Elliptic	curves			
mathlib				

David Ang

Overview

Group law

Torsion subgroup

Progress

Elliptic curves in mathlib

David Ang

London School of Geometry and Number Theory

Wednesday, 26 June 2024

Overview: definitions

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Elliptic curves in Mathlib/AlgebraicGeometry/EllipticCurve are defined in terms of Weierstrass curves over a commutative ring *R*.

Definition (WeierstrassCurve in Weierstrass.lean)

A Weierstrass curve W_R is a tuple $(a_1, a_2, a_3, a_4, a_6) \in R^5$. An elliptic curve E_R is a Weierstrass curve such that $\Delta(a_i) \in R^{\times}$.

Overview: definitions

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgrou

Progress

Elliptic curves in Mathlib/AlgebraicGeometry/EllipticCurve are defined in terms of Weierstrass curves over a commutative ring *R*.

Definition (WeierstrassCurve in Weierstrass.lean)

A Weierstrass curve W_R is a tuple $(a_1, a_2, a_3, a_4, a_6) \in R^5$. An elliptic curve E_R is a Weierstrass curve such that $\Delta(a_i) \in R^{\times}$.

Their points are defined via the affine model.

Definition (WeierstrassCurve.Affine.Point in Affine.lean)

An affine point of W_R is a pair $(x, y) \in R^2$ such that W(x, y) = 0and either $W_X(x, y) \neq 0$ or $W_Y(x, y) \neq 0$, where

$$W := Y^2 + a_1 X Y + a_3 Y - (X^3 + a_2 X^2 + a_4 X^3 + a_6).$$

The **points** $W_R(R)$ are the affine points of W_R and a point at infinity.

Overview: files

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Current:

- Weierstrass.lean
- Affine.lean
- Projective.lean
- Jacobian.lean
- Group.lean
- DivisionPolynomial/Basic.lean
- DivisionPolynomial/Degree.lean

Future:

- Universal.lean
- DivisionPolynomial/Group.lean
- Torsion.lean
- Scheme.lean (NEW!)

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

polynomial manipulation via ring

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Elliptic curves in mathlib

David Ang

Overview

Group law Torsion subgr

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

 \blacksquare a quotient \mathbb{C}/Λ of the complex numbers by a lattice

Elliptic curves in mathlib

David Ang

Overview

Group law Torsion subgro

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

- \blacksquare a quotient \mathbb{C}/Λ of the complex numbers by a lattice
- the group of degree-zero Weil divisors $\operatorname{Pic}^{0}(W_{F})$

Elliptic curves in mathlib

David Ang

Overview

Group law Torsion subgro

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

- \blacksquare a quotient \mathbb{C}/Λ of the complex numbers by a lattice
- the group of degree-zero Weil divisors $\operatorname{Pic}^{0}(W_{F})$
- the ideal class group Cl(*F*[*W_F*]) of the coordinate ring

Elliptic curves in mathlib

David Ang

Overview

Group law Torsion subgro

Progress

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

 \blacksquare a quotient \mathbb{C}/Λ of the complex numbers by a lattice

• the group of degree-zero Weil divisors $\operatorname{Pic}^{0}(W_{F})$

• the ideal class group $Cl(F[W_F])$ of the coordinate ring Junyan gave an pure algebraic proof via norms.

Elliptic curves in mathlib

Define

David Ang

Overview

Group law

Torsion subgroup

Progress

 $\begin{array}{rccc} \phi & : & W_F(F) & \longrightarrow & \operatorname{Cl}(F[W_F]) \\ & 0 & \longmapsto & [\langle 1 \rangle] \\ & & (x,y) & \longmapsto & [\langle X-x,Y-y \rangle] \end{array}.$

Define

Group law

Torsion subgroup

Progress

$$\begin{array}{rccc} \phi & : & W_F(F) & \longrightarrow & \operatorname{Cl}(F[W_F]) \\ & 0 & \longmapsto & [\langle 1 \rangle] \\ & & (x,y) & \longmapsto & [\langle X-x, Y-y \rangle] \end{array}$$

Note that $F[W_F]$ is a free algebra over F[X] with basis $\{1, Y\}$, so it has a norm given by $Nm(p+qY) = det([\cdot(p+qY)])$.

Define

$$\begin{array}{rcl} \phi & : & W_F(F) & \longrightarrow & \operatorname{Cl}(F[W_F]) \\ & 0 & \longmapsto & [\langle 1 \rangle] \\ & (x, y) & \longmapsto & [\langle X - x, Y - y \rangle] \end{array}$$

Overview

Group law

Torsion subgrou

Elliptic curves in

mathlib

^orogress

Note that $F[W_F]$ is a free algebra over F[X] with basis $\{1, Y\}$, so it has a norm given by $Nm(p+qY) = det([\cdot(p+qY)])$. On one hand,

 $\mathsf{deg}(\mathsf{Nm}(p+qY)) = \mathsf{max}(2\mathsf{deg}(p), 2\mathsf{deg}(q)+3) \neq 1.$

Define

Group law

Torsion subgroup

^orogress

$$\begin{array}{rcl} \phi & : & W_F(F) & \longrightarrow & \operatorname{Cl}(F[W_F]) \\ & 0 & \longmapsto & [\langle 1 \rangle] \\ & (x,y) & \longmapsto & [\langle X-x,Y-y \rangle] \end{array}$$

Note that $F[W_F]$ is a free algebra over F[X] with basis $\{1, Y\}$, so it has a norm given by $Nm(p+qY) = det([\cdot(p+qY)])$. On one hand,

$$deg(Nm(p+qY)) = max(2 deg(p), 2 deg(q) + 3) \neq 1.$$

On the other hand, $F[W_F]/\langle p+qY\rangle\cong F[X]/\langle p
angle\oplus F[X]/\langle q
angle$, so

 $\mathsf{deg}(\mathsf{Nm}(p+qY)) = \mathsf{deg}(pq) = \mathsf{dim}(F[W_F]/\langle p+qY\rangle).$

Define

$$\begin{array}{rcl} \phi & : & W_F(F) & \longrightarrow & \operatorname{Cl}(F[W_F]) \\ & & 0 & \longmapsto & [\langle 1 \rangle] \\ & & (x,y) & \longmapsto & [\langle X-x,Y-y \rangle] \end{array}$$

Quantian

Group law

Torsion subgroup

Elliptic curves in

mathlih

rogress

Note that $F[W_F]$ is a free algebra over F[X] with basis $\{1, Y\}$, so it has a norm given by $Nm(p+qY) = det([\cdot(p+qY)])$. On one hand,

$$\mathsf{deg}(\mathsf{Nm}(p+qY)) = \mathsf{max}(2\mathsf{deg}(p), 2\mathsf{deg}(q) + 3) \neq 1.$$

On the other hand, $F[W_F]/\langle p+qY
angle\cong F[X]/\langle p
angle\oplus F[X]/\langle q
angle$, so

$$\deg(\operatorname{Nm}(p+qY)) = \deg(pq) = \dim(F[W_F]/\langle p+qY\rangle).$$

Thus if $\langle X - x, Y - y \rangle = \langle p + qY \rangle$, then

 $F[W_F]/\langle p+qY \rangle = F[X,Y]/\langle W(X,Y), X-x, Y-y \rangle \cong F,$

which contradicts dim $(F[W_F]/\langle p+qY\rangle) \neq 1$, A = 0

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

[>]rogress

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

• identification with $(\mathbb{C}/\Lambda)[n]$

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

- identification with $(\mathbb{C}/\Lambda)[n]$
- induced map of isogenies on $\operatorname{Pic}^{0}(E_{\overline{F}})$

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

rogress

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

- identification with $(\mathbb{C}/\Lambda)[n]$
- induced map of isogenies on $\operatorname{Pic}^{0}(E_{\overline{F}})$
- existence of polynomials $\psi_n, \phi_n, \omega_n \in \overline{F}[X, Y]$ such that

$$[n](x,y) = \left(\frac{\phi_n(x)}{\psi_n(x)^2}, \frac{\omega_n(x,y)}{\psi_n(x,y)^3}\right)$$

and a proof that ${\rm deg}(\psi_n^2)={\it n}^2-1$

20 / 32

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

The latter proof turned out to be incredibly tricky.

<ロト < 部 ト < 言 ト < 言 ト こ の Q () 21/32

David Ang

Overview

Group law

Torsion subgroup

Progress

The latter proof turned out to be incredibly tricky.

■ The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates

David Ang

Overview

Group law

Torsion subgroup

Progress

- The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates
- The definition of ψ_n is strong even-odd recursive with five base cases and an awkward even case, so proofs are very lengthy

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

[>]rogress

- The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates
- The definition of ψ_n is strong even-odd recursive with five base cases and an awkward even case, so proofs are very lengthy
- The definition of ω_n is very elusive, and seemingly involves division by two in characteristic two

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

- The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates
- The definition of ψ_n is strong even-odd recursive with five base cases and an awkward even case, so proofs are very lengthy
- The definition of ω_n is very elusive, and seemingly involves division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

^orogress

- The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates
- The definition of \u03c6_n is strong even-odd recursive with five base cases and an awkward even case, so proofs are very lengthy
- The definition of ω_n is very elusive, and seemingly involves division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations
- The identity cannot be proven directly via induction, and needs elliptic divisibility sequences and elliptic nets

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

The latter proof turned out to be incredibly tricky.

- The identity holds in the universal ring Z[A_i, X, Y]/⟨W⟩, so needs a specialisation map or projective coordinates
- The definition of \u03c6_n is strong even-odd recursive with five base cases and an awkward even case, so proofs are very lengthy
- The definition of ω_n is very elusive, and seemingly involves division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations
- The identity cannot be proven directly via induction, and needs elliptic divisibility sequences and elliptic nets

These have been formalised in Projective.lean, Jacobian.lean, DivisionPolynomial/*.lean, and Universal.lean. These also use lemmas in Algebra/Polynomial/Bivariate.lean and NumberTheory/EllipticDivisibilitySequence.lean

Progress: current

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Already in master:

- Weierstrass curves and variable changes of standard quantities
- elliptic curves with prescribed j-invariant
- affine group law and functoriality of base change
- Jacobian group law and equivalence with affine group law
- division polynomials and degree computations

Progress: current

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Already in master:

- Weierstrass curves and variable changes of standard quantities
- elliptic curves with prescribed j-invariant
- affine group law and functoriality of base change
- Jacobian group law and equivalence with affine group law
- division polynomials and degree computations

Already in branches:

- Galois theory on points and n-torsion points
- projective group law and equivalence with affine group law
- the coordinate ring and other universal constructions
- elliptic divisibility sequences and elliptic nets
- multiplication by n in terms of division polynomials
- structure of the n-torsion subgroup and the Tate module
- the affine scheme associated to an elliptic curve

Progress: future

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Projects without algebraic geometry:

- algorithms that only use the group law
- finite fields: the Hasse–Weil bound, the Weil conjectures
- local fields: the reduction homomorphism, Tate's algorithm, the Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function
- number fields: Neron-Tate heights, the Mordell–Weil theorem, Tate–Shafarevich groups, the Birch–Swinnerton-Dyer conjecture
- complete fields: complex uniformisation, p-adic uniformisation

Progress: future

Elliptic curves in mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Projects without algebraic geometry:

- algorithms that only use the group law
- finite fields: the Hasse–Weil bound, the Weil conjectures
- local fields: the reduction homomorphism, Tate's algorithm, the Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function
- number fields: Neron-Tate heights, the Mordell-Weil theorem, Tate-Shafarevich groups, the Birch-Swinnerton-Dyer conjecture

complete fields: complex uniformisation, p-adic uniformisation
 Projects with algebraic geometry:

- elliptic curves over global function fields
- the projective scheme associated to an elliptic curve
- integral models and finite flat group schemes
- divisors on curves and the Riemann–Roch theorem
- modular curves and Mazur's theorem

・ ロ ト ・ 西 ト ・ 日 ト ・ 日 ト

Elli	ptic	curves		
mathlib				

David Ang

Overview

Group law

Torsion subgroup

Progress

THANK YOU!

<ロト < 部 ト < 言 ト < 言 ト こ の Q (C 32/32