Elliptic curves in Lean
Mathematical Theorem Proving Workshop

V2

HUAWEI

David Kurniadi Angdinata
London School of Geometry and Number Theory

Monday, 25 April 2022

1/16

Informally

What are elliptic curves?
» Solutions to y? = x3 4+ Ax + B.

—~
_

RN

» Points form a group!

2/16

Motivation

Why do we care?

Public-key cryptography (over a large finite field)

> Integer factorisation (e.g. Lenstra's method)
Breaks the RSA cryptosystem

» Diffie-Hellman key exchange
Discrete logarithm (solve nQ = P given P and Q)

» Supersingular isogeny Diffie-Hellman key exchange

Number theory (over a field/ring/scheme)
» The simplest non-trivial objects in algebraic geometry

> Rational elliptic curve associated to aP + bP = cP cannot be modular
But rational elliptic curves are modular (modularity theorem)

» Distribution of ranks of rational elliptic curves
The BSD conjecture (analytic rank equals algebraic rank)

3/16

Globally

An elliptic curve E over a scheme S is a diagram

E
fl)0
S

with a few technical conditions. !

For a scheme T over S, define the set of T-points of E by

E(T) := Homs(T, E),
which is naturally identified with a Picard group Pic%/s(T) of E.
This defines a contravariant functor Schs — Ab given by T — E(T).

Good for algebraic geometry, but not very friendly...

1f is smooth, proper, and all its geometric fibres are integral curves of genus one
4/16

Locally
Let T/S be a field extension K/F. 2
An elliptic curve E over a field F is a tuple (E,0).

» E is a nice 3 genus one curve over F.
» 0 is an F-point.

The Picard group becomes

PIc2 (K) = {degree zero divisors of E over K}
E/F ~ {principal divisors of E over K}

This defines a covariant functor Algs — Ab given by K — E(K).

Group law is free, but still need equations...

2S = Spec(F) and T = Spec(K), or even rings whose class group has no 12-torsion

3smooth, proper, and geometrically integral
5/16

Concretely

The Riemann—Roch theorem gives Weierstrass equations.
E(K) is basically the set of solutions (x,y) € K2 to
Y2+ aixy +asy = x>+ ax® + ax+ 2, a €F.
If char(F) # 2,3, can reduce this to
y2=x*+Ax + B, A BeF.

The group law is reduced to drawing lines.

6/16

Implementation

Three definitions of elliptic curves:
1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field
Generality: 15253
» 1. and 2. require much algebraic geometry (properness, genus, ...)
» 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

> 3. requires just five coefficients (and a non-zero discriminant)!

def disc_aux {R: Type} [comm_ring R] (a; a; a3 as ag : R) : R :=
—(a172 + 4*ap)"2¥%(a; "2*%as + 4*ar*ag — ar*az*ay + ap*az”2 — as"2)
— 8*%(2%ay + a;*a3z)"3 — 27*(a3"2 + 4%ap)"2
+ 9*(a1"2 =+ 4*a2)*(2*a4 + 31*33)*(213’\2 + 4*a5)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3z a4 ag : R) (disc : units R) (disc_eq : disc.val = disc_aux aj a a3 a4 as)

This is the scheme E, but what about the abelian group E(F)?

7/16

Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

Identity

instance : has_zero E(K) := (zero)

Negation

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3z) $ by { rw [« v, ring }

instance : has_neg E(K) := (neg)

8/16

Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point

| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

Addition

def add : E(K) — E(K) — E(K)
| zero P :=P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) =
if x_ne : x3 # xp then
let L:= (y1 — y2) / (x1 — x2),
x3 :=L"2 + E.a1*L — E.ap — x1 — %2,
y3 := —L*x3 — E.a;*x3 — y1 + L¥*x3 — E.a3
in some x3 y3 $by { ... }
else if y_ne : y1 + y2 + E.a1*xp + E.az # 0 then

else
zero

instance : has_add E(K) := (add)

9/16

Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy :K) (w:y"2 + E.a;*x*y + E.azg*y = x"3 + E.ax*x"2 + E.as*x + E.ap)

notation E(K) := point E K

Commutativity is doable

lemma add_comm (P Q : E(K)) : P+Q_Q+P
by { rcases (P, Q) with (_ | _, _ | _

Associativity is difficult

lemma add_assoc (PQR:E(K)): (P+Q) +R=P+ (Q +R):=
by { rcases (P, Q, R) with (_ o}

10/16

Associativity

Known to be very difficult with several proofs:

> Just do it!
(times out with 130,000(!?) coefficients)

» Uniformisation
(requires complex analysis and modular forms)

» Cayley—Bacharach
(requires incidence geometry notions and Bézout's theorem)

> E(K) = Pic}r(K)
(requires divisors, differentials, and the Riemann—Roch theorem)

Current status:
> Left as a sorry
> Attempt (by M Masdeu) to bash it out using 1inear_combination

» Proved (by E-l Bartzia and P-Y Strub) in Coq *
that E(K) = Picg (K for char(F) # 2,3

4A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)

11/16

Progress

Modulo associativity, what has been done?

Functoriality Alg — Ab

def point_hom (¢ : K —,[F] L) : E(K) — E(L)
| zero := zero

| (some x y w) := some (¢ x) (py)$by {...}
local notation K —[F] L := (algebra.of_id K L).restrict_scalars F
lemma point_hom.id (P : E(K)) : point_hom (K —[F] K) P = P := by cases P; refl
lemma point_hom.comp (P : E(K)) :

point_hom (L —[F] M) (point_hom (K —[F] L) P) =
point_hom ((L —[F] M).comp (K —[F] L)) P := by cases P; refl

Galois module structure Gal(L/K) ~ E(L)

def point_gal (o : L ~,[K] L) : E(L) — E(L)
| zero := zero

| (some x y w) := some (0 - x) (0 -y)$by {...}

lemma point_gal.fixed :
mul_action.fixed_points (L ~,[K] L) E(L) = (point_hom (K —[F] L)).range := by { ... }

12/16

Progress

Modulo associativity, what has been done?

Isomorphisms (x,y) +— (u?x + r, u3y + u’sx + t)

variables (u: units F) (r st : F)

def cov : EllipticCurve F :=

{ a1 := u.inv*(E.a; + 2*s),
a, := w.inv"2*(E.ap — s*E.a; + 3*r — s72),
a3z := w.inv"3*(E.a3 + r*E.a; + 2*t),
as = w.inv"4*(E.ay — s*E.az + 2*r*E.ap — (t + r¥s)*E.a; + 3*r"2 — 2¥s*t),
ag := u.inv"6*(E.ag + r*E.as + r"2*E.ap + r"3 — t*E.a3 — t"2 — r*t*E.ay),
disc := (u.inv"12*E.disc.val, u.val"12*E.disc.inv, by { ... }, by { ... }),
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.covur s t)(K) — E(K)

| zero := zero

def cov.inv_fun : E(K) — (E.covur s t)(K)
| zero := zero

def cov.equiv_add : (E.cov ur s t)(K) ~+ E(K) :=
(cov.to_funurst, coviinv_funurst, by {... },by{... }, by {... })

| (some x y w) := some (u.val"2*x + r) (u.val"3*y + u.val™2¥s*x + t) $ by { ...

| (some x y w) := some (w.inv"2*(x — r)) (u.inv"3*(y — s*x + r¥*s —t)) S by { ...

13/16

Progress

Modulo associativity, what has been done?

2-division polynomial t,(x)

def 1p_x : cubic K := (4, E.a;"2 + 4*E.ap, 4*E.a4 + 2*E.a;*E.a3, E.a3"2 + 4*E.ag)

lemma t),_x.disc_eq_disc : (¢po_x E K).disc = 16*E.disc :=by { ... }

Structure of E(K)[2]

notation E(K)[n] := ((-) n : E(K) =+ E(K)).ker

lemma Eo.x {x y w} : some x y w € E(K)[2] <> x € (¢p2_x EK).roots :=by { ... }
theorem Ep.card_le_four : fintype.card E(K)[2] < 4 :=by { ... }

variables [algebra ((¢2_x E F).splitting_field) K]

theorem E.card_eq_four : fintype.card E(K)[2] =4 :=by { ... }

lemma Ep.gal_fixed (0 : L ~,[K]L) (P:E(L)[2]): 0 -P=P:=by { ...}

14/16

Mordell-Weil
Let K be a number field. Then E(K) is finitely generated.

Show E(K)/2E(K) is finite:

1.

A AN

Reduce to E[2] C E(K)

Define 2-descent § : E(K)/2E(K) — K> /(K*)? x K*/(K*)?
Show that imd < K(0,2) x K(0,2)

Prove exactness of 0 — O /(Ox)" — K(0,n) — Clk[n] — 0
Apply finiteness of O /(O;)" and Clk|[n]

Show this implies E(K) is finitely generated:

1.
2.

Define heights on elliptic curves

(J Zhang) Prove the descent theorem

Soon: Mordell’s theorem for E[2] C E(Q).

15/16

Future

Potential future projects:

2

vvyVvyyvVyy

n-division polynomials and the structure of E(K)[n]

formal groups and local theory

ramification theory => Mordell-Weil theorem for number fields
Galois cohomology = Selmer and Tate—Shafarevich groups
modular forms = complex theory

algebraic geometry = proof of associativity

16/16

