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Formalising mathematics

The process of formalising mathematics is interesting for many reasons.

One important reason is to ensure that a mathematical argument is
sound and complete, as the standard literature may sometimes be hazy.

Throughout my PhD, I have been formalising the algebraic foundations
of elliptic curves in the Lean 4 theorem prover as a side project.

In the process, we accidentally discovered a novel purely algebraic proof
of the group law on the points of an elliptic curve over a field.

Two years ago, I was stuck trying to formalise a result on division points
simply because the standard literature turned out to be incomplete.

Since this is a joint session, there will be no Lean in this talk!
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Elliptic divisibility sequences

Let W := {Wn}n∈Z be a sequence of elements in a commutative ring R.

Then W is

▶ a divisibility sequence if for all m, n ∈ Z,

m | n =⇒ Wm | Wn,

▶ an elliptic sequence if for all p, q, r ∈ Z,

Wp+qWp−qW
2
r +Wq+rWq−rW

2
p +Wr+pWr−pW

2
q = 0,

▶ an elliptic divisibility sequence (EDS) if it is simply a divisibility
sequence that is elliptic.

EDSs were first introduced by Morgan Ward (1948), where he studied
their arithmetic properties in relation to elliptic curves.
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Examples in nature

There are many examples of EDSs in nature with integer values.

Examples

▶ The constant sequence Wn = 0 for all n ∈ Z is an EDS.

▶ The identity sequence Wn = n for all n ∈ Z is an EDS.

▶ If W is an EDS, then {cWn}n∈Z is an EDS for any c ∈ Z.
▶ The subsequence of even terms of the Fibonacci sequence is an EDS:

1, 3, 8, 21, 55, 144, 377, 987, 2584, 6765, 17711, 46368, 121393, . . . .

▶ Certain subsequences of Lucas sequences L := {Ln}n∈Z given by
L1 = 1, L2 = ℓ, and Ln+2 = ℓ · Ln+1 − Ln for all n > 2 are EDSs.

▶ Certain generalised Somos-4 sequences a := {an}n∈Z given by
anan−4 = an−1an−3 + a2n−2 are EDSs. For instance, the generalised
Somos-4 sequence with (a1, a2, a3, a4) = (1, 1,−1, 2) is an EDS:

0, 1, 1,−1, 2, 3, 1,−11,−16, 35,−129,−299,−386, 3977, 8063, . . . .
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Division polynomials

Perhaps the most important example of an EDS is the sequence arising
from division points on an elliptic curve E over a field F .

Exercise (The Arithmetic of Elliptic Curves, 3.7(d))
Prove that for any point (x : y : 1) on E we have for all n ∈ Z,

[n](x : y : 1) = (ϕE ,n(x , y)ψE ,n(x , y) : ωE ,n(x , y) : ψE ,n(x , y)
3).

Here, ϕE ,n, ωE ,n ∈ F [X ,Y ] are defined in terms of division polynomials
ψE ,n ∈ F [X ,Y ]. Then the sequence ψE := {ψE ,n}n∈Z is an EDS.

This is one path to formalising the isomorphism of Galois representations

TpEF
∼=

{
Z2
p char(F ) ̸= p

0 or Zp char(F ) = p
,

which is useful for Buzzard’s formalisation of Fermat’s last theorem.
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Special cases

EDSs can be generated easily by inspecting special cases of (p, q, r) ∈ Z3.

Let p, q ∈ Z be arbitrary, and let r = 0. Then

Wp+qWp−qW
2
0 +WqWqW

2
p +WpW−pW

2
q = 0.

Since W0 ∤ Wn for any n ∈ Z, it is sensible to set W0 = 0. This forces
WpW−pW

2
q = −W 2

pW
2
q , so it is sensible to set W−p = −Wp.

If two of p, q, r > 0 are the same, say q = r , then

Wp+qWp−qW
2
q +W2qW0W

2
p +Wq+pWq−pW

2
q = 0.

This is trivial, so assume that p > q > r > 1.

▶ If (p, q, r) = (3, 2, 1), then W5W
3
1 +W 3

3W1 −W4W
3
2 = 0.

▶ If (p, q, r) = (4, 2, 1), then W6W2W
2
1 +W3W1W

2
4 −W5W3W

2
2 = 0.

It turns out that all non-trivial relations can be generated this way.
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Recursive cases

If (p, q, r) = (n + 1, n, 1) for some n > 0, then

W2n+1W
3
1 +W 3

n+1Wn−1 −Wn+2W
3
n = 0.

If W1 is not a zero divisor, then this gives a non-trivial relation

W2n+1 =
Wn+2W

3
n −W 3

n+1Wn−1

W 3
1

for all n > 1.

If (p, q, r) = (n + 1, n − 1, 1) for some n > 0, then

W2nW2W
2
1 +WnWn−2W

2
n+1 −Wn+2WnW

2
n−1 = 0.

If W1 and W2 are not zero divisors, then this gives a non-trivial relation

W2n =
Wn+2WnW

2
n−1 −WnWn−2W

2
n+1

W2W 2
1

for all n > 2.

Thus a sensible EDS is completely determined by its first four values.
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The canonical EDS

Let a, b, c , d ∈ R such that a and b are not zero divisors. The canonical
EDS defined by (a, b, c , d) is the sequence C := {Cn}n∈Z given by

C0 := 0,

C1 := a,

C2 := ab,

C3 := ac ,

C4 := abd ,

C−n := −Cn for all n < 0,

C2n+1 :=
Cn+2C

3
n − C 3

n+1Cn−1

C 3
1

for all n > 1,

C2n :=
Cn+2CnC

2
n−1 − CnCn−2C

2
n+1

C2C 2
1

for all n > 2.

Now ψE is simply defined as C , with parameters a, b, c , d given in terms
of the coefficients of E , but the fact that C is an EDS is not obvious!
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An infamous exercise

Exercise (The Arithmetic of Elliptic Curves, 3.34(a))
Prove that a sequence W := {Wn}n∈Z of elements of a field with
W1W2W3 ̸= 0 is an EDS if and only if it satisfies the two conditions

W2n+1W
3
1 = Wn+2W

3
n −W 3

n+1Wn−1 for all n > 1,

W2nW2W
2
1 = Wn+2WnW

2
n−1 −WnWn−2W

2
n+1 for all n > 2.

In the literature, every complete argument I could find only proves this for
W = ψE using complex analysis, but this is not covered until Chapter 6!

An interesting conversation in Math Stack Exchange (paraphrased):

▶ Question (2013): how can this be done without elliptic functions?

▶ Answer (2013): you can use the addition formulae and some algebra

▶ Comment (2020): has anyone actually done the algebraic approach?

▶ Reply (2020): I expect the answer is yes but I do not know who
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Elliptic nets

It turns out that you cannot solve Exercise 3.34(a) with direct induction:
the inductive hypothesis is too weak to establish the inductive step.

Instead, it turns out that a canonical EDS C also satisfies the stronger
relation of an elliptic net, that for all p, q, r , s ∈ Z,

EN(p, q, r , s) : Cp+qCp−qCr+sCr−s = Cp+rCp−rCq+sCq−s

− Cq+rCq−rCp+sCp−s .

Elliptic nets were first introduced and studied by Katherine Stange
(2008), which generalise elliptic sequences by setting s = 0.

Xu gave an elegant proof of this in Math Stack Exchange.

Theorem (Xu, 2024)
A canonical EDS is an elliptic net, and hence an elliptic sequence.

I will now briefly describe his inductive argument on four variables.
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Xu’s argument

By C−n = −Cn, it suffices to prove EN(p, q, r , s) by strong induction on
p assuming that p, q, r , s > 0. Firstly,

EN(p, q, 1, 0) = EN( p+q+1
2 , p+q−1

2 , p−q+1
2 , p−q−1

2 ).

If p = q + 1, then EN(q + 1, q, 1, 0) holds by definition of C2q+1.
Otherwise p > q + 1, then inductive hypothesis applies since p+q+1

2 < p.
This gives EN(p, q, 1, 0) for all p, q > 1. Furthermore,

EN(p,q,r ,0)= C 2
r ·EN(p,q,1,0)− C 2

q ·EN(p,r ,1,0)+ C 2
p ·EN(q,r ,1,0),

EN(p,q,r ,1)= Cr+1Cr−1·EN(p,q,1,0)− Cq+1Cq−1·EN(p,r ,1,0)+ Cp+1Cp−1·EN(q,r ,1,0).

This gives EN(p, q, r , 0) and EN(p, q, r , 1) for all p, q, r > 1. Finally,

EN(p,q,r ,s) = C 2
q ·EN(p,r ,s,1) + Cq+1Cq−1·EN(p,r ,s,0) + Cq+rCq−r ·EN(p,s,1,0)

− C 2
r ·EN(p,q,s,1) − Cr+1Cr−1·EN(p,q,s,0) − Cq+sCq−s ·EN(p,r ,1,0)

+ C 2
s ·EN(p,q,r ,1) + Cs+1Cs−1·EN(p,q,r ,0) + Cr+sCr−s ·EN(p,q,1,0)

− 2C 2
p ·EN(q,r ,s,1) .

This gives EN(p, q, r , s) for all p, q, r , s > 1.
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Final remarks

Note that the complete argument also needs the case when p, q, r , s are
all half-integers, so that EN( p+q+1

2 , p+q−1
2 , p−q+1

2 , p−q−1
2 ) is well-defined

when p and q have the same parity, and this uses the definition of C2q.

Xu’s result also allows for the construction of an explicit complement
sequence C c := {C c

m,n}m,n∈Z such that for all m, n ∈ Z,

Cm · C c
m,n = Cmn,

which proves that C is a divisibility sequence, and hence an EDS.

Finally, the fact that ωE is a sequence of polynomials turned out to be
highly non-trivial! Xu showed this by establishing the invariant

IW (n) :=
W 2

n−1Wn+2 +Wn−2W
2
n+1 +W 2

2W
3
n

Wn+1WnWn−1
, n ∈ Z,

for any EDS W , which holds for C and in particular for ψE .
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