

Elliptic curves in mathlib

David Ang

London School of Geometry and Number Theory

Wednesday, 26 June 2024

 $A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \cup B \rightarrow A \cup B$ つくへ 1 / 32

Overview: definitions

[Elliptic curves in](#page-0-0) mathlib David Ang

[Overview](#page-1-0)

[Torsion subgroup](#page-16-0)

Elliptic curves in Mathlib/AlgebraicGeometry/EllipticCurve are defined in terms of Weierstrass curves over a commutative ring R .

Definition (WeierstrassCurve in Weierstrass.lean)

A **Weierstrass curve** W_R is a tuple $(a_1, a_2, a_3, a_4, a_6) \in R^5.$ An **elliptic curve** E_R is a Weierstrass curve such that $\Delta(a_i) \in R^{\times}$.

Overview: definitions

[Elliptic curves in](#page-0-0) mathlib David Ang

Ovendew

[Torsion subgroup](#page-16-0)

Elliptic curves in Mathlib/AlgebraicGeometry/EllipticCurve are defined in terms of Weierstrass curves over a commutative ring R .

Definition (WeierstrassCurve in Weierstrass.lean)

A **Weierstrass curve** W_R is a tuple $(a_1, a_2, a_3, a_4, a_6) \in R^5.$ An **elliptic curve** E_R is a Weierstrass curve such that $\Delta(a_i) \in R^{\times}$.

Their points are defined via the affine model.

Definition (WeierstrassCurve.Affine.Point in Affine.lean)

An **affine point** of W_R is a pair $(x,y)\in R^2$ such that $W(x,y)=0$ and either $W_X(x, y) \neq 0$ or $W_Y(x, y) \neq 0$, where

$$
W := Y^2 + a_1XY + a_3Y - (X^3 + a_2X^2 + a_4X^3 + a_6).
$$

The **points** $W_R(R)$ are the affine points of W_R and a point at infinity.

Overview: files

[Elliptic curves in](#page-0-0) mathlib David Ang

Ovendew

[Torsion subgroup](#page-16-0)

Current:

- Weierstrass.lean
- Affine.lean
- **Projective.lean**
- Jacobian.lean
- Group.lean
- DivisionPolynomial/Basic.lean
- DivisionPolynomial/Degree.lean

Future:

- Universal.lean
- DivisionPolynomial/Group.lean
- Torsion.lean
- Scheme.lean (NEW!)

[Elliptic curves in](#page-0-0) mathlib

[Group law](#page-4-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

5 / 32

 299

メロメ メタメ メミメ メミメン 毛

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

polynomial manipulation via ring

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0)

[Torsion subgroup](#page-16-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0) [Torsion subgroup](#page-16-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

a quotient \mathbb{C}/Λ of the complex numbers by a lattice

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0) [Torsion subgroup](#page-16-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

- a quotient \mathbb{C}/Λ of the complex numbers by a lattice
- the group of degree-zero Weil divisors $\operatorname{Pic}^0(W_{\digamma})$

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0) [Torsion subgroup](#page-16-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

- a quotient \mathbb{C}/Λ of the complex numbers by a lattice
- the group of degree-zero Weil divisors $\operatorname{Pic}^0(W_{\digamma})$
- **the ideal class group** $\text{Cl}(F[W_F])$ of the coordinate ring

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Group law](#page-4-0) [Torsion subgroup](#page-16-0)

Theorem (in Group.lean)

If F is a field, then $W_F(F)$ is an abelian group under an addition law.

Elementary proofs of associativity:

- polynomial manipulation via ring
- geometric argument via Bézout's theorem

Proofs by identification with known groups:

a quotient \mathbb{C}/Λ of the complex numbers by a lattice

the group of degree-zero Weil divisors $\operatorname{Pic}^0(W_{\digamma})$

the ideal class group $\text{Cl}(F[W_F])$ of the coordinate ring Junyan gave an pure algebraic proof via norms.

[Elliptic curves in](#page-0-0) mathlib

Define

David Ang

[Group law](#page-4-0)

[Torsion subgroup](#page-16-0)

 ϕ : $W_F(F) \rightarrow$ Cl($F[W_F]$) $0 \quad \longmapsto \quad [\langle 1 \rangle]$ $(x, y) \mapsto [\langle X - x, Y - y \rangle]$

.

Define

[Elliptic curves in](#page-0-0) mathlib David Ang

[Group law](#page-4-0)

$$
\begin{array}{rcl}\n\phi & : & W_F(F) & \longrightarrow & \text{Cl}(F[W_F]) \\
0 & \longmapsto & [{\langle 1 \rangle}] \\
(x,y) & \longmapsto & [{\langle X-x, Y-y \rangle}] \n\end{array}
$$

Note that $F[W_F]$ is a free algebra over $F[X]$ with basis $\{1, Y\}$, so it has a norm given by $\text{Nm}(p + qY) = \text{det}([\cdot(p + qY)]).$

.

Define

$$
\begin{array}{rcl}\n\phi & : & W_F(F) & \longrightarrow & \text{Cl}(F[W_F]) \\
0 & \longmapsto & [{\langle 1 \rangle}] \\
(x, y) & \longmapsto & [{\langle X - x, Y - y \rangle}] \n\end{array}
$$

[Group law](#page-4-0)

[Elliptic curves in](#page-0-0) mathlib David Ang

Note that $F[W_F]$ is a free algebra over $F[X]$ with basis $\{1, Y\}$, so it has a norm given by $\text{Nm}(p + qY) = \det((q + qY))$. On one hand,

 $deg(Nm(p + qY)) = max(2 deg(p), 2 deg(q) + 3) \neq 1.$

.

Define

$$
\begin{array}{rcl}\n\phi & : & W_F(F) & \longrightarrow & \text{Cl}(F[W_F]) \\
0 & \longmapsto & [{\langle 1 \rangle}] \\
(x, y) & \longmapsto & [{\langle X - x, Y - y \rangle}]\n\end{array}
$$

.

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

15 / 32

 Ω

[Group law](#page-4-0)

[Torsion subgroup](#page-16-0)

[Elliptic curves in](#page-0-0) mathlib David Ang

Note that $F[W_F]$ is a free algebra over $F[X]$ with basis $\{1, Y\}$, so it has a norm given by $\text{Nm}(p + qY) = \det((q + qY))$. On one hand,

$$
\mathsf{deg}(\mathrm{Nm}(\rho+q\mathsf{Y}))=\mathsf{max}(2\deg(\rho),2\deg(q)+3)\neq 1.
$$

On the other hand, $F[W_F]/\langle p+qY\rangle \cong F[X]/\langle p\rangle \oplus F[X]/\langle q\rangle$, so

 $deg(Nm(p+qY)) = deg(pq) = dim(F[W_F]/\langle p+qY \rangle).$

Define

$$
\begin{array}{rcl}\n\phi & : & W_F(F) & \longrightarrow & \text{Cl}(F[W_F]) \\
0 & \longmapsto & [{\langle 1 \rangle}] \\
(x, y) & \longmapsto & [{\langle X - x, Y - y \rangle}]\n\end{array}
$$

.

[Group law](#page-4-0) [Torsion subgroup](#page-16-0)

[Elliptic curves in](#page-0-0) mathlib David Ang

Note that $F[W_F]$ is a free algebra over $F[X]$ with basis $\{1, Y\}$, so it has a norm given by $\text{Nm}(p + qY) = \det([-(p + qY)])$. On one hand,

$$
\mathsf{deg}\big(\mathrm{Nm}(\rho+q\mathsf{Y})\big)=\max(2\deg(\rho),2\deg(q)+3)\neq 1.
$$

On the other hand, $F[W_F]/\langle p+qY\rangle \cong F[X]/\langle p\rangle \oplus F[X]/\langle q\rangle$, so

$$
\deg(\mathrm{Nm}(p+qY))=\deg(pq)=\dim(\digamma[W_{\digamma}]/\langle p+qY\rangle).
$$

Thus if $\langle X - x, Y - y \rangle = \langle p + qY \rangle$, then

 $F[W_F]/\langle p+qY\rangle = F[X, Y]/\langle W(X, Y), X - x, Y - y\rangle \cong F,$

which contradicts dim($F[W_F]/\langle p+qY\rangle$) $\neq 1$, $\{p+q\}$ Ω 16 / 32

[Elliptic curves in](#page-0-0) mathlib

[Torsion subgroup](#page-16-0)

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Torsion subgroup](#page-16-0)

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

identification with $(\mathbb{C}/\Lambda)[n]$

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Torsion subgroup](#page-16-0)

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

- identification with $(\mathbb{C}/\Lambda)[n]$
- induced map of isogenies on $\operatorname{Pic}^0(\overline{E_{\overline{F}}})$

[Elliptic curves in](#page-0-0) mathlib

David Ang

[Torsion subgroup](#page-16-0)

Theorem (in Torsion.lean)

If F is a field where $n \neq 0$, then $E_F(\overline{F})[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Some standard proofs:

- identification with $(\mathbb{C}/\Lambda)[n]$
- induced map of isogenies on $\operatorname{Pic}^0(\overline{E_{\overline{F}}})$
- **■** existence of polynomials $\psi_n, \phi_n, \omega_n \in \overline{F}[X, Y]$ such that

$$
[n](x,y) = \left(\frac{\phi_n(x)}{\psi_n(x)^2}, \frac{\omega_n(x,y)}{\psi_n(x,y)^3}\right)
$$

and a proof that $\deg(\psi_n^2)=n^2-1$

20 / 32

メロトメ 御 トメ 君 トメ 君 トッ 君

[Elliptic curves in](#page-0-0) mathlib

[Torsion subgroup](#page-16-0)

The latter proof turned out to be incredibly tricky.

メロメメ 御き メミメメ ミメー 急 299 21 / 32

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

The latter proof turned out to be incredibly tricky.

The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates

[Torsion subgroup](#page-16-0)

- The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates
- **The definition of** ψ_n **is strong even-odd recursive with five base** cases and an awkward even case, so proofs are very lengthy

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

- The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates
- **The definition of** ψ_n **is strong even-odd recursive with five base** cases and an awkward even case, so proofs are very lengthy
- **The definition of** ω_n **is very elusive, and seemingly involves** division by two in characteristic two

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

- The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates
- **The definition of** ψ_n **is strong even-odd recursive with five base** cases and an awkward even case, so proofs are very lengthy
- **The definition of** ω_n **is very elusive, and seemingly involves** division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

- The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates
- **The definition of** ψ_n **is strong even-odd recursive with five base** cases and an awkward even case, so proofs are very lengthy
- **The definition of** ω_n **is very elusive, and seemingly involves** division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations
- The identity cannot be proven directly via induction, and needs elliptic divisibility sequences and elliptic nets

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

The latter proof turned out to be incredibly tricky.

- The identity holds in the universal ring $\mathbb{Z}[A_{i},X,Y]/\langle W\rangle$, so needs a specialisation map or projective coordinates
- **The definition of** ψ_n **is strong even-odd recursive with five base** cases and an awkward even case, so proofs are very lengthy
- **The definition of** ω_n **is very elusive, and seemingly involves** division by two in characteristic two
- The polynomials ϕ_n and ψ_n^2 are bivariate, so needs a conversion to univariate polynomials for degree computations
- The identity cannot be proven directly via induction, and needs elliptic divisibility sequences and elliptic nets

These have been formalised in Projective.lean, Jacobian.lean, DivisionPolynomial/*.lean, and Universal.lean. These also use lemmas in Algebra/Polynomial/Bivariate.lean and NumberTheory/EllipticDivisibilitySequence.lean

Progress: current

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

[Progress](#page-27-0)

Already in master:

- Weierstrass curves and variable changes of standard quantities
- \blacksquare elliptic curves with prescribed j-invariant
- affine group law and functoriality of base change
- **Jacobian group law and equivalence with affine group law**
- division polynomials and degree computations

Progress: current

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

[Progress](#page-27-0)

Already in master:

- Weierstrass curves and variable changes of standard quantities
- \blacksquare elliptic curves with prescribed j-invariant
- \blacksquare affine group law and functoriality of base change
- **Jacobian group law and equivalence with affine group law**

division polynomials and degree computations

Already in branches:

- Galois theory on points and n-torsion points
- **projective group law and equivalence with affine group law**
- \blacksquare the coordinate ring and other universal constructions
- \blacksquare elliptic divisibility sequences and elliptic nets
- \blacksquare multiplication by n in terms of division polynomials
- \blacksquare structure of the n-torsion subgroup and the Tate module
- \blacksquare \blacksquare \blacksquare \blacksquare \blacksquare the affine scheme associated to an e[llip](#page-27-0)t[ic](#page-29-0) [c](#page-26-0)ur[v](#page-29-0)e

 $\mathbf{y} = \mathbf{y} \in \mathbb{R}^{d \times d}$.

Progress: future

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

[Progress](#page-27-0)

Projects without algebraic geometry:

- **a** algorithms that only use the group law
- finite fields: the Hasse–Weil bound, the Weil conjectures
- **If** local fields: the reduction homomorphism, Tate's algorithm, the Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function
- number fields: Neron-Tate heights, the Mordell–Weil theorem, Tate–Shafarevich groups, the Birch–Swinnerton-Dyer conjecture
- **n** complete fields: complex uniformisation, p-adic uniformisation

Progress: future

[Elliptic curves in](#page-0-0) mathlib David Ang

[Torsion subgroup](#page-16-0)

[Progress](#page-27-0)

Projects without algebraic geometry:

- **a** algorithms that only use the group law
- finite fields: the Hasse–Weil bound, the Weil conjectures
- **If** local fields: the reduction homomorphism, Tate's algorithm, the Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function
- number fields: Neron-Tate heights, the Mordell–Weil theorem, Tate–Shafarevich groups, the Birch–Swinnerton-Dyer conjecture **n** complete fields: complex uniformisation, p-adic uniformisation

Projects with algebraic geometry:

- \blacksquare elliptic curves over global function fields
- \blacksquare the projective scheme associated to an elliptic curve
- \blacksquare integral models and finite flat group schemes
- divisors on curves and the Riemann–Roch theorem
- **n** [m](#page-29-0)odular curves and Mazur's theorem

 Ω 31 / 32

 \exists (\exists) (\exists) (\exists) (\exists)

[Elliptic curves in](#page-0-0) mathlib

[Progress](#page-27-0)

THANK YOU!

メロメメ 御き メミメメ ミメー 急 299 32 / 32