\right)^{2}\left(a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}\right)-8\left(2 a_{4}+a_{1} a_{3}\right)^{3}-27\left(a_{3}^{2}+4 a_{6}\right)^{2}+9\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} \bar{a}_{\overline{3}}\right)\left(a_{3}^{2}+4 \bar{a}_{6}\right)
$$

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \quad a_{i} \in F,
$$

with $\Delta \neq 0 .{ }^{4}$

If char $F \neq 2,3$, can reduce this to

$$
Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3}, \quad A, B \in F
$$

$$
{ }^{4} \Delta:=-\left(a_{1}^{2}+4 a_{2}\right)^{2}\left(a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}\right)-8\left(2 a_{4}+a_{1} a_{3}\right)^{3}-27\left(a_{3}^{2}+4 a_{6}\right)^{2}+9\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} \bar{a}_{\overline{3}}\right)\left(a_{3}^{2}+4 \bar{a}_{6}\right)
$$

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \quad a_{i} \in F,
$$

with $\Delta \neq 0 .{ }^{4}$

If char $F \neq 2,3$, can reduce this to

$$
Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3}, \quad A, B \in F
$$

with $\Delta:=4 A^{3}+27 B^{2} \neq 0$.

$$
{ }^{4} \Delta:=-\left(a_{1}^{2}+4 a_{2}\right)^{2}\left(a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}\right)-8\left(2 a_{4}+a_{1} a_{3}\right)^{3}-27\left(a_{3}^{2}+4 a_{6}\right)^{2}+9\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} \bar{a}_{\overline{3}}\right)\left(a_{3}^{2}+4 \bar{a}_{6}\right)
$$

Concrete definition - Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

$$
Y^{2} Z+a_{1} X Y Z+a_{3} Y Z^{2}=X^{3}+a_{2} X^{2} Z+a_{4} X Z^{2}+a_{6} Z^{3}, \quad a_{i} \in F,
$$

with $\Delta \neq 0 .{ }^{4}$

If char $F \neq 2,3$, can reduce this to

$$
Y^{2} Z=X^{3}+A X Z^{2}+B Z^{3}, \quad A, B \in F
$$

with $\Delta:=4 A^{3}+27 B^{2} \neq 0$.
Note the unique point at infinity when $Z=0$! Call this point 0 .

$$
{ }^{4} \Delta:=-\left(a_{1}^{2}+4 a_{2}\right)^{2}\left(a_{1}^{2} a_{6}+4 a_{2} a_{6}-a_{1} a_{3} a_{4}+a_{2} a_{3}^{2}-a_{4}^{2}\right)-8\left(2 a_{4}+a_{1} a_{3}\right)^{3}-27\left(a_{3}^{2}+4 a_{6}\right)^{2}+9\left(a_{1}^{2}+4 a_{2}\right)\left(2 a_{4}+a_{1} \bar{a}_{\overline{3}}\right)\left(a_{3}^{2}+4 \bar{a}_{6}\right)
$$

Concrete definition - group law

The group law from $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ is reduced to drawing lines.

Concrete definition - group law

The group law from $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ is reduced to drawing lines.
Operations are characterised by

$$
P+Q+R=0 \quad \Longleftrightarrow \quad P, Q, R \text { are collinear. }
$$

Concrete definition - group law

The group law from $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ is reduced to drawing lines.

Operations are characterised by

$$
P+Q+R=0 \quad \Longleftrightarrow \quad P, Q, R \text { are collinear. }
$$

Concrete definition - group law

The group law from $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ is reduced to drawing lines.

Operations are characterised by

$$
P+Q+R=0 \quad \Longleftrightarrow \quad P, Q, R \text { are collinear. }
$$

Note that $(x, y) \in E[2]:=\operatorname{ker}(E \xrightarrow{\cdot 2} E)$ if and only if $y=0 .{ }^{5}$

Concrete definition - group law

The group law from $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ is reduced to drawing lines.

Operations are characterised by

$$
P+Q+R=0 \quad \Longleftrightarrow \quad P, Q, R \text { are collinear. }
$$

Note that $(x, y) \in E[2]:=\operatorname{ker}(E \xrightarrow{\cdot 2} E)$ if and only if $y=0 .{ }^{5}$

Many cases... but all completely explicit!

$$
{ }^{5} \text { Assume } a_{1}=a_{3}=0
$$

Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

- $1 . \& 2$. require much algebraic geometry (properness, genus, ...).

Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

- 1. \& 2. require much algebraic geometry (properness, genus, ...).
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...).

Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

- 1. \& 2. require much algebraic geometry (properness, genus, ...).
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...).
- 3. requires just five coefficients (and $\Delta \neq 0$)!

Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

- 1. \& 2. require much algebraic geometry (properness, genus, ...).
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...).
- 3. requires just five coefficients (and $\Delta \neq 0$)!

```
def disc_aux {R:Type} [comm_ring R] (a1 a ( }\mp@subsup{\textrm{a}}{2}{}\mp@subsup{\textrm{a}}{3}{}\mp@subsup{\textrm{a}}{4}{}\mp@subsup{\textrm{a}}{6}{}:\textrm{R}):R:
```



```
    -8*(2*}\mp@subsup{a}{4}{}+\mp@subsup{a}{1}{**}\mp@subsup{a}{3}{}\mp@subsup{)}{}{\wedge}3-2\mp@subsup{7}{}{*}(\mp@subsup{a}{3}{}^2 2 + 4* a m )^2
    +9*(a}\mp@subsup{a}{1}{\wedge}2+4*\mp@subsup{a}{2}{}\mp@subsup{)}{}{*}(\mp@subsup{2}{}{*}\mp@subsup{a}{4}{}+\mp@subsup{a}{1}{*}\mp@subsup{a}{3}{}\mp@subsup{)}{}{*}(\mp@subsup{a}{3}{}^2+4*\mp@subsup{a}{6}{}
structure EllipticCurve (R : Type) [comm_ring R] :=
```


Implementation - the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. $\supset 2 . \stackrel{R R}{=} 3$.

- 1. \& 2. require much algebraic geometry (properness, genus, ...).
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...).
- 3. requires just five coefficients (and $\Delta \neq 0$)!


```
    +9*(a}\mp@subsup{a}{1}{\wedge}2+4*\mp@subsup{a}{2}{}\mp@subsup{)}{}{*}(\mp@subsup{2}{}{*}\mp@subsup{a}{4}{}+\mp@subsup{a}{1}{*}\mp@subsup{a}{3}{}\mp@subsup{)}{}{*}(\mp@subsup{a}{3}{}^2+4*\mp@subsup{a}{6}{}
structure EllipticCurve (R : Type) [comm_ring R] :=
```


This is the curve E - what about the group $E(K)$?

Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```


Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```

- Identity is trivial!

```
instance: has_zero E(K):= <zero\rangle
```


Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
    some (x y : K) (w: y^2 + E. . a }\mp@subsup{|}{1}{*}\mp@subsup{x}{}{*
notation E(K) := point E K
```

- Identity is trivial!

```
instance: has_zero E(K):= <zero\rangle
```

- Negation is easy.

```
def neg: E(K) -> E(K)
    | zero := zero
    | (some x y w) := some x (-y - E.a ( * * - E.a3) $
    begin
        rw [ \leftarrow w],
        ring
    end
instance: has_neg E(K):= \neg\rangle
```


Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```

- Addition is complicated...

```
def add: E(K) }->\textrm{E}(\textrm{K})->\textrm{E}(\textrm{K}
    | zero P := P
    P zero := P
    (some x }\mp@subsup{\textrm{x}}{1}{}\mp@subsup{\textrm{y}}{1}{}\mp@subsup{\textrm{w}}{1}{}\mathrm{ ) (some x x y2 wh):=
    if }\mp@subsup{x}{_}{}ne:\mp@subsup{x}{1}{}\not=\mp@subsup{x}{2}{}\mathrm{ then -- add distinct points
        let L}:=(\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{})/(\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{})\mathrm{ ,
            x}3:= L^2 + E.a ( * * L E. a 2 - x m - x x ,
            y }:=-\mp@subsup{L}{}{*}\mp@subsup{\textrm{x}}{3}{}-\mathrm{ E.a }\mp@subsup{\textrm{a}}{1}{*}\mp@subsup{\textrm{x}}{3}{}-\mp@subsup{\textrm{y}}{1}{}+\mp@subsup{L}{}{*}\mp@subsup{\textrm{x}}{1}{}-\mathrm{ E.a a
        in some x3 yз $ by { ...}
    else if y_ne: y1 + y2 + E. a1 }\mp@subsup{}{1}{}\mp@subsup{\textrm{x}}{2}{}+\mathrm{ E.a3 
    else -- draw vertical line
        zero
instance : has_add E(K):= <add>
```


Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```

- Commutativity is... doable.

```
lemma add_comm(P Q : E(K)) : P + Q = Q + P :=
    begin
        rcases \langleP, Q \ with <_ | _, _ | _\rangle,
        ... -- six cases
    end
```


Implementation - the group

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
    some (x y : K) (w: y^2 + E. . a }\mp@subsup{|}{1}{*}\mp@subsup{x}{}{*
notation E(K) := point E K
```

- Commutativity is... doable.

```
lemma add_comm(P Q : E(K)): P + Q = Q + P :=
    begin
        rcases \langleP, Q with <_ | _, _ | _\rangle,
        ... -- six cases
    end
```

- Associativity is... impossible?

```
lemma add_assoc (P Q R:E(K)):(P+Q) + R=P + (Q + R) :=
    begin
        rcases \langleP, Q, R\rangle with <_ | _, _ | _, _ | _ \rangle,
        ... -- ??? cases
    end
```


Associativity - explaining the problem

Known to be difficult with several proofs:

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.
- Cayley-Bacharach.
- Requires intersection multiplicity and Bézout's theorem.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.
- Cayley-Bacharach.
- Requires intersection multiplicity and Bézout's theorem.
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$.
- Requires divisors, differentials, and the Riemann-Roch theorem.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.
- Cayley-Bacharach.
- Requires intersection multiplicity and Bézout's theorem.
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$.
- Requires divisors, differentials, and the Riemann-Roch theorem.

Current status:

- Left as a sorry.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.
- Cayley-Bacharach.
- Requires intersection multiplicity and Bézout's theorem.
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$.
- Requires divisors, differentials, and the Riemann-Roch theorem.

Current status:

- Left as a sorry.
- Ongoing attempt (by Marc Masdeu) to bash it out.

Associativity - explaining the problem

Known to be difficult with several proofs:

- Just do it!
- Probably(?) times out with 130,000(!) coefficients.
- Uniformisation.
- Requires theory of elliptic functions.
- Cayley-Bacharach.
- Requires intersection multiplicity and Bézout's theorem.
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$.
- Requires divisors, differentials, and the Riemann-Roch theorem.

Current status:

- Left as a sorry.
- Ongoing attempt (by Marc Masdeu) to bash it out.
- Proof in Coq (by Evmorfia-Iro Bartzia and Pierre-Yves Strub ${ }^{6}$) that $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ but only for char $F \neq 2,3$.

[^1]
Associativity - ignoring the problem

Modulo associativity, what has been done?

Associativity - ignoring the problem

Modulo associativity, what has been done?

- Functoriality $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$.

```
def point_hom ( }\varphi:\textrm{K}\mp@subsup{->}{a}{[}[\textrm{F}] L): E(K) -> E(L)
    | zero := zero
    | (some x y w):= some (\varphi x) (\varphi y) $ by { ...}
lemma point_hom.id (P : E(K)) : point_hom (K->[F]K) P = P
lemma point_hom.comp (P : E(K)) :
    point_hom (L }->[F]M)\mathrm{ (point_hom (K }->[F]L)P)=\mathrm{ point_hom ((L }->[F]M).comp (K->[F]L))
```


Associativity - ignoring the problem

Modulo associativity, what has been done?

- Functoriality $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$.

```
def point_hom ( }\varphi:\textrm{K}\mp@subsup{->}{a}{[}[\textrm{F}] L): E(K) -> E(L)
    | zero := zero
    (some x y w):= some (\varphi x) (\varphi y) $ by { ...}
lemma point_hom.id (P : E(K)) : point_hom (K->[F]K) P = P
lemma point_hom.comp (P : E(K)) :
    point_hom (L }->[F]M)\mathrm{ (point_hom (K }->[F]L) P) = point_hom ((L -> [F]M).comp (K T F F]L)) P
```

- Galois module structure $\operatorname{Gal}(L / K) \curvearrowright E(L)$.

```
def point_gal ( }\sigma:\textrm{L}\simeq\mp@subsup{\simeq}{a}{[}[\textrm{K}] L) : E(L) -> E(L)
    zero := zero
    (some x y w) := some (\sigma\cdotx) (\sigma\cdoty)$ by {...}
variables [finite_dimensional K L] [is_galois K L]
lemma point_gal.fixed:
    mul_action.fixed_points ( L \simeq_ [K] L) E(L) = (point_hom (K }->[F]L)).range
```


Associativity - ignoring the problem

Modulo associativity, what has been done?

- Isomorphisms $(x, y) \mapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+t\right)$.

```
variables (u:units F) (r s t:F)
def cov: EllipticCurve F :=
{ a 
```



```
    a}\mp@subsup{a}{3}{}:=u.inv^\mp@subsup{3}{}{*}(\mathrm{ E.a3 + r*E.a1 + 2*t),
    a}\mp@subsup{a}{4}{}:=u.inv^\mp@subsup{4}{}{*}(E.\mp@subsup{a}{4}{}-\mp@subsup{s}{}{*}E.\mp@subsup{a}{3}{}+\mp@subsup{2}{}{*}r*E.\mp@subsup{a}{2}{*}-(t+r*s)*E.\mp@subsup{a}{1}{}+\mp@subsup{3}{}{*}\mp@subsup{r}{}{\wedge}2-\mp@subsup{2}{}{*}\mp@subsup{s}{}{*}t)
```



```
    disc := \langleu.inv^12*E.disc.val, u.val^12*E.disc.inv, by { ...}, by { . . }\rangle,
    disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }
def cov.to_fun:(E.cov ur s t)(K) }->\textrm{E}(\textrm{K}
    zero := zero
    (some x y w) := some (u.val^2*x + r) (u.val^3*y + u.val^2*s*x + t) $ by { ...}
def cov.inv_fun: E(K) }->(\mathrm{ E.cov ur s t)(K)
    | zero := zero
    | (some x y w) := some (u.inv^2* (x - r)) (u.inv^3*(y - s*x + r*s - t)) $ by { ...}
def cov.equiv_add:(E.cov urst)(K)\simeq+ E(K):=
    <cov.to_fun urst, cov.inv_funurst, by {...}, by {...}, by {...}\rangle
```


Associativity - ignoring the problem

Modulo associativity, what has been done?

- 2-division polynomial $\psi_{2}(x)$.


```
lemma }\mp@subsup{\psi}{2_x.disc_eq_disc : }{\mathrm{ ( }}\mp@subsup{\psi}{2_}{\prime}\textrm{x E K ).disc = 16*E.disc
```


Associativity - ignoring the problem

Modulo associativity, what has been done?

- 2-division polynomial $\psi_{2}(x)$.


```
lemma }\mp@subsup{\psi}{2_x.disc_eq_disc : }{\mathrm{ ( }}\mp@subsup{\psi}{2_}{\prime}\textrm{x E K ).disc = 16*E.disc
```

- Structure of $E(K)[2]$.

```
notation E(K)[n]:=((\cdot)n:E(K) ->+ E(K)).ker
lemma E E.x {x y w} : some x y w }\in\textrm{E}(\textrm{K})[2]\leftrightarrow\textrm{x}\in(\mp@subsup{\psi}{2__}{\prime}\textrm{x K K).roots
theorem E2.card_le_four : fintype.card E(K)[2] \leq 4
variables [algebra (( }\mp@subsup{\psi}{2_x E F).splitting_field) K]}{
theorem E2.card_eq_four : fintype.card E(K)[2] = 4
lemma E 2.gal_fixed ( }\sigma:\textrm{L}\simeq\mp@subsup{\simeq}{a}{[}[\textrm{K}]\textrm{L})(\textrm{P}:\textrm{E}(\textrm{L})[2]):\sigma\cdot\textrm{P}=\textrm{P
```


The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r} .
$$

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r} .
$$

- T is a finite torsion subgroup.

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r} .
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r} .
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

Proof.
Three steps.

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r} .
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

Proof.
Three steps.

- Weak Mordell-Weil: $E(K) / 2 E(K)$ is finite.

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r}
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

Proof.
Three steps.

- Weak Mordell-Weil: $E(K) / 2 E(K)$ is finite.
- Heights: $E(K)$ can be endowed with a "height function".

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)

Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r}
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

Proof.
Three steps.

- Weak Mordell-Weil: $E(K) / 2 E(K)$ is finite.
- Heights: $E(K)$ can be endowed with a "height function".
- Descent: An abelian group A endowed with a "height function", such that $A / 2 A$ is finite, is necessarily finitely generated. \square

The Mordell-Weil theorem - statement and proof

Theorem (Mordell-Weil)

Let K be a number field. Then $E(K)$ is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

$$
E(K) \cong T \oplus \mathbb{Z}^{r}
$$

- T is a finite torsion subgroup.
- $r \in \mathbb{N}$ is the algebraic rank.

Proof.
Three steps.

- Weak Mordell-Weil: $E(K) / 2 E(K)$ is finite.
- Heights: $E(K)$ can be endowed with a "height function".
- Descent: An abelian group A endowed with a "height function", such that $A / 2 A$ is finite, is necessarily finitely generated. \square
The descent step is done (Jujian Zhang).

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.

Completing the square is an isomorphism

$$
\begin{array}{ll}
E(K) & \longrightarrow E^{\prime}(K) \\
(x, y) & \longmapsto\left(x, y-\frac{1}{2} a_{1} x-\frac{1}{2} a_{3}\right) .
\end{array}
$$

```
def cov m.equiv_add:(E.cov _ _ _)(K)\simeq+E(K):= cov.equiv_add 10(-E.a_/2) (-E.a3/2)
```


The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.

Completing the square is an isomorphism

$$
\begin{array}{ll}
E(K) & \longrightarrow E^{\prime}(K) \\
(x, y) & \longmapsto\left(x, y-\frac{1}{2} a_{1} x-\frac{1}{2} a_{3}\right) .
\end{array}
$$

Thus

$$
E(K) / 2 E(K) \text { finite } \quad \Longleftrightarrow \quad E^{\prime}(K) / 2 E^{\prime}(K) \text { finite. }
$$

```
def cov m.equiv_add : (E.cov _ _ _ _)(K)\simeq+ E(K):= cov.equiv_add 1 0 (-E.a ( 
```


The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.

Completing the square is an isomorphism

$$
\begin{aligned}
E(K) & \longrightarrow E^{\prime}(K) \\
(x, y) & \longmapsto\left(x, y-\frac{1}{2} a_{1} x-\frac{1}{2} a_{3}\right)
\end{aligned}
$$

Thus

$$
E(K) / 2 E(K) \text { finite } \quad \Longleftrightarrow \quad E^{\prime}(K) / 2 E^{\prime}(K) \text { finite }
$$

```
def cov m.equiv_add : (E.cov _ _ _ _)(K) \simeq+ E(K):= cov.equiv_add 1 0 (-E.a 1/2) (-E.a.a/2)
```


The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

Let $L=K(E[2])$. Suffices to show

$$
E(L) / 2 E(L) \text { finite } \quad \Longrightarrow \quad E(K) / 2 E(K) \text { finite. }
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

Let $L=K(E[2])$. Suffices to show

$$
E(L) / 2 E(L) \text { finite } \quad \Longrightarrow \quad E(K) / 2 E(K) \text { finite. }
$$

Suffices to show finiteness of

$$
\Phi:=\operatorname{ker}(E(K) / 2 E(K) \rightarrow E(L) / 2 E(L))
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

Let $L=K(E[2])$. Suffices to show

$$
E(L) / 2 E(L) \text { finite } \quad \Longrightarrow \quad E(K) / 2 E(K) \text { finite. }
$$

Suffices to show finiteness of

$$
\Phi:=\operatorname{ker}(E(K) / 2 E(K) \rightarrow E(L) / 2 E(L))
$$

Define an injection

$$
\kappa: \Phi \hookrightarrow \operatorname{Hom}(\operatorname{Gal}(L / K), E(L)[2]) .
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

Let $L=K(E[2])$. Suffices to show

$$
E(L) / 2 E(L) \text { finite } \quad \Longrightarrow \quad E(K) / 2 E(K) \text { finite. }
$$

Suffices to show finiteness of

$$
\Phi:=\operatorname{ker}(E(K) / 2 E(K) \rightarrow E(L) / 2 E(L))
$$

Define an injection

$$
\kappa: \Phi \hookrightarrow \operatorname{Hom}(\operatorname{Gal}(L / K), E(L)[2]) .
$$

The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.

```
variables [finite_dimensional K L] [is_galois K L] (n:N )
lemma range_le_comap_range : n\cdotE(K) \leq add_subgroup.comap (point_hom _) n\cdotE(L)
def \Phi: add_subgroup E(K)/n :=
    (quotient_add_group.map _ _ _ $ range_le_comap_range n).ker
lemma S_mem_range (P : \Phi n E L) : point_hom_P.val.out' \in n\cdotE(L)
def }\kappa:\Phi\mathrm{ nEL C L 工__ [K] L }->\textrm{E}(\textrm{L})[\textrm{n}]:
    \lambda P \sigma,\langle\sigma.(\Phi_mem_range n P).some - (\Phi_mem_range n P).some, by { . . } \
lemma \kappa.injective : function.injective $ }\kappa\textrm{n
def coker_2_of_fg_extension.fintype : fintype E(L)/2 }->\mathrm{ fintype E(K)/2
```


The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

Map:
$0 \longmapsto \quad(\quad 1$
1
1)

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \quad \longrightarrow \quad K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

Map:

$$
\begin{array}{rllll}
0 & \longmapsto\left(\begin{array}{ccc}
1 & , & 1 \\
(x, y) & \longmapsto(&) \\
x-e_{1} & , & x-e_{2}
\end{array}\right)
\end{array}
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

Map:

$$
\left.\begin{array}{rl}
0 & \longmapsto\binom{1}{(x, y)} \longmapsto\left(\begin{array}{cc}
1 \\
x-e_{1} \\
\left(e_{1}, 0\right) & \longmapsto
\end{array} \quad \begin{array}{c}
x-e_{2}
\end{array}\right) \\
\frac{e_{1}-e_{3}}{e_{1}-e_{2}}
\end{array} \quad, \quad e_{1}-e_{2} \quad\right) ~ \$
$$

The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \quad \longrightarrow \quad K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

Map:

$$
\left.\begin{array}{rl}
0 & \longmapsto\left(\begin{array}{ccc}
1 \\
(x, y) & \longmapsto(& 1 \\
x-e_{1} \\
\left(e_{1}, 0\right) & \longmapsto & x-e_{2}
\end{array}\right) \\
\left(e_{2}, 0\right) & \longmapsto\left(\begin{array}{c}
\frac{e_{1}-e_{3}}{e_{1}-e_{2}} \\
e_{2}-e_{1}
\end{array}, \frac{,}{e_{1}-e_{2}}\right) \\
\frac{e_{2}-e_{3}}{e_{2}-e_{1}}
\end{array}\right)
$$

The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

```
variables (ha 
def \delta: E(K) }->(\mathrm{ units K) / (units K)^2 }\times(\mathrm{ units K) / (units K)^2
    | zero := 1
    | (some x y w) :=
        if he}\mp@subsup{\mp@code{1}}{1}{:x}=\mp@subsup{e}{1}{}\mathrm{ then
        (units.mk0 ((e (e e e ) / (e ( 
        else if he}\mp@subsup{\mp@code{L}}{2}{:}\textrm{x}=\mp@subsup{\textrm{e}}{2}{}\mathrm{ then
        (units.mk0 (e}\mp@subsup{e}{2}{}-\mp@subsup{e}{1}{})$\mathrm{ by {...}, units.mk0 ((e}\mp@subsup{e}{2}{}-\mp@subsup{e}{3}{})/(\mp@subsup{e}{2}{}-\mp@subsup{e}{1}{}))$\mathrm{ by {...})
        else
            (units.mk0 (x- e m ) $ by {...}, units.mk0 (x- e e ) $ by {...})
```


The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

- Prove ker $\delta=2 E(K)$.

The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

- Prove ker $\delta=2 E(K)$.

Here \supseteq is obvious, while \subseteq is long but constructive.

```
lemma }\delta.\textrm{ker}:(\delta\mp@subsup{\textrm{ha}}{1}{}\mp@subsup{\textrm{ha}}{3}{}\textrm{h}3).\textrm{ker}=2\cdot\textrm{E}(\textrm{K}):
    begin
    ... -- completely constructive proof
    end
```


The Mordell-Weil theorem - weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

- Prove ker $\delta=2 E(K)$.
- Prove im $\delta \leq K(S, 2) \times K(S, 2)$ for some $K(S, 2) \leq K^{\times} /\left(K^{\times}\right)^{2}$.

The Mordell-Weil theorem — weak Mordell-Weil

Prove that $E(K) / 2 E(K)$ is finite with complete 2-descent.

$$
E(K)=\left\{(x, y) \mid y^{2}=\left(x-e_{1}\right)\left(x-e_{2}\right)\left(x-e_{3}\right)\right\} \cup\{0\}
$$

- Reduce to $a_{1}=a_{3}=0$.
- Reduce to $E[2] \subset E(K)$.
- Define a complete 2-descent homomorphism

$$
\delta: E(K) \longrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2} .
$$

- Prove ker $\delta=2 E(K)$.
- Prove im $\delta \leq K(S, 2) \times K(S, 2)$ for some $K(S, 2) \leq K^{\times} /\left(K^{\times}\right)^{2}$.

Here S is a finite set of "ramified" places of K.

```
lemma \delta.range_le : ( }\delta\mp@subsup{\textrm{ha}}{1}{}\mp@subsup{\textrm{ha}}{3}{}\textrm{h}3).range \leqK(S, 2) \times K(S, 2) := sorry -- ramification theory?
```


Interlude - Selmer groups

Let S be a finite set of places of K.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.

There is a homomorphism

$$
\begin{aligned}
K(S, n) & \longrightarrow(\mathbb{Z} / n \mathbb{Z})^{|S|} \\
x\left(K^{\times}\right)^{n} & \longmapsto\left(\operatorname{ord}_{p}(x)\right)_{p \in S}
\end{aligned},
$$

with kernel $K(\emptyset, n)$.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.

There is a homomorphism

$$
\begin{aligned}
K(S, n) & \longrightarrow(\mathbb{Z} / n \mathbb{Z})^{|S|} \\
x\left(K^{\times}\right)^{n} & \longmapsto\left(\operatorname{ord}_{p}(x)\right)_{p \in S}
\end{aligned},
$$

with kernel $K(\emptyset, n)$. Thus

$$
K(S, n) \text { finite } \quad \Longleftrightarrow \quad K(\emptyset, n) \text { finite. }
$$

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.

```
def selmer : subgroup $ (units K) / (units K)^n :=
    { carrier :={x|}|\textrm{p}\not\in\textrm{S},\mathrm{ val_of_ne_zero_mod p x = 1},
        one_mem' := by {...},
    mul_mem':= by { ...},
    inv_mem':= by {...}}
notation K(S, n):= selmer K S n
def selmer.val : K(S, n) }\mp@subsup{->}{}{*}\textrm{S}->\mathrm{ multiplicative (zmod n) :=
    { to_fun := \lambda x p, val_of_ne_zero_mod p x,
        map_one' := by {...},
        map_mul':= by {...} }
lemma selmer.val_ker : selmer.val.ker = K(\emptyset, n).subgroup_of K(S, n)
```


Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

```
def f : units (0 K) }\mp@subsup{->}{}{*}\textrm{K}(\emptyset,\textrm{n}):
    { to_fun:= \lambda x, <quotient_group.mk $ ne_zero_of_unit x, \lambda p _, val_of_unit_mod p x \,
        map_one' := rfl,
        map_mul':= \lambda\langle\langle_, _\rangle,\langle_, _\rangle, _, _\rangle\langle\langle_, _\rangle,\langle_, _\rangle, _, _\rangle, rfl } -- lol
lemma f_ker : f.ker = (units (0 K) )^n
def g: K(\emptyset, n) ->* class_group (0 K) K := ... -- hmm
lemma g_ker : g.ker = f.range
```


Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
- Prove $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ is finite.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
- Prove $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ is finite. Suffices to show \mathcal{O}_{K}^{\times}is finitely generated.

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
- Prove $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ is finite. Suffices to show \mathcal{O}_{K}^{\times}is finitely generated. Consequence of Dirichlet's unit theorem (help wanted!).

Interlude - Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

$$
K(S, n):=\left\{x\left(K^{\times}\right)^{n} \in K^{\times} /\left(K^{\times}\right)^{n} \mid \forall p \notin S, \operatorname{ord}_{p}(x) \equiv 0 \bmod n\right\} .
$$

Claim that $K(S, n)$ is finite.

- Reduce to $K(\emptyset, n)$.
- Define an exact sequence

$$
0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \xrightarrow{f} K(\emptyset, n) \xrightarrow{g} \mathrm{Cl}_{K} .
$$

- Prove Cl_{K} is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
- Prove $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ is finite. Suffices to show \mathcal{O}_{K}^{\times}is finitely generated. Consequence of Dirichlet's unit theorem (help wanted!).

Note the classical n-Selmer group of E is

$$
\operatorname{Sel}(K, E[n]) \leq K(S, n) \times K(S, n)
$$

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".

A height function $h: E(K) \rightarrow \mathbb{R}$ satisfies the following.

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".

A height function $h: E(K) \rightarrow \mathbb{R}$ satisfies the following.

- For all $Q \in E(K)$, there exists $C_{1} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
h(P+Q) \leq 2 h(P)+C_{1} .
$$

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".
A height function $h: E(K) \rightarrow \mathbb{R}$ satisfies the following.

- For all $Q \in E(K)$, there exists $C_{1} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
h(P+Q) \leq 2 h(P)+C_{1} .
$$

- There exists $C_{2} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
4 h(P) \leq h(2 P)+C_{2} .
$$

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".

A height function $h: E(K) \rightarrow \mathbb{R}$ satisfies the following.

- For all $Q \in E(K)$, there exists $C_{1} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
h(P+Q) \leq 2 h(P)+C_{1} .
$$

- There exists $C_{2} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
4 h(P) \leq h(2 P)+C_{2} .
$$

- For all $C_{3} \in \mathbb{R}$, the set

$$
\left\{P \in E(K) \mid h(P) \leq C_{3}\right\}
$$

is finite.

The Mordell-Weil theorem - heights

Prove that $E(K)$ can be endowed with a "height function".
A height function $h: E(K) \rightarrow \mathbb{R}$ satisfies the following.

- For all $Q \in E(K)$, there exists $C_{1} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
h(P+Q) \leq 2 h(P)+C_{1} .
$$

- There exists $C_{2} \in \mathbb{R}$ such that for all $P \in E(K)$,

$$
4 h(P) \leq h(2 P)+C_{2} .
$$

- For all $C_{3} \in \mathbb{R}$, the set

$$
\left\{P \in E(K) \mid h(P) \leq C_{3}\right\}
$$

is finite.

Ongoing for $K=\mathbb{Q}$. Probably not ready for general K ?

Future

Potential future projects:
-n-division polynomials and structure of $E(K)[n]$

- formal groups and local theory
- ramification theory \Longrightarrow full Mordell-Weil theorem
- Galois cohomology \Longrightarrow Selmer and Tate-Shafarevich groups
\downarrow modular functions \Longrightarrow complex theory
- algebraic geometry \Longrightarrow associativity, finally

Thank you!

[^0]: ${ }^{2}$ or even a ring extension K / F whose class group has no 12 -torsion ${ }^{3}$ smooth, proper, and geometrically integral

[^1]: ${ }^{6}$ A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)

