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Introduction — informally

What are elliptic curves?

» A curve — solutions to y? = x3 + Ax + B for fixed A and B.

A
M

» A group — notion of addition of points!
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Introduction — applications

Why do we care?

Make or break cryptography.
> Lenstra’s integer factorisation algorithm (RSA).
» Discrete logarithm problem — solve nQ = P given P and @ (DH).
» Post-quantum cryptography (SIDH).

Number theory and algebraic geometry.
» The simplest non-trivial objects in algebraic geometry.
> Abelian variety of dimension one, projective curve of genus one, etc...
» Rational elliptic curve associated to aP + bP = cP is not modular.
» But modularity theorem — rational elliptic curves are modular!
» Distribution of ranks of rational elliptic curves.
» The BSD conjecture — analytic rank equals algebraic rank?
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Abstract definition — globally

An elliptic curve E over a scheme S is a diagram

E

fl )0
S

1

with a few technical conditions.

For a scheme T over S, define the set of T-points of E by
E(T) :=Homgs(T, E),

which is naturally identified with a Picard group Pic%/S(T) of E.
This defines a contravariant functor Schg — Ab given by T — E(T).

Good for algebraic geometry, but not very friendly...

Lf is smooth, proper, and all its geometric fibres are integral curves of genus one
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An elliptic curve E over a field F is a tuple (E,0).
» E is a nice 3 genus one curve over F.

» 0is an F-point.

The Picard group is

{degree zero divisors of E over K}
{principal divisors of E over K}

PiC?_—'/F(K) =
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2or even a ring extension K/F whose class group has no 12-torsion
3smooth, proper, and geometrically integral

29 /120



Abstract definition — locally
Let S = Spec F and T = Spec K for a field extension K/F. 2

An elliptic curve E over a field F is a tuple (E,0).

» E is a nice 3 genus one curve over F.

» 0is an F-point.

The Picard group is

. degree zero divisors of E over K}
Pic% ~(K) = { .
ice/r(K) {principal divisors of E over K}

This defines a covariant functor Algs — Ab given by K — E(K).

Group law is free, but still need equations...

2or even a ring extension K/F whose class group has no 12-torsion

3smooth, proper, and geometrically integral
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Concrete definition — Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)

An elliptic curve E over a field F is a projective plane curve
Y2Z + ay XYZ + a3YZ? = X3 + apX?Z + ayXZ? + a6 Z3, aj € F,

with A # 0. *

If char F # 2,3, can reduce this to
Y2Z = X3 + AXZ? + BZ3, A BeF,

with A :=4A3 +27B% #£ 0.

Note the unique point at infinity when Z = 0! Call this point 0.

4a = — (a3 +4ap)? (a2 a6 +4apag — a1 3324 +apa3 — a3) —B(2ag +a1 23)° — 27(a3 +425)% +9(aF +4a7) (234 +a1 33) (23 +435)
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Concrete definition — group law

The group law from E(K) = Pic%/F(K) is reduced to drawing lines.

Operations are characterised by

P+Q@+R=0 — P, Q, R are collinear.

Note that (x,y) € E[2] := ker(E N E)ifand only if y = 0. °

Many cases... but all completely explicit!

5Assume a; = az = 0.
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Implementation — the curve

Three definitions of elliptic curves:
1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field
Generality: 1. D 2. RR 3.
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Implementation — the curve

Three definitions of elliptic curves:
1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. D 2. RR 3.
» 1. & 2. require much algebraic geometry (properness, genus, ...).
» 2. = 3. also requires algebraic geometry (divisors, differentials, ...).
> 3. requires just five coefficients (and A # 0)!

def disc_aux {R: Type} [comm_ring R] (a1 a; a3 a4 ag : R) : R :=
—(a172 + 4*ap)"2%(a; "2%as + 4*ar*ag — ar*az*ay + ap*az”2 — as"2)
— 8*%(2%ay + a;*a3z)"3 — 27%(a3"2 + 4%ap)"2
+ 9*(a1"2 =+ 4*a2)*(2*a4 + a1*a3)*(a3A2 + 4*a5)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a» a3z a4 ag : R) (disc : units R) (disc_eq : disc.val = disc_aux aj a a3 as as)
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Implementation — the curve

Three definitions of elliptic curves:
1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: 1. D 2. RR 3.
» 1. & 2. require much algebraic geometry (properness, genus, ...).
» 2. = 3. also requires algebraic geometry (divisors, differentials, ...).
> 3. requires just five coefficients (and A # 0)!

def disc_aux {R: Type} [comm_ring R] (a1 a; a3 a4 ag : R) : R :=
—(a172 + 4*ap)"2%(a; "2%as + 4*ar*ag — ar*az*ay + ap*az”2 — as"2)
— 8*%(2%ay + a;*a3z)"3 — 27%(a3"2 + 4%ap)"2
+ 9*(a1"2 =+ 4*a2)*(2*a4 + 31*33)*(213’\2 + 4*a5)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a» a3z a4 ag : R) (disc : units R) (disc_eq : disc.val = disc_aux aj a a3 as as)

This is the curve E — what about the group E(K)?
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Identity is trivial!

instance : has_zero E(K) := (zero)

» Negation is easy.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3) $§
begin
w [« W],
ring
end

instance : has_neg E(K) := (neg)
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point

| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Addition is complicated...

def add : E(K) — E(K) — E(K)
| zero P :=P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) :=
if x_ne : x3 # xp then
let L:= (y1 — y2) / (x1 — x2),
x3 :=L"2 4+ E.a1*L — E.ap — x1 — X2,
y3 := —L*x3 — E.a;*x3 — y1 + L*x3 — E.a3
in some x3y3 $by { ...}
else if y_ne:y; + yo + E.a;*xp + E.ag # 0 then —— double a point

—— add distinct points

else —— draw vertical line
zero

instance : has_add E(K) := (add)
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Commutativity is... doable.

lemma add_comm (P Q : E(K)) : P4+ Q=0Q + P :=

begin
rcases (P, Q) with (_ | _, _ | _),
... —— six cases

end
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

» Commutativity is... doable.

lemma add_comm (P Q : E(K)) : P4+ Q=0Q + P :=

begin
rcases (P, Q) with (_ | _, _ | _),
... —— six cases

end

» Associativity is... impossible?

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q +R):=

begin
rcases (P, Q, R) with (_ | _, _ | _, _ | _),
. —— 777 cases
end
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Known to be difficult with several proofs:
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Associativity — explaining the problem

Known to be difficult with several proofs:
» Just do it!
> Probably(?) times out with 130,000(!) coefficients.
» Uniformisation.
» Requires theory of elliptic functions.
» Cayley-Bacharach.
> Requires intersection multiplicity and Bézout's theorem.
> E(K) = Picg,r(K).

» Requires divisors, differentials, and the Riemann-Roch theorem.

Current status:
> Left as a sorry.
> Ongoing attempt (by Marc Masdeu) to bash it out.

» Proof in Coq (by Evmorfia-Iro Bartzia and Pierre-Yves Strub °)
that £(K) = Picg r(K) but only for char F # 2,3.

8A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)
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Associativity — ignoring the problem

Modulo associativity, what has been done?
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Associativity — ignoring the problem

Modulo associativity, what has been done?
> Functoriality Alg: — Ab.

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (¢ x) (py)Sby {...}
lemma point_hom.id (P : E(K)) : point_hom (K—[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L—[F]M) (point_hom (K—[F]L) P) = point_hom ((L—[F]M).comp (K—[F]L)) P
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Associativity — ignoring the problem

Modulo associativity, what has been done?
> Functoriality Alg: — Ab.

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (¢ x) (py)Sby {...}
lemma point_hom.id (P : E(K)) : point_hom (K—[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L—[F]M) (point_hom (K—[F]L) P) = point_hom ((L—[F]M).comp (K—[F]L)) P

» Galois module structure Gal(L/K) ~ E(L).

def point_gal (o : L ~,[K] L) : E(L) — E(L)
| zero := zero
| (some x y w) := some (o -x) (o -y)$by{...}

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L ~,[K] L) E(L) = (point_hom (K—[F|L)).range
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Associativity — ignoring the problem

Modulo associativity, what has been done?
» Isomorphisms (x,y) + (t?x + r,udy + u?sx + t).

variables (u: units F) (r st : F)

def cov : EllipticCurve F :=

{ a1 := uw.inv*(E.a; + 2*s),
a := w.inv"2¥(E.ay — s*E.a; + 3*r — s72),
a3z := w.inv"3*(E.az + r*E.a; + 2*t),
ay = w.inv"4*(E.ay — s*E.az + 2*r*E.ay — (t + r¥s)*E.a; + 3*r"2 — 2*s*t),
ag := u.inv"6*(E.ag + r*E.as + r"2*E.ap + r"3 — t*E.a3 — t"2 — r*t*E.ay),
disc := (u.inv"12*E.disc.val, u.val"12*E.disc.inv, by { ... }, by { ... }),
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.covur s t)(K) — E(K)
| zero := zero
some x y w) := some (u.val™2*x + r) (u.val"3*y + u.val™2*s*x + t) $ b L.
y y y

def cov.inv_fun : E(K) — (E.covur s t)(K)
| zero := zero
| (some x y w) := some (w.inv"2¥(x — r)) (w.inv"3*(y — s*x + r*s —t)) $by { ... }

def cov.equiv_add : (E.cov ur s t)(K) ~+ E(K) :=
(cov.to_funurst, coviinv_funurst, by {... },by{... }, by {... })
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Associativity — ignoring the problem

Modulo associativity, what has been done?
» 2-division polynomial t,(x).

def 1p_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t),_x.disc_eq_disc : (¢p_x E K).disc = 16*E.disc
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Associativity — ignoring the problem

Modulo associativity, what has been done?
» 2-division polynomial t,(x).

def 1p_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t),_x.disc_eq_disc : (¢p_x E K).disc = 16*E.disc

> Structure of E(K)[2].

notation E(K)[n] := ((-) n : E(K) =+ E(K)).ker

lemma Eo.x {x y w} : some x y w € E(K)[2] <> x € (¢)2_x E K).roots
theorem Ep.card_le_four : fintype.card E(K)[2] < 4

variables [algebra ((¢2_x E F).splitting_field) K]

theorem Ej.card_eq_four : fintype.card E(K)[2] = 4

lemma Ep.gal_fixed (o : L ~,[K] L) (P:E(L)[2]): 0 -P =P
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.

71/120



The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.

Proof.
Three steps.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.
Proof.
Three steps.
> Weak Mordell-Weil: E(K)/2E(K) is finite.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.
Proof.
Three steps.
> Weak Mordell-Weil: E(K)/2E(K) is finite.
> Heights: E(K) can be endowed with a "height function”.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.
Proof.
Three steps.
> Weak Mordell-Weil: E(K)/2E(K) is finite.
> Heights: E(K) can be endowed with a "height function”.

» Descent: An abelian group A endowed with a “height function”
such that A/2A is finite, is necessarily finitely generated. OJ

1
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E(K) is finitely generated.
By the structure theorem (Pierre-Alexandre Bazin),

E(K)=TaZ.

» T is a finite torsion subgroup.
» r € N is the algebraic rank.

Proof.
Three steps.

> Weak Mordell-Weil: E(K)/2E(K) is finite.
> Heights: E(K) can be endowed with a "height function”.

» Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated. OJ

The descent step is done (Jujian Zhang).
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x,y) | y* + aixy + asy = x* + apx® + asx + a6} U {0}
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x,y) | y* + aixy + asy = x* + apx® + asx + a6} U {0}

» Reduce to a; = a3 = 0.
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x,y) | y* 4+ aixy + a3y = x> + apx® + agx + ag} U {0}
» Reduce to a; = a3 = 0.

Completing the square is an isomorphism

E(K) — E(K)
(va) — (X’y_ %alx_ %33) '

def covp.equiv_add : (E.cov _ _ _ _)(K) ~+ E(K) := cov.equiv_add 1 0 (—E.a;/2) (—E.a3/2)
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K)={(x.y) | y* 4+ aixy + asy = x* + ax® + asx + a6} U {0}
» Reduce to a; = a3 = 0.

Completing the square is an isomorphism

E(K) — E(K)
(va) — (X’y_ %alx_ %33) '

Thus

E(K)/2E(K) finite <« E'(K)/2E'(K) finite.

def covp.equiv_add : (E.cov _ _ _ _)(K) ~+ E(K) := cov.equiv_add 1 0 (—E.a;/2) (—E.a3/2)

81/120



The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K)={(x.y) | ¥ = x> + a2x* + asx + ag} U {0}

» Reduce to a; = a3 = 0.

Completing the square is an isomorphism

E(K) — E(K)
(x,y) — (xy—jax—3as)

Thus

E(K)/2E(K) finite <« E'(K)/2E'(K) finite.

def covp.equiv_add : (E.cov _ _ _ _)(K) ~+ E(K) := cov.equiv_add 1 0 (—E.a;/2) (—E.a3/2)
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K)={(x.y) | ¥ = x> + a2x* + asx + ag} U {0}

» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥’ = x>+ ax* + asx + a6} U {0}
» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

Let L = K(E[2]). Suffices to show

E(L)/2E(L) finite = E(K)/2E(K) finite.
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) = {(x.y) | ¥ = 2 + a2 + aux + 25} U {0}
» Reduce to a; = a3 =0.
» Reduce to E[2] C E(K).
Let L = K(E[2]). Suffices to show
E(L)/2E(L) finite ~ =  E(K)/2E(K) finite.
Suffices to show finiteness of

& = ker(E(K)/2E(K) — E(L)/2E(L)).
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) = {(x,y) | y¥* = x* + a2x® + agx + a6} U {0}
» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).
Let L = K(E[2]). Suffices to show
E(L)/2E(L) finite = E(K)/2E(K) finite.
Suffices to show finiteness of
& = ker(E(K)/2E(K) — E(L)/2E(L)).
Define an injection

K : & < Hom(Gal(L/K), E(L)[2]).
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x.y) | ¥* = (x — e)(x — e2)(x — &)} U {0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

Let L = K(E[2]). Suffices to show

E(L)/2E(L) finite = E(K)/2E(K) finite.
Suffices to show finiteness of
® = ker(E(K)/2E(K) — E(L)/2E(L)).
Define an injection

K : & < Hom(Gal(L/K), E(L)[2]).

87/120



The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥’ = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

variables [finite_dimensional K L] [is_galois K L] (n : N)
lemma range_le_comap_range : n-E(K) < add_subgroup.comap (point_hom _) n-E(L)

def ® : add_subgroup E(K)/n :=
(quotient_add_group.map _ _ _ $ range_le_comap_range n).ker

lemma ®_mem_range (P: ® n EL) : point_hom _ P.val.out’ € n-E(L)

def Kk : P nEL — L ~,[K] L — E(L)[n] :=
APo, (o (P_mem_range n P).some — (P_mem_range n P).some, by { ... })

lemma k.injective : function.injective $ kK n

def coker_2_of_fg_extension.fintype : fintype E(L)/2 — fintype E(K)/2
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) ={(x,y) | ¥’ = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism

§: E(K) — KX/(KX)?x KX/(K*)2.
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) ={(x,y) | ¥’ = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism
§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

Map: 0 — ( 1 ) 1 )
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) ={(x,y) | ¥’ = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism
§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

Map: 0 — ( 1 ) 1 )
xy) — ( x-ea , x-& )
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) ={(x,y) | ¥’ = (x — e1)(x — &) (x — e3)} U{0}

» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism

§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

Map: 0 — ( 1 ) 1 )
(xy) — ( x—a , x-e& )
€ — €3
0 _
(e1,0) — ( 0 e | OT© )
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) = {(x,y) | ¥* = (x — e1)(x — e2)(x — &5)} U {0}

» Reduce to a; = a3 = 0.

» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism

0 E(K) —

Map: 0 +—

—
—
—

(
(
(
(

K></(K><)2 X KX/(KX)2'

1
X — €
€ — €3
6 — &
€ — €

)

1
X — €
€ — &
€ — €3

€ — €

)
)
)
)
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥* = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism

§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

variables (ha; : E.a; = 0) (has : E.az3 = 0) (h3 : (1)2_x E K).roots = {e1, e2, e3})

def ¢ : E(K) — (units K) / (units K)"2 X (units K) / (units K)"2
| zero :=1
| (some x y w) :=
if he; : x = e; then
(units.mkO ((e1 —e3) / (e1 —e2)) $by { ... }, unitsmkO (e1 —ex) $by { ... })
else if hey : x = e then
(units.mkO (e; —e1) $ by { ... }, units.mkO ((e2 —e3) /(e2 —e1))$by { ... })
else
(units.mkO (x —e;) $ by { ... }, unitsmkO (x —ez) $by { ... })
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥* = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism
§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

» Prove ker§ = 2E(K).
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥* = (x — e1)(x — &)(x — e3)} U {0}
» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).

» Define a complete 2-descent homomorphism
§ 1 E(K) —  KX/(K*)?x K*/(K*)2.
» Prove ker§ = 2E(K).

Here DO is obvious, while C is long but constructive.

lemma §.ker : (6 ha; haz h3).ker = 2-E(K) :=
begin

... —— completely constructive proof

end
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The Mordell-Weil theorem — weak Mordell-Well
Prove that E(K)/2E(K) is finite with complete 2-descent.

E(K) ={(x,y) | ¥’ = (x — e1)(x — &)(x — e3)} U {0}
Reduce to a; = a3 = 0.

Reduce to E[2] C E(K).

v

v

» Define a complete 2-descent homomorphism

§ 1 E(K) —  KX/(K*)?x K*/(K*)2.

v

Prove ker§ = 2E(K).
Prove im 6§ < K(S,2) x K(S,2) for some K(S,2) < K*/(K*)2.

v
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The Mordell-Weil theorem — weak Mordell-Weil
Prove that E(K)/2E(K) is finite with complete 2-descent.
E(K) ={(x,y) | y* = (x —e1)(x — e2)(x — &)} U {0}
» Reduce to a; = a3 = 0.
» Reduce to E[2] C E(K).
Define a complete 2-descent homomorphism
§ 1 E(K) —  KX/(K*)?x K*/(K*)2.
» Prove ker§ = 2E(K).

» Prove im § < K(S,2) x K(S,2) for some K(S,2) < K*/(K*)2.

Here S is a finite set of “ramified” places of K.

lemma §.range_le : (§ ha; haz h3).range < K(S, 2) X K(S, 2) := sorry —— ramification theory? ‘
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Interlude — Selmer groups

Let S be a finite set of places of K.
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Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is

K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.
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Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.

101 /120



Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).
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Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

There is a homomorphism

K(S,n) — (Z/nZ)"
x(K*)" = (ordp(x))pes

with kernel K(, n).
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Interlude — Selmer groups

Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

There is a homomorphism

K(S,n) — (Z/nZ)
x(K*X)" > (ordp(x))pes

with kernel K(0, n). Thus

K(S, n) finite = K (0, n) finite.
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is

K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

def selmer : subgroup $ (units K) / (units K)"n :=
{ carrier := {x | Vp ¢ S, val_of __ne_zero_mod p x = 1},
one_mem’ :=by { ...}
mul_mem’' :=
inv_mem' :=by { ...} }

notation K(S, n) := selmer K Sn

def selmer.val : K(S, n) —* S — multiplicative (zmod n) :=
{ to_fun := A\ x p, val_of_ne_zero_mod p X,
map_one’ :=by { ... },
-1}

map_mul’ :=by { ..
lemma selmer.val_ker : selmer.val.ker = K({), n).subgroup_of K(S, n)
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.
Claim that K(S, n) is finite.
> Reduce to K(0, n).
» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

def f : units (0 K) —»* K(0, n) :=
{ to_fun := X x, (quotient_group.mk $ ne_zero_of_unit x, A p _, val_of_unit_mod p x),
map_one’ := rfl,
map_mul’ == A {(_, _), (o, ), o 2) (o 2) (o) o ), rfL } —— ol

lemma f_ker : f.ker = (units (0 K))"n

def g : K(0, n) —* class_group (0K)K := ... —— hmm

lemma g_ker : g.ker = f.range
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

» Prove Clg is finite.
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

> Prove Clg is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

> Prove Clg is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

> Prove O /(Ox)" is finite.
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

> Prove Clg is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

> Prove O /(O))" is finite. Suffices to show O is finitely generated.
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.
Claim that K(S, n) is finite.
> Reduce to K(0, n).
» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

> Prove Clg is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

> Prove O /(O))" is finite. Suffices to show O is finitely generated.
Consequence of Dirichlet’s unit theorem (help wanted!).
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Interlude — Selmer groups
Let S be a finite set of places of K. The n-Selmer group of K is
K(S,n) :={x(K*)"e K*/(K*)"|Vp¢ S, ordp(x) =0 mod n}.

Claim that K(S, n) is finite.
> Reduce to K(0, n).

» Define an exact sequence

0= 0%/(0)" L K0, n) £ Clk.

> Prove Clg is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

> Prove O /(O))" is finite. Suffices to show O is finitely generated.
Consequence of Dirichlet’s unit theorem (help wanted!).

Note the classical n-Selmer group of E is
Sel(K, E[n]) < K(S,n) x K(S,n).
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The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.
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The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.

A height function h: E(K) — R satisfies the following.
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The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.

A height function h: E(K) — R satisfies the following.
> For all Q € E(K), there exists ¢; € R such that for all P € E(K),

h(P + Q) < 2h(P) + C.
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The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.

A height function h: E(K) — R satisfies the following.
> For all Q € E(K), there exists ¢; € R such that for all P € E(K),

h(P+ Q) < 2h(P) + G;.
» There exists C; € R such that for all P € E(K),

4h(P) < h(2P) + G,.
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A height function h: E(K) — R satisfies the following.
> For all Q € E(K), there exists ¢; € R such that for all P € E(K),

h(P+ Q) <2h(P) + G.
» There exists C; € R such that for all P € E(K),
4h(P) < h(2P) + G,.
» For all Gz € R, the set
(P € E(K)| h(P) < G5}

is finite.
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The Mordell-Weil theorem — heights

Prove that E(K) can be endowed with a “height function”.

A height function h: E(K) — R satisfies the following.
> For all Q € E(K), there exists ¢; € R such that for all P € E(K),

h(P+ Q) <2h(P)+ G.
» There exists C; € R such that for all P € E(K),
4h(P) < h(2P) + G,.
» For all Gz € R, the set
{PeE(K)|h(P) <G}
is finite.
Ongoing for K = Q. Probably not ready for general K?

119/120



Future

Potential future projects:
» n-division polynomials and structure of E(K)[n]
» formal groups and local theory
» ramification theory = full Mordell-Weil theorem
» Galois cohomology = Selmer and Tate-Shafarevich groups
» modular functions = complex theory
> algebraic geometry = associativity, finally
Thank you!
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