

Formalising division polynomials in Lean

Lean 形式化数学学习强化和实践交流研讨会

David Ang (洪鼎赐)

University of East Anglia

Monday, 26 January 2026

The weak Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over a number field K .

Conjecture (weak Birch and Swinnerton-Dyer)

The rank of E is the order of vanishing of its L -function $L(E, s)$ at $s = 1$.

Here, the L -function of E is given by

$$L(E, s) := \prod_p \frac{1}{L_p(E, s)},$$

where p runs over all primes of K , and the Euler factor $L_p(E, s)$ is defined in terms of the ℓ -adic Galois representation $\rho_{E, \ell}$ for any prime ℓ with $p \nmid \ell$. This is the action of the absolute Galois group of K_p on the ℓ -adic Tate module $T_\ell E$, which is the inverse limit of ℓ^n -torsion subgroups

$$E(\overline{K_p})[\ell^n] := \{P \in E(\overline{K_p}) : [\ell^n](P) = 0\},$$

with respect to the multiplication-by- ℓ maps $[\ell] : E(\overline{K_p}) \rightarrow E(\overline{K_p})$.

The n -torsion subgroup and the ℓ -adic Tate module

Let E be an elliptic curve over a perfect field F .

Theorem (main)

$\#E(\overline{F})[n] = n^2$ for any $n \in \mathbb{N}$ with $\text{char}(F) \nmid n$.

If G is an abelian group such that $\#G[n] = n^d$ for all $n \in \mathbb{N}$, then $G[n] \cong (\mathbb{Z}/n)^d$ by the structure theorem of finite abelian groups. In particular, $E(\overline{F})[n] \cong (\mathbb{Z}/n)^2$ for any $n \in \mathbb{N}$ with $\text{char}(F) \nmid n$, so

$$\begin{array}{ccc} T_\ell E &:=& \varprojlim \left(\dots \xrightarrow{[\ell]} E(\overline{F})[\ell^3] \xrightarrow{[\ell]} E(\overline{F})[\ell^2] \xrightarrow{[\ell]} E(\overline{F})[\ell] \right) \\ \downarrow \sim & & \downarrow \sim \\ \mathbb{Z}_\ell^2 &:=& \varprojlim \left(\dots \xrightarrow{\text{mod } \ell^3} (\mathbb{Z}/\ell^3)^2 \xrightarrow{\text{mod } \ell^2} (\mathbb{Z}/\ell^2)^2 \xrightarrow{\text{mod } \ell} (\mathbb{Z}/\ell)^2 \right). \end{array}$$

吴培然 formalised the reduction of $\rho_{E,\ell}$ to the main theorem.

An infamous exercise

The Arithmetic of Elliptic Curves by Silverman gives several approaches to the main theorem (see Theorem III.6.4(b) and Theorem VI.6.1(a)).

Exercise (3.7(d))

Let $n \in \mathbb{Z}$. Prove that for any point $(x, y) \in E(F)$,

$$[n]((x, y)) = \left(\frac{\phi_n(x, y)}{\psi_n(x, y)^2}, \frac{\omega_n(x, y)}{\psi_n(x, y)^3} \right).$$

Silverman gives definitions for $\phi_n, \omega_n \in F[X, Y]$ in terms of certain *division polynomials* $\psi_n \in F[X, Y]$, which feature in Schoof's algorithm.

Conjecture (洪)

No one has done Exercise 3.7 purely algebraically.

许俊彦 formalised a complete solution to Exercise 3.7(d).

The polynomials ψ_n

The n -th **division polynomial** $\psi_n \in R[X, Y]$ is given by

$$\psi_0 := 0,$$

$$\psi_1 := 1,$$

$$\psi_2 := 2Y + a_1X + a_3,$$

$$\psi_3 := \bigcirc$$

$$\text{where } \bigcirc := 3X^4 + b_2X^3 + 3b_4X^2 + 3b_6X + b_8,$$

$$\psi_4 := \psi_2 \triangle$$

$$\text{where } \triangle := 2X^6 + b_2X^5 + 5b_4X^4 + 10b_6X^3 + 10b_8X^2 + (b_2b_8 - b_4b_6)X + (b_4b_8 - b_6^2),$$

$$\psi_{2n+1} := \psi_{n+2}\psi_n^3 - \psi_{n-1}\psi_{n+1}^3,$$

$$\psi_{2n} := \frac{\psi_{n-1}^2\psi_n\psi_{n+2} - \psi_{n-2}\psi_n\psi_{n+1}^2}{\psi_2},$$

$$\psi_{-n} := -\psi_n.$$

In `mathlib`, ψ_n is defined in terms of $\Psi_n \in R[X]$.

The polynomials Ψ_n

The polynomial $\Psi_n \in R[X]$ is given by

$$\Psi_0 := 0,$$

$$\Psi_1 := 1,$$

$$\Psi_2 := 1,$$

$$\Psi_3 := \bigcirc,$$

$$\Psi_4 := \triangle,$$

$$\Psi_{2n+1} := \begin{cases} \Psi_{n+2}\Psi_n^3 - \square^2\Psi_{n-1}\Psi_{n+1}^3 & \text{if } n \text{ is odd,} \\ \square^2\Psi_{n+2}\Psi_n^3 - \Psi_{n-1}\Psi_{n+1}^3 & \text{if } n \text{ is even,} \end{cases}$$

$$\text{where } \square := 4X^3 + b_2X^2 + 2b_4X + b_6,$$

$$\Psi_{2n} := \Psi_{n-1}^2\Psi_n\Psi_{n+2} - \Psi_{n-2}\Psi_n\Psi_{n+1}^2,$$

$$\Psi_{-n} := -\Psi_n.$$

Then $\psi_n = \Psi_n$ when n is odd and $\psi_n = \psi_2\Psi_n$ when n is even.

The polynomials ϕ_n and Φ_n

Modulo the Weierstrass equation $E(X, Y)$ defining E ,

$$\begin{aligned}\psi_2^2 &= (2Y + a_1X + a_3)^2 \\ &= 4(Y^2 + a_1XY + a_3Y) + a_1^2X^2 + 2a_1a_3X + a_3^2 \\ &\equiv \underbrace{4X^3 + b_2X^2 + 2b_4X + b_6}_{\square} \pmod{E(X, Y)}.\end{aligned}$$

In particular, ψ_n^2 and $\psi_{n+1}\psi_{n-1}$ are congruent to polynomials in $R[X]$.

The polynomial $\phi_n \in R[X, Y]$ is given by

$$\phi_n := X\psi_n^2 - \psi_{n+1}\psi_{n-1},$$

so that $\phi_n \equiv \Phi_n \pmod{E(X, Y)}$, where $\Phi_n \in R[X]$ is given by

$$\Phi_n := \begin{cases} X\psi_n^2 - \square\psi_{n+1}\psi_{n-1} & \text{if } n \text{ is odd,} \\ X\square\psi_n^2 - \psi_{n+1}\psi_{n-1} & \text{if } n \text{ is even.} \end{cases}$$

The polynomials ω_n

The polynomial $\omega_n \in R[X, Y]$ is given by

$$\omega_n := \frac{1}{2} \left(\frac{\psi_{2n}}{\psi_n} - a_1 \phi_n \psi_n - a_3 \psi_n^3 \right).$$

Lemma (许)

Let $n \in \mathbb{Z}$. Then $\psi_{2n}/\psi_n - a_1 \phi_n \psi_n - a_3 \psi_n^3$ is divisible by 2 in $\mathbb{Z}[a_i, X, Y]$.

Example ($a_1 = a_3 = 0$)

$$\omega_2 = \frac{\Psi_4}{2} = \frac{2X^6 + 4a_2X^5 + 10a_4X^4 + 40a_6X^3 + 10b_8X^2 + (4a_2b_8 - 8a_4a_6)X + (2a_4b_8 - 16a_6^2)}{2}.$$

Define ω_n as the image of the quotient under $\mathbb{Z}[a_i, X, Y] \rightarrow R[X, Y]$.

When $n = 4$, this quotient has 15,049 terms.

Elliptic divisibility sequences and elliptic nets

Integrality relies on the fact that ψ_n is an **elliptic divisibility sequence**.

Exercise (3.7(g))

For all $n, m, r \in \mathbb{Z}$, prove that $\psi_n \mid \psi_{nm}$ and

$$\psi_{n+m}\psi_{n-m}\psi_r^2 = \psi_{n+r}\psi_{n-r}\psi_m^2 - \psi_{m+r}\psi_{m-r}\psi_n^2.$$

Note that this generalises the recursive definitions of ψ_{2n+1} and ψ_{2n} .

Surprisingly, this needs the stronger result that ψ_n is an **elliptic net**.

Theorem (许)

Let $n, m, r, s \in \mathbb{Z}$. Then

$$\psi_{n+m}\psi_{n-m}\psi_{r+s}\psi_{r-s} = \psi_{n+r}\psi_{n-r}\psi_{m+s}\psi_{m-s} - \psi_{m+r}\psi_{m-r}\psi_{n+s}\psi_{n-s}.$$

Elliptic divisibility sequences were first introduced by Morgan Ward (1948) and generalised to elliptic nets by Katherine Stange (2008).

Other formalised results

The polynomial $\Psi_n^{(2)} \in R[X]$ is given by

$$\Psi_n^{(2)} := \begin{cases} \Psi_n^2 & \text{if } n \text{ is odd,} \\ \square \Psi_n^2 & \text{if } n \text{ is even,} \end{cases}$$

so that $\Psi_2^{(2)} = \square$ and $\Psi_n^{(2)} \equiv \psi_n^2 \pmod{E(X, Y)}$.

Exercise (3.7(b))

Show that $\Phi_n = X^{n^2} + \dots$ and $\Psi_n^{(2)} = n^2 X^{n^2-1} + \dots$

This is an inductive computation of `natDegree` and `leadingCoeff`.

Exercise (3.7(c))

Prove that Φ_n and $\Psi_n^{(2)}$ are relatively prime.

Surprisingly, this needs Exercise 3.7(d) and the assumption that $\Delta \neq 0$.

A blueprint for the ℓ -adic Tate module

