# Mathematical Theorem Proving Workshop 

Monday, 25 April 2022 - Cambridge Research Centre

## Elliptic Curves in Lean

David Kurniadi Angdinata<br>London School of Geometry and Number Theory

## Informally

What are elliptic curves?

## Informally

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+A x+B$.


## Informally

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+A x+B$.



## Informally

What are elliptic curves?

- Solutions to $y^{2}=x^{3}+A x+B$.

- Points form a group!


## Motivation

Why do we care?

## Motivation

Why do we care?

Public-key cryptography (over a large finite field)

## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem


## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

- Supersingular isogeny Diffie-Hellman key exchange


## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

- Supersingular isogeny Diffie-Hellman key exchange

Number theory (over a field/ring/scheme)

## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

- Supersingular isogeny Diffie-Hellman key exchange

Number theory (over a field/ring/scheme)

- The simplest non-trivial objects in algebraic geometry


## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

- Supersingular isogeny Diffie-Hellman key exchange

Number theory (over a field/ring/scheme)

- The simplest non-trivial objects in algebraic geometry
- Rational elliptic curve associated to $a^{p}+b^{p}=c^{p}$ cannot be modular But rational elliptic curves are modular (modularity theorem)


## Motivation

Why do we care?
Public-key cryptography (over a large finite field)

- Integer factorisation (e.g. Lenstra's method) Breaks the RSA cryptosystem
- Diffie-Hellman key exchange

Discrete logarithm (solve $n Q=P$ given $P$ and $Q$ )

- Supersingular isogeny Diffie-Hellman key exchange

Number theory (over a field/ring/scheme)

- The simplest non-trivial objects in algebraic geometry
- Rational elliptic curve associated to $a^{p}+b^{p}=c^{p}$ cannot be modular But rational elliptic curves are modular (modularity theorem)
- Distribution of ranks of rational elliptic curves The BSD conjecture (analytic rank equals algebraic rank)


## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

$$
\begin{array}{r}
E \\
f \downarrow \\
S
\end{array}
$$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

$$
\left.\begin{array}{c}
E \\
f \downarrow \\
S
\end{array}\right) 0
$$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\underline{\bar{E}}}$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme $T$ over $S$,
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\bar{\Xi}}$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$

For a scheme $T$ over $S$, define the set of $T$-points of $E$ by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\bar{\Xi}}$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme $T$ over $S$, define the set of $T$-points of $E$ by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of $E$.
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\overline{\underline{\bar{E}}}$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme $T$ over $S$, define the set of $T$-points of $E$ by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of $E$.
This defines a contravariant functor $\mathbf{S c h}_{S} \rightarrow \mathbf{A b}$ given by $T \mapsto E(T)$.
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one $\equiv$

## Globally

An elliptic curve $E$ over a scheme $S$ is a diagram

with a few technical conditions. ${ }^{1}$
For a scheme $T$ over $S$, define the set of $T$-points of $E$ by

$$
E(T):=\operatorname{Hom}_{S}(T, E),
$$

which is naturally identified with a Picard group $\operatorname{Pic}_{E / S}^{0}(T)$ of $E$.
This defines a contravariant functor $\mathbf{S c h}_{S} \rightarrow \mathbf{A b}$ given by $T \mapsto E(T)$.
Good for algebraic geometry, but not very friendly...
${ }^{1} f$ is smooth, proper, and all its geometric fibres are integral curves of genus one

## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
${ }^{2} S=$ Spec $F$ and $T=$ Spec $K$, or even rings whose class group has no 12 -torsion

## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
An elliptic curve $E$ over a field $F$ is a tuple ( $E, 0$ ).
${ }^{2} S=\operatorname{Spec} F$ and $T=$ Spec $K$, or even rings whose class group has no 12 -torsion

## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
An elliptic curve $E$ over a field $F$ is a tuple ( $E, 0$ ).

- $E$ is a nice ${ }^{3}$ genus one curve over $F$.
${ }^{2} S=$ Spec $F$ and $T=$ Spec $K$, or even rings whose class group has no 12-torsion ${ }^{3}$ smooth, proper, and geometrically integral


## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
An elliptic curve $E$ over a field $F$ is a tuple ( $E, 0$ ).

- $E$ is a nice ${ }^{3}$ genus one curve over $F$.
- 0 is an $F$-point.
${ }^{2} S=$ Spec $F$ and $T=$ Spec $K$, or even rings whose class group has no 12-torsion ${ }^{3}$ smooth, proper, and geometrically integral


## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
An elliptic curve $E$ over a field $F$ is a tuple ( $E, 0$ ).

- $E$ is a nice ${ }^{3}$ genus one curve over $F$.
- 0 is an $F$-point.

The Picard group becomes

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}} .
$$

${ }^{2} S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$, or even rings whose class group has no 12 -torsion ${ }^{3}$ smooth, proper, and geometrically integral

## Locally

Let $T / S$ be a field extension $K / F .{ }^{2}$
An elliptic curve $E$ over a field $F$ is a tuple ( $E, 0$ ).

- $E$ is a nice ${ }^{3}$ genus one curve over $F$.
- 0 is an $F$-point.

The Picard group becomes

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}} .
$$

This defines a covariant functor $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$ given by $K \mapsto E(K)$.

[^0]
## Locally

Let $T / S$ be a field extension $K / F .^{2}$

An elliptic curve $E$ over a field $F$ is a tuple $(E, 0)$.
$-E$ is a nice ${ }^{3}$ genus one curve over $F$.

- 0 is an $F$-point.

The Picard group becomes

$$
\operatorname{Pic}_{E / F}^{0}(K)=\frac{\{\text { degree zero divisors of } E \text { over } K\}}{\{\text { principal divisors of } E \text { over } K\}}
$$

This defines a covariant functor $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$ given by $K \mapsto E(K)$.
Group law is free, but still need equations...

[^1]
## Concretely

The Riemann-Roch theorem gives Weierstrass equations.

## Concretely

The Riemann-Roch theorem gives Weierstrass equations.
$E(K)$ is basically the set of solutions $(x, y) \in K^{2}$ to

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in F
$$

## Concretely

The Riemann-Roch theorem gives Weierstrass equations.
$E(K)$ is basically the set of solutions $(x, y) \in K^{2}$ to

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in F
$$

If char $F \neq 2,3$, can reduce this to

$$
y^{2}=x^{3}+A x+B, \quad A, B \in F
$$

## Concretely

The Riemann-Roch theorem gives Weierstrass equations.
$E(K)$ is basically the set of solutions $(x, y) \in K^{2}$ to

$$
y^{2}+a_{1} x y+a_{3} y=x^{3}+a_{2} x^{2}+a_{4} x+a_{6}, \quad a_{i} \in F
$$

If char $F \neq 2,3$, can reduce this to

$$
y^{2}=x^{3}+A x+B, \quad A, B \in F
$$

The group law is reduced to drawing lines.


## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{\text { RR }}{=} 3$

## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{R R}{=} 3$

- 1. and 2. require much algebraic geometry (properness, genus, ...)


## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{R R}{=} 3$

- 1. and 2. require much algebraic geometry (properness, genus, ...)
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...)


## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{R R}{=} 3$

- 1. and 2. require much algebraic geometry (properness, genus, ...)
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...)
- 3. requires just five coefficients (and a non-zero discriminant)!


## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{R R}{=} 3$

- 1. and 2. require much algebraic geometry (properness, genus, ...)
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...)
- 3. requires just five coefficients (and a non-zero discriminant)!




```
    +9*(a}\mp@subsup{a}{1}{\wedge}2+4*\mp@subsup{a}{2}{}\mp@subsup{)}{}{*}(\mp@subsup{2}{}{*}\mp@subsup{a}{4}{}+\mp@subsup{a}{1}{*}\mp@subsup{a}{3}{}\mp@subsup{)}{}{*}(\mp@subsup{a}{3}{}^2+4*\mp@subsup{a}{6}{}
structure EllipticCurve (R : Type) [comm_ring R] :=
```



## Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme
2. Abstract definition over a field
3. Concrete definition over a field

Generality: $1 \supset 2 \stackrel{R R}{=} 3$

- 1. and 2. require much algebraic geometry (properness, genus, ...)
- $2 .=3$. also requires algebraic geometry (divisors, differentials, ...)
- 3. requires just five coefficients (and a non-zero discriminant)!




```
    +9*(a}\mp@subsup{a}{1}{\wedge}2+4*\mp@subsup{a}{2}{}\mp@subsup{)}{}{*}(\mp@subsup{2}{}{*}\mp@subsup{a}{4}{}+\mp@subsup{a}{1}{*}\mp@subsup{a}{3}{}\mp@subsup{)}{}{*}(\mp@subsup{a}{3}{}^2+4*\mp@subsup{a}{6}{}
structure EllipticCurve (R:Type) [comm_ring R] :=
```



This is the scheme $E$, but what about the abelian group $E(F)$ ?

## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    | zero
```



```
notation E(K):= point E K
```


## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```


## Identity

```
instance: has_zero E(K):= <zero\rangle
```


## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```


## Identity

```
instance : has_zero E(K) := <zero\rangle
```


## Negation

```
def neg: E(K) }->\textrm{E}(\textrm{K}
    zero := zero
```



```
instance: has_neg E(K):= \neg\rangle
```


## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```


## Addition

```
def add : E(K) }->\textrm{E}(\textrm{K})->\textrm{E}(\textrm{K}
    zero P := P
    P zero:= P
```



```
    if x_ne: }\mp@subsup{x}{1}{}\not=\mp@subsup{x}{2}{}\mathrm{ then
        let L}:=(\mp@subsup{y}{1}{}-\mp@subsup{y}{2}{})/(\mp@subsup{x}{1}{}-\mp@subsup{x}{2}{})\mathrm{ ,
            x
            уз := -L*** 
        in some x }\mp@subsup{x}{3}{}\mp@subsup{y}{3}{}$\mathrm{ by { ...}
    else if y_ne: y }\mp@subsup{y}{1}{}+\mp@subsup{y}{2}{}+\mathrm{ E. a }\mp@subsup{|}{1}{*}\mp@subsup{x}{2}{}+\mathrm{ E.a3 
    else
        zero
instance: has_add E(K):= <add>
```


## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    zero
```



```
notation E(K):= point E K
```

Commutativity is doable

```
lemma add_comm(P Q : E(K)): P + Q = Q + P :=
    by { rcases \langleP, Q\rangle with \langle_ | _, _ | _\rangle, ...}
```


## Points

```
variables {F:Type} [field F] (E: EllipticCurve F) (K:Type) [field K] [algebra F K]
inductive point
    | zero
```



```
notation E(K) := point E K
```

Commutativity is doable

```
lemma add_comm(P Q : E(K)): P + Q = Q + P :=
    by { rcases \langleP, Q\rangle with \langle_ | _, _ | _\rangle, ...}
```


## Associativity is difficult

```
lemma add_assoc (P Q R:E(K)) : (P + Q ) + R = P + (Q + R) :=
    by { rcases \langleP, Q, R\rangle with <_ | _, _ | _, _ | _\rangle, ...}
```


## Associativity

Known to be very difficult with several proofs:

## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)
- Cayley-Bacharach (requires incidence geometry notions and Bézout's theorem)


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)
- Cayley-Bacharach (requires incidence geometry notions and Bézout's theorem)
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$
(requires divisors, differentials, and the Riemann-Roch theorem)


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)
- Cayley-Bacharach (requires incidence geometry notions and Bézout's theorem)
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$
(requires divisors, differentials, and the Riemann-Roch theorem)

Current status:

- Left as a sorry


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)
- Cayley-Bacharach (requires incidence geometry notions and Bézout's theorem)
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$
(requires divisors, differentials, and the Riemann-Roch theorem)

Current status:

- Left as a sorry
- Attempt (by M Masdeu) to bash it out using linear_combination


## Associativity

Known to be very difficult with several proofs:

- Just do it! (times out with 130,000(!?) coefficients)
- Uniformisation (requires complex analysis and modular forms)
- Cayley-Bacharach (requires incidence geometry notions and Bézout's theorem)
- $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$
(requires divisors, differentials, and the Riemann-Roch theorem)

Current status:

- Left as a sorry
- Attempt (by M Masdeu) to bash it out using linear_combination
- Proved (by E-I Bartzia and P-Y Strub) in Coq ${ }^{4}$ that $E(K) \cong \operatorname{Pic}_{E / F}^{0}(K)$ for char $F \neq 2,3$

[^2]
## Progress

Modulo associativity, what has been done?

## Progress

## Modulo associativity, what has been done?

## Functoriality $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$

```
def point_hom ( }\varphi:\textrm{K}->\mp@subsup{|}{a}{[F] L) : E(K) }->\textrm{E}(\textrm{L}
    | zero := zero
    | (some x y w):= some (\varphi x) (\varphi y) $ by {...}
local notation K }->\mathrm{ [F] L := (algebra.of_id K L).restrict_scalars F
lemma point_hom.id (P : E(K)) : point_hom (K T [F] K) P = P := by cases P; refl
lemma point_hom.comp (P : E(K)) :
```



## Progress

## Modulo associativity, what has been done?

## Functoriality $\mathbf{A l g}_{F} \rightarrow \mathbf{A b}$

```
def point_hom ( }\varphi:\textrm{K}->\mp@subsup{|}{a}{[F] L) : E(K) }->\textrm{E}(\textrm{L}
    | zero := zero
    | (some x y w):= some (\varphi x) (\varphi y) $ by {...}
local notation K }->\mathrm{ [F] L := (algebra.of_id K L).restrict_scalars F
lemma point_hom.id (P : E(K)) : point_hom (K T[F] K) P = P := by cases P; refl
lemma point_hom.comp (P : E(K)) :
```



Galois module structure $\operatorname{Gal}(L / K) \curvearrowright E(L)$

```
def point_gal ( }\sigma:\textrm{L}\simeq\mp@subsup{\simeq}{a}{[K] L) : E(L) }->\textrm{E}(\textrm{L}
    | zero := zero
    | (some x y w):= some (\sigma\cdotx) (\sigma\cdoty)$ by { . . }
```

lemma point_gal.fixed : mul_action.fixed_points $\left(L \simeq{ }_{a}[K] L\right) E(L)=($ point_hom $(K \rightarrow[F] L)$ ).range := by \{ . . \}

## Progress

## Modulo associativity, what has been done?

Isomorphisms $(x, y) \mapsto\left(u^{2} x+r, u^{3} y+u^{2} s x+t\right)$

```
variables (u : units F) (r st:F)
def cov:EllipticCurve F:=
{ a }\mp@subsup{1}{1}{}:=u.\mp@subsup{\operatorname{inv}}{}{*}(E.\mp@subsup{a}{1}{}+\mp@subsup{2}{}{*}s)
    a}\mp@subsup{a}{2}{}:=u.inv^2*(E.a 2 - s*E.a cor + 3*r - s^2)
    a3 := u.inv^3*(E.a3 + r*E.a ( }\mp@subsup{\mp@code{a}}{1}{*}+\mp@subsup{2}{}{*}t)
```




```
    disc := uu.inv^12*E.disc.val, u.val^12*E.disc.inv, by {...}, by { . . } },
    disc_eq:= by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }
def cov.to_fun:(E.covurst)(K) }->\textrm{E}(\textrm{K}
    | zero := zero
    | (some xy w):= some (u.val^2*x + r) (u.val^3* y + u.val^2* s* x + t) $ by {...}
def cov.inv_fun: E(K) }->(E.cov urst)(K
    | zero := zero
    | (some x y w):= some (u.inv^2* (x - r)) (u.inv^3* (y - s*x +r*s - t)) $ by {...}
def cov.equiv_add:(E.covurst)(K)\simeq+E(K):=
    <cov.to_funurst, cov.inv_funurst, by { ...}, by {...}, by {...} }
```


## Progress

Modulo associativity, what has been done?
2-division polynomial $\psi_{2}(x)$


```
lemma }\mp@subsup{\psi}{2_x.disc_eq_disc : ( }{2_-x E K).disc = 16*E.disc := by { ...}
```


## Progress

## Modulo associativity, what has been done?

2-division polynomial $\psi_{2}(x)$



## Structure of $E(K)[2]$

```
notation E(K)[n]:= ((.) n : E(K) ->+ E(K)).ker
```



```
theorem E2.card_le_four : fintype.card E(K)[2] \leq 4 := by { . . }
variables [algebra (( }\mp@subsup{\psi}{2_-x E F).splitting_field) K]}{
theorem E2.card_eq_four : fintype.card E(K)[2] = 4 := by { . . }
lemma E2.gal_fixed ( }\sigma:\textrm{L}\mp@subsup{\simeq}{a}{a}[\textrm{K}] L) (P:E(L)[2]):\sigma P P = P := by { . . } 
```


## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that im $\delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that im $\delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that im $\delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$
5. Apply finiteness of $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ and $\mathrm{Cl}_{K}[n]$

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.
Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that im $\delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$
5. Apply finiteness of $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ and $\mathrm{Cl}_{K}[n]$

Show this implies $E(K)$ is finitely generated:

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.

Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that $\operatorname{im} \delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$
5. Apply finiteness of $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ and $\mathrm{Cl}_{K}[n]$

Show this implies $E(K)$ is finitely generated:

1. Define heights on elliptic curves

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.

Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that $\operatorname{im} \delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$
5. Apply finiteness of $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ and $\mathrm{Cl}_{K}[n]$

Show this implies $E(K)$ is finitely generated:

1. Define heights on elliptic curves
2. (J Zhang) Prove the descent theorem

## Mordell-Weil

Let $K$ be a number field. Then $E(K)$ is finitely generated.

Show $E(K) / 2 E(K)$ is finite:

1. Reduce to $E[2] \subset E(K)$
2. Define 2-descent $\delta: E(K) / 2 E(K) \hookrightarrow K^{\times} /\left(K^{\times}\right)^{2} \times K^{\times} /\left(K^{\times}\right)^{2}$
3. Show that $\operatorname{im} \delta \leq K(\emptyset, 2) \times K(\emptyset, 2)$
4. Prove exactness of $0 \rightarrow \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n} \rightarrow K(\emptyset, n) \rightarrow \mathrm{Cl}_{K}[n] \rightarrow 0$
5. Apply finiteness of $\mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{n}$ and $\mathrm{Cl}_{K}[n]$

Show this implies $E(K)$ is finitely generated:

1. Define heights on elliptic curves
2. (J Zhang) Prove the descent theorem

Soon: Mordell's theorem for $E[2] \subset E(\mathbb{Q})$.

## Future

Potential future projects:

- $n$-division polynomials and the structure of $E(K)[n]$
- formal groups and local theory
- ramification theory $\Longrightarrow$ Mordell-Weil theorem for number fields
- Galois cohomology $\Longrightarrow$ Selmer and Tate-Shafarevich groups
- modular forms $\Longrightarrow$ complex theory
- algebraic geometry $\Longrightarrow$ proof of associativity


## Future

Potential future projects:

- $n$-division polynomials and the structure of $E(K)[n]$
- formal groups and local theory
- ramification theory $\Longrightarrow$ Mordell-Weil theorem for number fields
- Galois cohomology $\Longrightarrow$ Selmer and Tate-Shafarevich groups
- modular forms $\Longrightarrow$ complex theory
- algebraic geometry $\Longrightarrow$ proof of associativity

Thank you!


[^0]:    ${ }^{2} S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$, or even rings whose class group has no 12 -torsion ${ }^{3}$ smooth, proper, and geometrically integral

[^1]:    ${ }^{2} S=\operatorname{Spec} F$ and $T=\operatorname{Spec} K$, or even rings whose class group has no 12-torsion ${ }^{3}$ smooth, proper, and geometrically integral

[^2]:    ${ }^{4}$ A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)

