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The weak Birch and Swinnerton-Dyer conjecture

Let E be an elliptic curve over a number field K .

Conjecture (weak Birch and Swinnerton-Dyer)
The rank of E is the order of vanishing of its L-function L(E , s) at s = 1.

Here, the L-function of E is given by

L(E , s) :=
∏
p

1

Lp(E , s)
,

where p runs over all primes of K , and the Euler factor Lp(E , s) is defined
in terms of the ℓ-adic Galois representation ρE ,ℓ for any prime ℓ with
p ∤ ℓ. This is the action of the absolute Galois group of Kp on the ℓ-adic
Tate module TℓE , which is the inverse limit of ℓn-torsion subgroups

E (Kp)[ℓ
n] := {P ∈ E (Kp) : [ℓ

n](P) = 0},

with respect to the multiplication-by-ℓ maps [ℓ] : E (Kp)→ E (Kp).
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The n-torsion subgroup and the ℓ-adic Tate module

Let E be an elliptic curve over a perfect field F .

Theorem (main)
#E (F )[n] = n2 for any n ∈ N with char(F ) ∤ n.

If G is an abelian group such that #G [n] = nd for all n ∈ N, then
G [n] ∼= (Z/n)d by the structure theorem of finite abelian groups. In
particular, E (F )[n] ∼= (Z/n)2 for any n ∈ N with char(F ) ∤ n, so

TℓE := lim←−
(
. . . E (F )[ℓ3] E (F )[ℓ2] E (F )[ℓ]

)

Z2
ℓ := lim←−

(
. . . (Z/ℓ3)2 (Z/ℓ2)2 (Z/ℓ)2

)
.

∼

[ℓ] [ℓ]

∼

[ℓ]

∼ ∼

mod ℓ3 mod ℓ2 mod ℓ

吴培然 formalised the reduction of ρE ,ℓ to the main theorem.
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An infamous exercise

The Arithmetic of Elliptic Curves by Silverman gives several approaches
to the main theorem (see Theorem III.6.4(b) and Theorem VI.6.1(a)).

Exercise (3.7(d))
Let n ∈ Z. Prove that for any point (x , y) ∈ E (F ),

[n]((x , y)) =

(
ϕn(x , y)

ψn(x , y)2
,
ωn(x , y)

ψn(x , y)3

)
.

Silverman gives definitions for ϕn, ωn ∈ F [X ,Y ] in terms of certain
division polynomials ψn ∈ F [X ,Y ], which feature in Schoof’s algorithm.

Conjecture (洪)
No one has done Exercise 3.7 purely algebraically.

许俊彦 formalised a complete solution to Exercise 3.7(d).
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The polynomials ψn

The n-th division polynomial ψn ∈ R[X ,Y ] is given by

ψ0 := 0,

ψ1 := 1,

ψ2 := 2Y + a1X + a3,

ψ3 :=⃝
where ⃝ := 3X 4 + b2X

3 + 3b4X
2 + 3b6X + b8,

ψ4 := ψ2△
where △ := 2X6+b2X

5+5b4X
4+10b6X

3+10b8X
2+(b2b8−b4b6)X+(b4b8−b26),

ψ2n+1 := ψn+2ψ
3
n − ψn−1ψ

3
n+1,

ψ2n :=
ψ2
n−1ψnψn+2 − ψn−2ψnψ

2
n+1

ψ2
,

ψ−n := −ψn.

In mathlib, ψn is defined in terms of Ψn ∈ R[X ].
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The polynomials Ψn

The polynomial Ψn ∈ R[X ] is given by

Ψ0 := 0,

Ψ1 := 1,

Ψ2 := 1,

Ψ3 :=⃝,
Ψ4 := △,

Ψ2n+1 :=

{
Ψn+2Ψ

3
n −□2Ψn−1Ψ

3
n+1 if n is odd,

□2Ψn+2Ψ
3
n −Ψn−1Ψ

3
n+1 if n is even,

where □ := 4X 3 + b2X
2 + 2b4X + b6,

Ψ2n := Ψ2
n−1ΨnΨn+2 −Ψn−2ΨnΨ

2
n+1,

Ψ−n := −Ψn.

Then ψn = Ψn when n is odd and ψn = ψ2Ψn when n is even.
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The polynomials ϕn and Φn

Modulo the Weierstrass equation E (X ,Y ) defining E ,

ψ2
2 = (2Y + a1X + a3)

2

= 4(Y 2 + a1XY + a3Y ) + a21X
2 + 2a1a3X + a23

≡ 4X 3 + b2X
2 + 2b4X + b6︸ ︷︷ ︸
□

mod E (X ,Y ).

In particular, ψ2
n and ψn+1ψn−1 are congruent to polynomials in R[X ].

The polynomial ϕn ∈ R[X ,Y ] is given by

ϕn := Xψ2
n − ψn+1ψn−1,

so that ϕn ≡ Φn mod E (X ,Y ), where Φn ∈ R[X ] is given by

Φn :=

{
XΨ2

n −□Ψn+1Ψn−1 if n is odd,

X□Ψ2
n −Ψn+1Ψn−1 if n is even.
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The polynomials ωn

The polynomial ωn ∈ R[X ,Y ] is given by

ωn :=
1

2

(
ψ2n

ψn
− a1ϕnψn − a3ψ

3
n

)
.

Lemma (许)
Let n ∈ Z. Then ψ2n/ψn − a1ϕnψn − a3ψ

3
n is divisible by 2 in Z[ai ,X ,Y ].

Example (a1 = a3 = 0)

ω2 =
Ψ4

2
=

2X 6+4a2X
5+10a4X

4+40a6X
3+10b8X

2+(4a2b8−8a4a6)X+(2a4b8−16a26)

2
.

Define ωn as the image of the quotient under Z[ai ,X ,Y ]→ R[X ,Y ].

When n = 4, this quotient has 15,049 terms.
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Elliptic divisibility sequences and elliptic nets

Integrality relies on the fact that ψn is an elliptic divisibility sequence.

Exercise (3.7(g))
For all n,m, r ∈ Z, prove that ψn | ψnm and

ψn+mψn−mψ
2
r = ψn+rψn−rψ

2
m − ψm+rψm−rψ

2
n.

Note that this generalises the recursive definitions of ψ2n+1 and ψ2n.

Surprisingly, this needs the stronger result that ψn is an elliptic net.

Theorem (许)
Let n,m, r , s ∈ Z. Then

ψn+mψn−mψr+sψr−s = ψn+rψn−rψm+sψm−s − ψm+rψm−rψn+sψn−s .

Elliptic divisibility sequences were first introduced by Morgan Ward
(1948) and generalised to elliptic nets by Katherine Stange (2008).
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Other formalised results

The polynomial Ψ
(2)
n ∈ R[X ] is given by

Ψ(2)
n :=

{
Ψ2

n if n is odd,

□Ψ2
n if n is even,

so that Ψ
(2)
2 = □ and Ψ

(2)
n ≡ ψ2

n mod E (X ,Y ).

Exercise (3.7(b))
Show that Φn = X n2 + . . . and Ψ

(2)
n = n2X n2−1 + . . . .

This is an inductive computation of natDegree and leadingCoeff.

Exercise (3.7(c))
Prove that Φn and Ψ

(2)
n are relatively prime.

Surprisingly, this needs Exercise 3.7(d) and the assumption that ∆ ̸= 0.
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A blueprint for the ℓ-adic Tate module

Def of ψn (3.7(a))

Def of ϕn (3.7(a))

deg(ϕn) = n2 (3.7(b))

Projective coordinates

Elliptic nets (3.7(g))Def of ωn (3.7(a))

[n]((x, y)) (3.7(d))

(ϕn, ψ
2
n) = 1 (3.7(c))

#E(F )[n] = n2 (3.7(e))

Finite abelian groupsE(F )[n] ∼= (Z/n)2

Inverse limitsTℓE ∼= Z2
ℓ

Assumption ∆ ̸= 0
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