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Globally

An elliptic curve E over a scheme S is a diagram

E

S

f 0

with a few technical conditions. 1

For a scheme T over S , define the set of T -points of E by

E (T ) := HomS(T ,E ),

which is naturally identified with a Picard group Pic0
E/S(T ) of E .

This defines a contravariant functor SchS → Ab given by T 7→ E (T ).

Good for algebraic geometry, but not very friendly...

1f is smooth, proper, and all its geometric fibres are integral curves of genus one
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Locally

Let T/S be a field extension K/F . 2

2S = Spec F and T = Spec K , or even rings whose class group has no 12-torsion
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Locally

Let T/S be a field extension K/F . 2

An elliptic curve E over a field F is a tuple (E , 0).

I E is a nice 3 genus one curve over F .

I 0 is an F -point.

The Picard group becomes

Pic0
E/F (K ) =

{degree zero divisors of E over K}
{principal divisors of E over K}

.

This defines a covariant functor AlgF → Ab given by K 7→ E (K ).

Group law is free, but still need equations...

2S = Spec F and T = Spec K , or even rings whose class group has no 12-torsion
3smooth, proper, and geometrically integral
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Concretely

The Riemann-Roch theorem gives Weierstrass equations.

E (K ) is basically the set of solutions (x , y) ∈ K 2 to

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6, ai ∈ F .

If char F 6= 2, 3, can reduce this to

y2 = x3 + Ax + B, A,B ∈ F .

The group law is reduced to drawing lines.
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Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

34 / 72



Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

35 / 72



Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

36 / 72



Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

37 / 72



Implementation

Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

def disc_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
=(a1ˆ2 + 4*a2)ˆ2*(a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2)
= 8*(2*a4 + a1*a3)ˆ3 = 27*(a3ˆ2 + 4*a6)ˆ2
+ 9*(a1ˆ2 + 4*a2)*(2*a4 + a1*a3)*(a3ˆ2 + 4*a6)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (disc : units R) (disc_eq : disc.val = disc_aux a1 a2 a3 a4 a6)
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Three definitions of elliptic curves:

1. Abstract definition over a scheme

2. Abstract definition over a field

3. Concrete definition over a field

Generality: 1 ⊃ 2
RR
= 3

I 1. and 2. require much algebraic geometry (properness, genus, ...)

I 2. = 3. also requires algebraic geometry (divisors, differentials, ...)

I 3. requires just five coefficients (and a non-zero discriminant)!

def disc_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
=(a1ˆ2 + 4*a2)ˆ2*(a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2)
= 8*(2*a4 + a1*a3)ˆ3 = 27*(a3ˆ2 + 4*a6)ˆ2
+ 9*(a1ˆ2 + 4*a2)*(2*a4 + a1*a3)*(a3ˆ2 + 4*a6)

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (disc : units R) (disc_eq : disc.val = disc_aux a1 a2 a3 a4 a6)

This is the scheme E , but what about the abelian group E (F )?
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Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K
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Identity
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Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Identity

instance : has_zero E(K) := 〈zero〉

Negation

def neg : E(K) → E(K)
| zero := zero
| (some x y w) := some x (=y = E.a1*x = E.a3) $ by { rw [← w], ring }

instance : has_neg E(K) := 〈neg〉
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Points

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Addition

def add : E(K) → E(K) → E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some x2 y2 w2) :=
if x_ne : x1 6= x2 then
let L := (y1 = y2) / (x1 = x2),

x3 := Lˆ2 + E.a1*L = E.a2 = x1 = x2,
y3 := =L*x3 = E.a1*x3 = y1 + L*x1 = E.a3

in some x3 y3 $ by { . . . }
else if y_ne : y1 + y2 + E.a1*x2 + E.a3 6= 0 then
. . .

else
zero

instance : has_add E(K) := 〈add〉
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variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Commutativity is doable

lemma add_comm (P Q : E(K)) : P + Q = Q + P :=
by { rcases 〈P, Q〉 with 〈_ | _, _ | _〉, . . . }

Associativity is difficult

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) :=
by { rcases 〈P, Q, R〉 with 〈_ | _, _ | _, _ | _〉, . . . }
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Associativity

Known to be very difficult with several proofs:
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Associativity

Known to be very difficult with several proofs:

I Just do it!
(times out with 130,000(!?) coefficients)

I Uniformisation
(requires complex analysis and modular forms)

I Cayley-Bacharach
(requires incidence geometry notions and Bézout’s theorem)

I E (K ) ∼= Pic0
E/F (K )

(requires divisors, differentials, and the Riemann-Roch theorem)
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Current status:

I Left as a sorry

I Attempt (by M Masdeu) to bash it out using linear combination

I Proved (by E-I Bartzia and P-Y Strub) in Coq
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Associativity

Known to be very difficult with several proofs:

I Just do it!
(times out with 130,000(!?) coefficients)

I Uniformisation
(requires complex analysis and modular forms)

I Cayley-Bacharach
(requires incidence geometry notions and Bézout’s theorem)

I E (K ) ∼= Pic0
E/F (K )

(requires divisors, differentials, and the Riemann-Roch theorem)

Current status:

I Left as a sorry

I Attempt (by M Masdeu) to bash it out using linear combination

I Proved (by E-I Bartzia and P-Y Strub) in Coq 4

that E (K ) ∼= Pic0
E/F (K ) for char F 6= 2, 3

4A Formal Library for Elliptic Curves in the Coq Proof Assistant (2015)
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Progress

Modulo associativity, what has been done?
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Progress

Modulo associativity, what has been done?

Functoriality AlgF → Ab

def point_hom (ϕ : K→a [F] L) : E(K)→ E(L)
| zero := zero

| (some x y w) := some (ϕ x) (ϕ y) $ by { . . . }

local notation K→[F] L := (algebra.of_id K L).restrict_scalars F

lemma point_hom.id (P : E(K)) : point_hom (K→[F] K) P = P := by cases P; refl

lemma point_hom.comp (P : E(K)) :
point_hom (L→[F] M) (point_hom (K→[F] L) P) = point_hom ((L→[F] M).comp (K→[F] L)) P := by cases P; refl
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Functoriality AlgF → Ab

def point_hom (ϕ : K→a [F] L) : E(K)→ E(L)
| zero := zero

| (some x y w) := some (ϕ x) (ϕ y) $ by { . . . }

local notation K→[F] L := (algebra.of_id K L).restrict_scalars F

lemma point_hom.id (P : E(K)) : point_hom (K→[F] K) P = P := by cases P; refl

lemma point_hom.comp (P : E(K)) :
point_hom (L→[F] M) (point_hom (K→[F] L) P) = point_hom ((L→[F] M).comp (K→[F] L)) P := by cases P; refl

Galois module structure Gal(L/K ) y E (L)

def point_gal (σ : L 'a [K] L) : E(L)→ E(L)
| zero := zero

| (some x y w) := some (σ · x) (σ · y) $ by { . . . }

lemma point_gal.fixed : mul_action.fixed_points (L 'a [K] L) E(L) = (point_hom (K→[F] L)).range := by { . . . }
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Progress

Modulo associativity, what has been done?

Isomorphisms (x , y) 7→ (u2x + r , u3y + u2sx + t)

variables (u : units F) (r s t : F)

def cov : EllipticCurve F :=
{ a1 := u.inv*(E.a1 + 2*s),
a2 := u.invˆ2*(E.a2 = s*E.a1 + 3*r = sˆ2),
a3 := u.invˆ3*(E.a3 + r*E.a1 + 2*t),
a4 := u.invˆ4*(E.a4 = s*E.a3 + 2*r*E.a2 = (t + r*s)*E.a1 + 3*rˆ2 = 2*s*t),
a6 := u.invˆ6*(E.a6 + r*E.a4 + rˆ2*E.a2 + rˆ3 = t*E.a3 = tˆ2 = r*t*E.a1),
disc := 〈u.invˆ12*E.disc.val, u.valˆ12*E.disc.inv, by { . . . }, by { . . . }〉,
disc_eq := by { simp only, rw [disc_eq, disc_aux, disc_aux], ring } }

def cov.to_fun : (E.cov u r s t)(K)→ E(K)
| zero := zero

| (some x y w) := some (u.valˆ2*x + r) (u.valˆ3*y + u.valˆ2*s*x + t) $ by { . . . }

def cov.inv_fun : E(K)→ (E.cov u r s t)(K)
| zero := zero

| (some x y w) := some (u.invˆ2*(x = r)) (u.invˆ3*(y = s*x + r*s = t)) $ by { . . . }

def cov.equiv_add : (E.cov u r s t)(K) '+ E(K) :=
〈cov.to_fun u r s t, cov.inv_fun u r s t, by { . . . }, by { . . . }, by { . . . }〉
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Progress

Modulo associativity, what has been done?

2-division polynomial ψ2(x)

def ψ2_x : cubic K := 〈4, E.a1ˆ2 + 4*E.a2, 4*E.a4 + 2*E.a1*E.a3, E.a3ˆ2 + 4*E.a6〉

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc := by { . . . }
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Modulo associativity, what has been done?

2-division polynomial ψ2(x)

def ψ2_x : cubic K := 〈4, E.a1ˆ2 + 4*E.a2, 4*E.a4 + 2*E.a1*E.a3, E.a3ˆ2 + 4*E.a6〉

lemma ψ2_x.disc_eq_disc : (ψ2_x E K).disc = 16*E.disc := by { . . . }

Structure of E (K )[2]

notation E(K)[n] := ((·) n : E(K)→+ E(K)).ker

lemma E2.x {x y w} : some x y w ∈ E(K)[2]↔ x ∈ (ψ2_x E K).roots := by { . . . }

theorem E2.card_le_four : fintype.card E(K)[2] ≤ 4 := by { . . . }

variables [algebra ((ψ2_x E F).splitting_field) K]

theorem E2.card_eq_four : fintype.card E(K)[2] = 4 := by { . . . }

lemma E2.gal_fixed (σ : L 'a [K] L) (P : E(L)[2]) : σ · P = P := by { . . . }
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Mordell-Weil

Let K be a number field. Then E (K ) is finitely generated.
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Mordell-Weil

Let K be a number field. Then E (K ) is finitely generated.

Show E (K )/2E (K ) is finite:

1. Reduce to E [2] ⊂ E (K )

2. Define 2-descent δ : E (K )/2E (K ) ↪→ K×/(K×)2 × K×/(K×)2

3. Show that imδ ≤ K (∅, 2)× K (∅, 2)

4. Prove exactness of 0→ O×K /(O×K )n → K (∅, n)→ ClK [n]→ 0

5. Apply finiteness of O×K /(O×K )n and ClK [n]
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Show this implies E (K ) is finitely generated:

1. Define heights on elliptic curves

2. (J Zhang) Prove the descent theorem
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Let K be a number field. Then E (K ) is finitely generated.

Show E (K )/2E (K ) is finite:

1. Reduce to E [2] ⊂ E (K )

2. Define 2-descent δ : E (K )/2E (K ) ↪→ K×/(K×)2 × K×/(K×)2

3. Show that imδ ≤ K (∅, 2)× K (∅, 2)

4. Prove exactness of 0→ O×K /(O×K )n → K (∅, n)→ ClK [n]→ 0

5. Apply finiteness of O×K /(O×K )n and ClK [n]

Show this implies E (K ) is finitely generated:

1. Define heights on elliptic curves

2. (J Zhang) Prove the descent theorem

Soon: Mordell’s theorem for E [2] ⊂ E (Q).
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Future

Potential future projects:

I n-division polynomials and the structure of E (K )[n]

I formal groups and local theory

I ramification theory =⇒ Mordell-Weil theorem for number fields

I Galois cohomology =⇒ Selmer and Tate-Shafarevich groups

I modular forms =⇒ complex theory

I algebraic geometry =⇒ proof of associativity

Thank you!
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