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Abstract definition — globally

An elliptic curve E over a scheme S is a diagram
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Abstract definition — globally

An elliptic curve E over a scheme S is a diagram

E

S

f 0

with a few technical conditions. 1

For a scheme T over S , define the set of T -points of E by

E (T ) := HomS(T ,E ),

which is naturally identified with a Picard group Pic0
E/S(T ) of E .

This defines a contravariant functor SchS → Ab given by T 7→ E (T ).

Good for algebraic geometry, but not very friendly...

1f is smooth, proper, and all its geometric fibres are integral curves of genus one
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Abstract definition — locally

Let S = Spec F and T = Spec K for a field extension K/F . 2

2or even a ring extension K/F whose class group has no 12-torsion
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Abstract definition — locally

Let S = Spec F and T = Spec K for a field extension K/F . 2

An elliptic curve E over a field F is a tuple (E , 0).

I E is a nice 3 genus one curve over F .

I 0 is an F -point.

The Picard group is

Pic0
E/F (K ) =

{degree zero divisors of E over K}
{principal divisors of E over K}

.

This defines a covariant functor AlgF → Ab given by K 7→ E (K ).

Group law is free, but still need equations...

2or even a ring extension K/F whose class group has no 12-torsion
3smooth, proper, and geometrically integral
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Concrete definition – Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.
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Y 2Z + a1XYZ + a3YZ
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Concrete definition – Weierstrass equations

The Riemann-Roch theorem gives Weierstrass equations.

Corollary (of Riemann-Roch)
An elliptic curve E over a field F is a projective plane curve

Y 2Z + a1XYZ + a3YZ
2 = X 3 + a2X

2Z + a4XZ
2 + a6Z

3, ai ∈ F ,

with ∆ 6= 0. 4

If char F 6= 2, 3, can reduce this to

Y 2Z = X 3 + AXZ 2 + BZ 3, A,B ∈ F ,

with ∆ := 4A3 + 27B2 6= 0.

Note the unique point at infinity when Z = 0! Call this point 0.

4
∆ := −(a2
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Concrete definition — group law
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Concrete definition — group law

The group law from E (K ) ∼= Pic0
E/F (K ) is reduced to drawing lines.

Operations are characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.

Note that (x , y) ∈ E [2] := ker(E
·2−→ E ) if and only if y = 0. 5
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Concrete definition — group law

The group law from E (K ) ∼= Pic0
E/F (K ) is reduced to drawing lines.

Operations are characterised by

P + Q + R = 0 ⇐⇒ P,Q,R are collinear.

Note that (x , y) ∈ E [2] := ker(E
·2−→ E ) if and only if y = 0. 5

Many cases... but all completely explicit!

5Assume a1 = a3 = 0.
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Implementation — the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1. ⊃ 2.
RR
= 3.
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Implementation — the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1. ⊃ 2.
RR
= 3.

I 1. & 2. require much algebraic geometry (properness, genus, ...).

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...).

I 3. requires just five coefficients (and ∆ 6= 0)!

def disc_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
=(a1ˆ2 + 4*a2)ˆ2*(a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2)
= 8*(2*a4 + a1*a3)ˆ3 = 27*(a3ˆ2 + 4*a6)ˆ2
+ 9*(a1ˆ2 + 4*a2)*(2*a4 + a1*a3)*(a3ˆ2 + 4*a6)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (disc : units R) (disc_eq : disc.val = disc_aux a1 a2 a3 a4 a6)
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Implementation — the curve

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1. ⊃ 2.
RR
= 3.

I 1. & 2. require much algebraic geometry (properness, genus, ...).

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...).

I 3. requires just five coefficients (and ∆ 6= 0)!

def disc_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
=(a1ˆ2 + 4*a2)ˆ2*(a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2)
= 8*(2*a4 + a1*a3)ˆ3 = 27*(a3ˆ2 + 4*a6)ˆ2
+ 9*(a1ˆ2 + 4*a2)*(2*a4 + a1*a3)*(a3ˆ2 + 4*a6)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (disc : units R) (disc_eq : disc.val = disc_aux a1 a2 a3 a4 a6)

This is the curve E — what about the group E (K )?
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

I Identity is trivial!

instance : has_zero E(K) := 〈zero〉

I Negation is easy.

def neg : E(K) → E(K)
| zero := zero
| (some x y w) := some x (=y = E.a1*x = E.a3) $
begin
rw [← w],
ring

end

instance : has_neg E(K) := 〈neg〉
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

I Addition is complicated...

def add : E(K) → E(K) → E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some x2 y2 w2) :=
if x_ne : x1 6= x2 then == add distinct points
let L := (y1 = y2) / (x1 = x2),

x3 := Lˆ2 + E.a1*L = E.a2 = x1 = x2,
y3 := =L*x3 = E.a1*x3 = y1 + L*x1 = E.a3

in some x3 y3 $ by { . . . }
else if y_ne : y1 + y2 + E.a1*x2 + E.a3 6= 0 then == double a point
. . .

else == draw vertical line
zero

instance : has_add E(K) := 〈add〉
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Implementation — the group

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

I Commutativity is... doable.

lemma add_comm (P Q : E(K)) : P + Q = Q + P :=
begin
rcases 〈P, Q〉 with 〈_ | _, _ | _〉,
. . . == six cases

end
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variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

I Commutativity is... doable.

lemma add_comm (P Q : E(K)) : P + Q = Q + P :=
begin
rcases 〈P, Q〉 with 〈_ | _, _ | _〉,
. . . == six cases

end

I Associativity is... impossible?

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) :=
begin
rcases 〈P, Q, R〉 with 〈_ | _, _ | _, _ | _〉,
. . . == ??? cases

end
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Associativity — explaining the problem

Known to be difficult with several proofs:
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Known to be difficult with several proofs:

I Just do it!
I Probably(?) times out with 130,000(!) coefficients.

I Uniformisation.
I Requires theory of elliptic functions.

I Cayley-Bacharach.
I Requires intersection multiplicity and Bézout’s theorem.

I E (K ) ∼= Pic0
E/F (K ).

I Requires divisors, differentials, and the Riemann-Roch theorem.

55 / 120



Associativity — explaining the problem

Known to be difficult with several proofs:

I Just do it!
I Probably(?) times out with 130,000(!) coefficients.

I Uniformisation.
I Requires theory of elliptic functions.

I Cayley-Bacharach.
I Requires intersection multiplicity and Bézout’s theorem.
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I Ongoing attempt (by Marc Masdeu) to bash it out.
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Associativity — explaining the problem

Known to be difficult with several proofs:

I Just do it!
I Probably(?) times out with 130,000(!) coefficients.

I Uniformisation.
I Requires theory of elliptic functions.

I Cayley-Bacharach.
I Requires intersection multiplicity and Bézout’s theorem.

I E (K ) ∼= Pic0
E/F (K ).

I Requires divisors, differentials, and the Riemann-Roch theorem.

Current status:

I Left as a sorry.

I Ongoing attempt (by Marc Masdeu) to bash it out.

I Proof in Coq (by Evmorfia-Iro Bartzia and Pierre-Yves Strub 6)
that E (K ) ∼= Pic0

E/F (K ) but only for char F 6= 2, 3.

6A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)
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Associativity — ignoring the problem

Modulo associativity, what has been done?

62 / 120



Associativity — ignoring the problem

Modulo associativity, what has been done?

I Functoriality AlgF → Ab.

def point_hom (ϕ : K →a[F] L) : E(K) → E(L)
| zero := zero
| (some x y w) := some (ϕ x) (ϕ y) $ by { . . . }

lemma point_hom.id (P : E(K)) : point_hom (K→[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L→[F]M) (point_hom (K→[F]L) P) = point_hom ((L→[F]M).comp (K→[F]L)) P
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Associativity — ignoring the problem

Modulo associativity, what has been done?

I Functoriality AlgF → Ab.

def point_hom (ϕ : K →a[F] L) : E(K) → E(L)
| zero := zero
| (some x y w) := some (ϕ x) (ϕ y) $ by { . . . }

lemma point_hom.id (P : E(K)) : point_hom (K→[F]K) P = P

lemma point_hom.comp (P : E(K)) :
point_hom (L→[F]M) (point_hom (K→[F]L) P) = point_hom ((L→[F]M).comp (K→[F]L)) P

I Galois module structure Gal(L/K ) y E (L).

def point_gal (σ : L 'a[K] L) : E(L) → E(L)
| zero := zero
| (some x y w) := some (σ · x) (σ · y) $ by { . . . }

variables [finite_dimensional K L] [is_galois K L]

lemma point_gal.fixed :
mul_action.fixed_points (L 'a[K] L) E(L) = (point_hom (K→[F]L)).range
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Associativity — ignoring the problem

Modulo associativity, what has been done?

I Isomorphisms (x , y) 7→ (u2x + r , u3y + u2sx + t).

variables (u : units F) (r s t : F)

def cov : EllipticCurve F :=
{ a1 := u.inv*(E.a1 + 2*s),
a2 := u.invˆ2*(E.a2 = s*E.a1 + 3*r = sˆ2),
a3 := u.invˆ3*(E.a3 + r*E.a1 + 2*t),
a4 := u.invˆ4*(E.a4 = s*E.a3 + 2*r*E.a2 = (t + r*s)*E.a1 + 3*rˆ2 = 2*s*t),
a6 := u.invˆ6*(E.a6 + r*E.a4 + rˆ2*E.a2 + rˆ3 = t*E.a3 = tˆ2 = r*t*E.a1),
disc := 〈u.invˆ12*E.disc.val, u.valˆ12*E.disc.inv, by { . . . }, by { . . . }〉,
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.cov u r s t)(K) → E(K)
| zero := zero
| (some x y w) := some (u.valˆ2*x + r) (u.valˆ3*y + u.valˆ2*s*x + t) $ by { . . . }

def cov.inv_fun : E(K) → (E.cov u r s t)(K)
| zero := zero
| (some x y w) := some (u.invˆ2*(x = r)) (u.invˆ3*(y = s*x + r*s = t)) $ by { . . . }

def cov.equiv_add : (E.cov u r s t)(K) '+ E(K) :=
〈cov.to_fun u r s t, cov.inv_fun u r s t, by { . . . }, by { . . . }, by { . . . }〉
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Associativity — ignoring the problem

Modulo associativity, what has been done?

I 2-division polynomial ψ2(x).

def ψ2_x : cubic K := 〈4, E.a1ˆ2 + 4*E.a2, 4*E.a4 + 2*E.a1*E.a3, E.a3ˆ2 + 4*E.a6〉

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc
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Associativity — ignoring the problem

Modulo associativity, what has been done?

I 2-division polynomial ψ2(x).

def ψ2_x : cubic K := 〈4, E.a1ˆ2 + 4*E.a2, 4*E.a4 + 2*E.a1*E.a3, E.a3ˆ2 + 4*E.a6〉

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc

I Structure of E (K )[2].

notation E(K)[n] := ((·) n : E(K) →+ E(K)).ker

lemma E2.x {x y w} : some x y w ∈ E(K)[2] ↔ x ∈ (ψ2_x E K).roots

theorem E2.card_le_four : fintype.card E(K)[2] ≤ 4

variables [algebra ((ψ2_x E F).splitting_field) K]

theorem E2.card_eq_four : fintype.card E(K)[2] = 4

lemma E2.gal_fixed (σ : L 'a[K] L) (P : E(L)[2]) : σ · P = P
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E (K ) is finitely generated.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E (K ) is finitely generated.

By the structure theorem (Pierre-Alexandre Bazin),

E (K ) ∼= T ⊕ Zr .

I T is a finite torsion subgroup.

I r ∈ N is the algebraic rank.
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E (K ) is finitely generated.

By the structure theorem (Pierre-Alexandre Bazin),

E (K ) ∼= T ⊕ Zr .

I T is a finite torsion subgroup.

I r ∈ N is the algebraic rank.

Proof.
Three steps.

I Weak Mordell-Weil: E (K )/2E (K ) is finite.

I Heights: E (K ) can be endowed with a “height function”.

I Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated. �
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E (K ) is finitely generated.

By the structure theorem (Pierre-Alexandre Bazin),

E (K ) ∼= T ⊕ Zr .

I T is a finite torsion subgroup.

I r ∈ N is the algebraic rank.

Proof.
Three steps.
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I Descent: An abelian group A endowed with a “height function”,
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The Mordell-Weil theorem — statement and proof

Theorem (Mordell-Weil)
Let K be a number field. Then E (K ) is finitely generated.

By the structure theorem (Pierre-Alexandre Bazin),

E (K ) ∼= T ⊕ Zr .

I T is a finite torsion subgroup.

I r ∈ N is the algebraic rank.

Proof.
Three steps.

I Weak Mordell-Weil: E (K )/2E (K ) is finite.

I Heights: E (K ) can be endowed with a “height function”.

I Descent: An abelian group A endowed with a “height function”,
such that A/2A is finite, is necessarily finitely generated. �

The descent step is done (Jujian Zhang).
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {0}
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {0}

I Reduce to a1 = a3 = 0.
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6} ∪ {0}

I Reduce to a1 = a3 = 0.

Completing the square is an isomorphism

E (K ) −→ E ′(K )
(x , y) 7−→ (x , y − 1

2a1x − 1
2a3)

.

Thus

E (K )/2E (K ) finite ⇐⇒ E ′(K )/2E ′(K ) finite.

def covm.equiv_add : (E.cov _ _ _ _)(K) '+ E(K) := cov.equiv_add 1 0 (=E.a1/2) (=E.a3/2)
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = x3 + a2x
2 + a4x + a6} ∪ {0}

I Reduce to a1 = a3 = 0.

Completing the square is an isomorphism

E (K ) −→ E ′(K )
(x , y) 7−→ (x , y − 1

2a1x − 1
2a3)

.

Thus

E (K )/2E (K ) finite ⇐⇒ E ′(K )/2E ′(K ) finite.

def covm.equiv_add : (E.cov _ _ _ _)(K) '+ E(K) := cov.equiv_add 1 0 (=E.a1/2) (=E.a3/2)
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = x3 + a2x
2 + a4x + a6} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = x3 + a2x
2 + a4x + a6} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

Let L = K (E [2]). Suffices to show

E (L)/2E (L) finite =⇒ E (K )/2E (K ) finite.
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The Mordell-Weil theorem — weak Mordell-Weil
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Φ := ker(E (K )/2E (K )→ E (L)/2E (L)).
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Let L = K (E [2]). Suffices to show

E (L)/2E (L) finite =⇒ E (K )/2E (K ) finite.

Suffices to show finiteness of

Φ := ker(E (K )/2E (K )→ E (L)/2E (L)).

Define an injection

κ : Φ ↪→ Hom(Gal(L/K ),E (L)[2]).
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

Let L = K (E [2]). Suffices to show

E (L)/2E (L) finite =⇒ E (K )/2E (K ) finite.

Suffices to show finiteness of

Φ := ker(E (K )/2E (K )→ E (L)/2E (L)).

Define an injection

κ : Φ ↪→ Hom(Gal(L/K ),E (L)[2]).
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

variables [finite_dimensional K L] [is_galois K L] (n : N)

lemma range_le_comap_range : n·E(K) ≤ add_subgroup.comap (point_hom _) n·E(L)

def Φ : add_subgroup E(K)/n :=
(quotient_add_group.map _ _ _ $ range_le_comap_range n).ker

lemma Φ_mem_range (P : Φ n E L) : point_hom _ P.val.out’ ∈ n·E(L)

def κ : Φ n E L → L 'a[K] L → E(L)[n] :=
λ P σ, 〈σ · (Φ_mem_range n P).some = (Φ_mem_range n P).some, by { . . . }〉

lemma κ.injective : function.injective $ κ n

def coker_2_of_fg_extension.fintype : fintype E(L)/2 → fintype E(K)/2
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.
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Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

Map: 0 7−→ ( 1 , 1 )

(x , y) 7−→ ( x − e1 , x − e2 )

(e1, 0) 7−→ (
e1 − e3

e1 − e2
, e1 − e2 )

(e2, 0) 7−→ ( e2 − e1 ,
e2 − e3

e2 − e1
)
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.
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e2 − e1
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

Map: 0 7−→ ( 1 , 1 )
(x , y) 7−→ ( x − e1 , x − e2 )

(e1, 0) 7−→ (
e1 − e3

e1 − e2
, e1 − e2 )

(e2, 0) 7−→ ( e2 − e1 ,
e2 − e3

e2 − e1
)
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

Map: 0 7−→ ( 1 , 1 )
(x , y) 7−→ ( x − e1 , x − e2 )

(e1, 0) 7−→ (
e1 − e3

e1 − e2
, e1 − e2 )

(e2, 0) 7−→ ( e2 − e1 ,
e2 − e3

e2 − e1
)
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

variables (ha1 : E.a1 = 0) (ha3 : E.a3 = 0) (h3 : (ψ2_x E K).roots = {e1, e2, e3})

def δ : E(K) → (units K) / (units K)ˆ2 × (units K) / (units K)ˆ2
| zero := 1
| (some x y w) :=
if he1 : x = e1 then

(units.mk0 ((e1 = e3) / (e1 = e2)) $ by { . . . }, units.mk0 (e1 = e2) $ by { . . . })
else if he2 : x = e2 then

(units.mk0 (e2 = e1) $ by { . . . }, units.mk0 ((e2 = e3) / (e2 = e1)) $ by { . . . })
else

(units.mk0 (x = e1) $ by { . . . }, units.mk0 (x = e2) $ by { . . . })
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

I Prove ker δ = 2E (K ).
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

I Prove ker δ = 2E (K ).

Here ⊇ is obvious, while ⊆ is long but constructive.

lemma δ.ker : (δ ha1 ha3 h3).ker = 2·E(K) :=
begin
. . . == completely constructive proof

end
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

I Prove ker δ = 2E (K ).

I Prove im δ ≤ K (S , 2)× K (S , 2) for some K (S , 2) ≤ K×/(K×)2.
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The Mordell-Weil theorem — weak Mordell-Weil

Prove that E (K )/2E (K ) is finite with complete 2-descent.

E (K ) = {(x , y) | y2 = (x − e1)(x − e2)(x − e3)} ∪ {0}

I Reduce to a1 = a3 = 0.

I Reduce to E [2] ⊂ E (K ).

I Define a complete 2-descent homomorphism

δ : E (K ) −→ K×/(K×)2 × K×/(K×)2.

I Prove ker δ = 2E (K ).

I Prove im δ ≤ K (S , 2)× K (S , 2) for some K (S , 2) ≤ K×/(K×)2.

Here S is a finite set of “ramified” places of K .

lemma δ.range_le : (δ ha1 ha3 h3).range ≤ K(S, 2) × K(S, 2) := sorry == ramification theory?
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Interlude — Selmer groups

Let S be a finite set of places of K .
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.
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Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

There is a homomorphism

K (S , n) −→ (Z/nZ)|S|

x(K×)n 7−→ (ordp(x))p∈S
,

with kernel K (∅, n). Thus

K (S , n) finite ⇐⇒ K (∅, n) finite.
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

def selmer : subgroup $ (units K) / (units K)ˆn :=
{ carrier := {x | ∀ p /∈ S, val_of_ne_zero_mod p x = 1},
one_mem’ := by { . . . },
mul_mem’ := by { . . . },
inv_mem’ := by { . . . } }

notation K(S, n) := selmer K S n

def selmer.val : K(S, n) →* S → multiplicative (zmod n) :=
{ to_fun := λ x p, val_of_ne_zero_mod p x,
map_one’ := by { . . . },
map_mul’ := by { . . . } }

lemma selmer.val_ker : selmer.val.ker = K(∅, n).subgroup_of K(S, n)
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .
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Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

def f : units (O K) →* K(∅, n) :=
{ to_fun := λ x, 〈quotient_group.mk $ ne_zero_of_unit x, λ p _, val_of_unit_mod p x〉,
map_one’ := rfl,
map_mul’ := λ 〈〈_, _〉, 〈_, _〉, _, _〉 〈〈_, _〉, 〈_, _〉, _, _〉, rfl } == lol

lemma f_ker : f.ker = (units (O K))ˆn

def g : K(∅, n) →* class_group (O K) K := . . . == hmm

lemma g_ker : g.ker = f.range
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

I Prove ClK is finite.
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Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

I Prove ClK is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).
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Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

I Prove ClK is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

I Prove O×K /(O×K )n is finite.
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I Prove O×K /(O×K )n is finite. Suffices to show O×K is finitely generated.
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Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

I Prove ClK is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

I Prove O×K /(O×K )n is finite. Suffices to show O×K is finitely generated.
Consequence of Dirichlet’s unit theorem (help wanted!).
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Interlude — Selmer groups

Let S be a finite set of places of K . The n-Selmer group of K is

K (S , n) := {x(K×)n ∈ K×/(K×)n | ∀p /∈ S , ordp(x) ≡ 0 mod n}.

Claim that K (S , n) is finite.

I Reduce to K (∅, n).

I Define an exact sequence

0→ O×K /(O×K )n
f−→ K (∅, n)

g−→ ClK .

I Prove ClK is finite. Done (Baanen, Dahmen, Narayanan, Nuccio).

I Prove O×K /(O×K )n is finite. Suffices to show O×K is finitely generated.
Consequence of Dirichlet’s unit theorem (help wanted!).

Note the classical n-Selmer group of E is

Sel(K ,E [n]) ≤ K (S , n)× K (S , n).
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The Mordell-Weil theorem — heights

Prove that E (K ) can be endowed with a “height function”.
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The Mordell-Weil theorem — heights

Prove that E (K ) can be endowed with a “height function”.

A height function h : E (K )→ R satisfies the following.

I For all Q ∈ E (K ), there exists C1 ∈ R such that for all P ∈ E (K ),

h(P + Q) ≤ 2h(P) + C1.

I There exists C2 ∈ R such that for all P ∈ E (K ),

4h(P) ≤ h(2P) + C2.

I For all C3 ∈ R, the set

{P ∈ E (K ) | h(P) ≤ C3}

is finite.
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The Mordell-Weil theorem — heights

Prove that E (K ) can be endowed with a “height function”.

A height function h : E (K )→ R satisfies the following.

I For all Q ∈ E (K ), there exists C1 ∈ R such that for all P ∈ E (K ),

h(P + Q) ≤ 2h(P) + C1.

I There exists C2 ∈ R such that for all P ∈ E (K ),

4h(P) ≤ h(2P) + C2.

I For all C3 ∈ R, the set

{P ∈ E (K ) | h(P) ≤ C3}

is finite.

Ongoing for K = Q. Probably not ready for general K?
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Future

Potential future projects:

I n-division polynomials and structure of E (K )[n]

I formal groups and local theory

I ramification theory =⇒ full Mordell-Weil theorem

I Galois cohomology =⇒ Selmer and Tate-Shafarevich groups

I modular functions =⇒ complex theory

I algebraic geometry =⇒ associativity, finally

Thank you!
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