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Overview: definitions

Elliptic curves in Mathlib/AlgebraicGeometry/EllipticCurve

are defined in terms of Weierstrass curves over a commutative ring R.

Definition (WeierstrassCurve in Weierstrass.lean)

A Weierstrass curve WR is a tuple (a1, a2, a3, a4, a6) ∈ R5.
An elliptic curve ER is a Weierstrass curve such that ∆(ai ) ∈ R×.

Their points are defined via the affine model.

Definition (WeierstrassCurve.Affine.Point in Affine.lean)

An affine point of WR is a pair (x , y) ∈ R2 such that W (x , y) = 0
and either WX (x , y) ̸= 0 or WY (x , y) ̸= 0, where

W := Y 2 + a1XY + a3Y − (X 3 + a2X
2 + a4X

3 + a6).

The points WR(R) are the affine points of WR and a point at infinity.
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Overview: files

Current:

Weierstrass.lean

Affine.lean

Projective.lean

Jacobian.lean

Group.lean

DivisionPolynomial/Basic.lean

DivisionPolynomial/Degree.lean

Future:

Universal.lean

DivisionPolynomial/Group.lean

Torsion.lean

Scheme.lean (NEW!)
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Group law: theorem

Theorem (in Group.lean)

If F is a field, then WF (F ) is an abelian group under an addition law.

Elementary proofs of associativity:

polynomial manipulation via ring

geometric argument via Bézout’s theorem

Proofs by identification with known groups:

a quotient C/Λ of the complex numbers by a lattice

the group of degree-zero Weil divisors Pic0(WF )

the ideal class group Cl(F [WF ]) of the coordinate ring

Junyan gave an pure algebraic proof via norms.
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Proofs by identification with known groups:

a quotient C/Λ of the complex numbers by a lattice

the group of degree-zero Weil divisors Pic0(WF )

the ideal class group Cl(F [WF ]) of the coordinate ring

Junyan gave an pure algebraic proof via norms.

6 / 32



Elliptic curves in
mathlib

David Ang

Overview

Group law

Torsion subgroup

Progress

Group law: theorem

Theorem (in Group.lean)

If F is a field, then WF (F ) is an abelian group under an addition law.

Elementary proofs of associativity:

polynomial manipulation via ring

geometric argument via Bézout’s theorem
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Group law: formalisation

Define
ϕ : WF (F ) −→ Cl(F [WF ])

0 7−→ [⟨1⟩]
(x , y) 7−→ [⟨X − x ,Y − y⟩]

.

Note that F [WF ] is a free algebra over F [X ] with basis {1,Y }, so it
has a norm given by Nm(p + qY ) = det([·(p + qY )]). On one hand,

deg(Nm(p + qY )) = max(2 deg(p), 2 deg(q) + 3) ̸= 1.

On the other hand, F [WF ]/⟨p + qY ⟩ ∼= F [X ]/⟨p⟩ ⊕ F [X ]/⟨q⟩, so

deg(Nm(p + qY )) = deg(pq) = dim(F [WF ]/⟨p + qY ⟩).

Thus if ⟨X − x ,Y − y⟩ = ⟨p + qY ⟩, then

F [WF ]/⟨p + qY ⟩ = F [X ,Y ]/⟨W (X ,Y ),X − x ,Y − y⟩ ∼= F ,

which contradicts dim(F [WF ]/⟨p + qY ⟩) ̸= 1.
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Torsion subgroup: theorem

Theorem (in Torsion.lean)

If F is a field where n ̸= 0, then EF (F )[n] ∼= (Z/nZ)2.

Some standard proofs:

identification with (C/Λ)[n]
induced map of isogenies on Pic0(EF )

existence of polynomials ψn, ϕn, ωn ∈ F [X ,Y ] such that

[n](x , y) =

(
ϕn(x)

ψn(x)2
,
ωn(x , y)

ψn(x , y)3

)
and a proof that deg(ψ2

n) = n2 − 1
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Torsion subgroup: formalisation

The latter proof turned out to be incredibly tricky.

The identity holds in the universal ring Z[Ai ,X ,Y ]/⟨W ⟩, so
needs a specialisation map or projective coordinates

The definition of ψn is strong even-odd recursive with five base
cases and an awkward even case, so proofs are very lengthy

The definition of ωn is very elusive, and seemingly involves
division by two in characteristic two

The polynomials ϕn and ψ2
n are bivariate, so needs a conversion

to univariate polynomials for degree computations

The identity cannot be proven directly via induction, and needs
elliptic divisibility sequences and elliptic nets

These have been formalised in Projective.lean, Jacobian.lean,
DivisionPolynomial/*.lean, and Universal.lean. These also
use lemmas in Algebra/Polynomial/Bivariate.lean and
NumberTheory/EllipticDivisibilitySequence.lean
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Progress: current

Already in master:

Weierstrass curves and variable changes of standard quantities

elliptic curves with prescribed j-invariant

affine group law and functoriality of base change

Jacobian group law and equivalence with affine group law

division polynomials and degree computations

Already in branches:

Galois theory on points and n-torsion points

projective group law and equivalence with affine group law

the coordinate ring and other universal constructions

elliptic divisibility sequences and elliptic nets

multiplication by n in terms of division polynomials

structure of the n-torsion subgroup and the Tate module

the affine scheme associated to an elliptic curve
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Progress: future

Projects without algebraic geometry:

algorithms that only use the group law

finite fields: the Hasse–Weil bound, the Weil conjectures

local fields: the reduction homomorphism, Tate’s algorithm, the
Neron–Ogg–Shafarevich criterion, the Hasse–Weil L-function

number fields: Neron-Tate heights, the Mordell–Weil theorem,
Tate–Shafarevich groups, the Birch–Swinnerton-Dyer conjecture

complete fields: complex uniformisation, p-adic uniformisation

Projects with algebraic geometry:

elliptic curves over global function fields

the projective scheme associated to an elliptic curve

integral models and finite flat group schemes

divisors on curves and the Riemann–Roch theorem

modular curves and Mazur’s theorem
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