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1 Brauer groups of fields

Recall that the Brauer group Br(K) of a field K can be defined in two ways.

� The classical Brauer group is the set of equivalence classes of central simple algebras over K.

� The cohomological Brauer group is the second Galois cohomology group H2(K,Gm).

By Galois descent, these central simple algebras are classified by certain cocycles with projective linear
coefficients, so the two Brauer groups are isomorphic, by the long exact sequence in Galois cohomology and
Speiser’s theorem. Both interpretations turn out to be useful for computing different examples.

1.1 The classical Brauer group

There are many fields with trivial Brauer groups, which are amenable to prove with the classical definition.

Proposition. Let K be a finite field. Then Br(K) = 0.

Proof. It suffices to show that a central division algebra over K is K itself. A central division algebra over
K is finite, but a finite division algebra is a field and the only field with centre K is K.

This also follows from the non-trivial fact that finite fields have cohomological dimension one.

Proposition. Let K be an algebraically closed field. Then Br(K) = 0.

Proof. It suffices to show that a central division algebra over K is K itself. The algebra generated by K and
any element of a central simple algebra is a finite-dimensional vector space over K and an integral domain,
so it is a finite field extension of K, but K does not have any finite field extensions.

This follows from the fact that Gal(Ks/K) is trivial, and the same statement also holds for separably
closed fields, 1 as well as fields of transcendence degree one over an algebraically closed field.

Theorem (Tsen). Let X be a curve over an algebraically closed field K. Then Br(K(X)) = 0.

Proof. Poo17 Theorem 1.5.33.

In fact, the statement also holds for a wider class of fields called quasi-algebraically closed fields. 2

This is a field K where any homogeneous form of degree d in greater than d variables with coefficients in K
has a non-trivial zero in K. For instance, finite fields are quasi-algebraically closed by the Chevalley–Warning
theorem, 3 as well as actual algebraically closed fields by definition, but other examples include function fields
of curves over an algebraically closed field 4 and maximal unramified extensions of non-archimedean local
fields, 5 while local and global fields are not quasi-algebraically closed in general.

1CTS21 Theorem 1.2.6
2CTS21 Theorem 1.2.10
3CTS21 Theorem 1.2.11
4CTS21 Theorem 1.2.12
5CTS21 Corollary 1.2.14
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1.2 The cohomological Brauer group

The fields with non-trivial Brauer groups are more easily computed with cohomological techniques.

Proposition. Br(R) ∼= 1
2Z/Z.

Proof. This is the first cohomology of the cyclic group G = Gal(C/R) with coefficients in C×, so

Br(R) = H2(G,C×) = (C×)G/NmC/R(C×) = R×/R+ ∼= {±}.

Thus the only non-trivial real central simple algebra is Hamilton’s quaternions H, 6 which is also Frobe-
nius’s theorem. On the other hand, Hasse gave a description for the Brauer groups of the other local fields.

Theorem (Hasse). Let K be a non-archimedean local field. Then there is an isomorphism

invK : Br(K)
∼−→ Q/Z.

Proof. CTS21 Corollary 3.6.3.

The construction of this local invariant map is essential in the cohomological formulation of local class
field theory, while global class field theory is essentially a computation of the Brauer group of a global field.

Theorem (Albert–Brauer–Hasse–Noether). Let K be a global field. Then there is a short exact sequence

0 → Br(K) →
⊕
v

Br(Kv)
∑

v invKv−−−−−−→ Q/Z → 0,

where the direct sum ranges over all places of K.

Proof. CTS21 Theorem 12.1.8.

Here the map Br(K) → Br(Kv) is induced covariant functorially from the natural inclusion K ↪→ Kv, so
the main content is its injectivity. This reduces to the vanishing of the first Galois cohomology of the idéle
class group associated to an algebraic number field, and to the vanishing of the first Galois cohomology of
the Jacobian of the curve over a finite field associated to a global function field.

2 Brauer groups of schemes

Recall that the Brauer group of a field generalises to that of a scheme X in two ways.

� The Brauer–Azumaya group is the set of equivalence classes of Azumaya algebras over X.

� The Brauer–Grothendieck group is the second étale cohomology group H2
ét(X,Gm).

The Galois descent argument generalises to an argument in fpqc descent for Čech cohomology, but in general
the Brauer–Azumaya group merely injects into the Brauer–Grothendieck group. 7

� If X has finitely many connected components, then the Brauer–Azumaya group is torsion. 8

� If X is quasi-compact and separated with an ample invertible sheaf, so has finitely many connected
components, then Gabber proved that this injection has image precisely the torsion subgroup. 9

� If X is integral and geometrically locally factorial, then the Brauer–Grothendieck group is torsion. 10

For instance, X can be quasi-projective over an affine scheme. The former interpretation is great for con-
structing explicit elements in the Brauer group via quaternion algebras, while the latter interpretation allows
for the machinery of spectral sequences to compute the structure of the Brauer group abstractly, but both
involve reducing the computation to the Brauer group Br(K) = Br(Spec(K)) of some field K.

6CTS21 Theorem 1.2.3
7CTS21 Theorem 3.3.1(iii)
8Poo17 Theorem 6.6.17(ii)
9CTS21 Theorem 3.3.2

10CTS21 Theorem 3.5.2
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2.1 The Brauer–Azumaya group

If X is integral, its generic point is the spectrum of its function field K(X), so the natural inclusion
Spec(K(X)) ↪→ X induces a contravariant functorial map Br(X) → Br(K(X)). If X is also geometri-
cally locally factorial, then this map is also injective, 11 and its image can be characterised by certain residue
homomorphisms under further smoothness conditions, as a consequence of Gabber’s absolute purity theorem.

Theorem (Purity). Let X be a regular proper variety over a field K of char(K) = 0. Then there is an exact
sequence

0 → Br(X) → Br(K(X))
⊕

D resD−−−−−−→
⊕
D

H1(κ(D),Q/Z),

where the direct sum ranges over all prime divisors D of X, and κ(D) is the residue field at D.

Proof. CTS21 Corollary 3.7.3.

For the purposes of an example, it suffices to define the residue homomorphisms resD : Br(K(X)) →
H1(κ(D),Q/Z) at D for degree two central simple algebras called quaternion algebras. More explicitly,
over a field K of char(K) ̸= 2, this is a four-dimensional associative K-algebra QK(a, b) with basis 1, i,
j, and ij such that i2 = a, j2 = b, and ij = −ij for some a, b ∈ K×. The typical example is the usual
quaternions H, which would be QR(−1,−1) under this notation. Before defining its residues, it is worth
remarking that any QK(a, b) is associated to a unique projective plane conic ax2+by2 = z2 over K. Its class
in Br(K) is trivial precisely when this conic has a K-rational point, and hence the triviality of the Hilbert
symbol (a, b)K , in which case QK(a, b) is said to be split. 12 Now since the class of QK(a, b) is 2-torsion in
Br(K), its residue at D lies in H1(κ(D), 1

2Z/Z) ∼= κ(D)×/κ(D)×2, by Hilbert’s theorem 90. In fact, 13

resD(QK(a, b)) =

[
(−1)νD(a)νD(b) b

νD(a)

aνD(b)

]
,

where νD : K(X)× → Z is a valuation associated to D. If the residue of QK(a, b) is trivial at all prime
divisors of X, it is said to be unramified, and hence arises from some Azumaya algebra in Br(X) by purity.

Example (Reichardt–Lind). Let X be the projective closure of the smooth affine curve

ay2 = x4 + b, a, b ∈ K×,

where K is a field of char(K) ̸= 2. Then QK(y, b) is unramified.

Proof. Let νD : K(X)× → Z be a valuation associated to a prime divisor D of X, so that

resD(QK(y, b)) =

[
(−1)νD(y)νD(b) b

νD(y)

yνD(b)

]
= [bνD(y)].

If b is a quadratic residue in κ(D)×, then resD(QK(y, b)) is trivial. Otherwise observe that

2νD(y) = νD(y2) = νD(ay2) = νD(x4 − b).

If νD(x) < 0, then νD(x4 − b) = νD(x4) = 4νD(x), so νD(y) = 2νD(x) is even, and hence resD(QK(y, b))
is trivial. Otherwise νD(x) ≥ 0, so νD(x4 − b) ≥ 0. If νD(x4 − b) > 0, then x4 = b in κ(D)×, which is a
contradiction to b being a quadratic non-residue in κ(D)×. Otherwise νD(x4 − b) = 0, so νD(y) = 0, and
hence resD(QK(y, b)) is also trivial. Thus resD(QK(y, b)) is always trivial.

In fact, QQ(y,−17) is a Brauer–Manin obstruction to the Hasse principle for the curve 2y2 = x4−17, which
in turn represents a non-trivial element of the Tate–Shafarevich group of the elliptic curve y2 = x3 + 17x.

11CTS21 Theorem 3.5.4
12CTS21 Proposition 1.1.7
13CTS21 Formula 1.16
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2.2 The Brauer–Grothendieck group

The purity theorem is typically proven via the cohomological machinery known as spectral sequences.
Informally, this is a sequence of bigraded groups {Ep,q

r }p,q∈N indexed by r ∈ N satisfying certain homological
compatibility conditions, with a notion of convergence to a groupGn indexed by n ∈ N denoted Ep,q

r =⇒ Gn.
For the purposes of an example, it suffices to know that Ep,q

2 =⇒ Gp+q implies the exactness of the sequence

0 → E1,0
2 → G1 → E0,1

2 → E2,0
2 → ker(G2 → E0,2

2 ) → E1,1
2 → E3,0

2 .

This fact is then applied to a special case of the Grothendieck spectral sequence for étale sites.

Theorem (Leray). Let X be a variety over a field K. Then there is a spectral sequence

Hp(K,Hq
ét(X

s,Gm)) =⇒ Hp+q
ét (X,Gm),

where Xs is the base change of X to a separable closure of K.

Proof. CTS21 Formula 4.7.

Now by construction, H0
ét(X,Gm) is simply the group of invertible global sections O(X)× of X, while

H1
ét(X,Gm) can be shown to be isomorphic to the Picard group Pic(X) of equivalence classes of invertible

sheaves on X. 14 Thus the Leray spectral sequence induces an exact sequence ending with

· · · → H2(K,O(Xs)×) → ker(Br(X)
ϕ−→ Br(Xs)) → H1(K,Pic(Xs)) → H3(K,O(Xs)×).

Here the natural map ϕ : Br(X) → Br(Xs) is induced contravariant functorially from the natural projection
Xs → X, and its kernel is called the algebraic Brauer group, often denoted by Br1(X).

Example. Let X be the affine line A1
K or the projective line P1

K over a perfect field K. Then

Br(X) ∼= Br(K).

Proof. The regular functions on P1
Ks are the constants, while the regular functions on A1

Ks are the polyno-
mials in one variable, but in both cases the invertible ones are both the non-zero constants, so

H2(K,O(Xs)×) = H2(K,Gm) = Br(K).

Since Xs is integral and geometrically locally factorial, Br(Xs) injects into Br(Ks(X)), which is trivial by
Tsen’s theorem, since Ks is algebraically closed by perfectness, so Br1(X) = Br(X) and the sequence

Br(K)
ϕ−→ Br(X) → H1(K,Pic(Xs))

is exact. Now the existence of a K-point in X induces a map Spec(K) → X and hence a contravariant
functorial map Br(X) → Br(K), which is a retraction to ϕ by construction, so ϕ is injective. Finally, there
are no invertible sheaves on A1

Ks since its regular functions form a principal ideal domain, while the invertible
sheaves on P1

Ks are indexed by Z via the degree function, but in both cases

H1(K,Pic(Xs)) = Hom(Gal(Ks/K),Pic(Xs)) = 0,

so ϕ is also surjective.

In fact, by refining the same argument with a generalisation of Tsen’s theorem, it can be shown that
Br(Pn

K) ∼= Br(K) for any field K, 15 but Br(An
K) ∼= Br(K) only holds for fields K of char(K) = 0. 16
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