Formalisation of elliptic curves in Lean

Young Researchers in Algebraic Number Theory

David Kurniadi Angdinata
London School of Geometry and Number Theory

Wednesday, 24 August 2022

1/13



The Lean theorem prover

THEOREM PROVER

A functional programming language...

and an interactive theorem prover!

2/13



Programming in Lean

Idea: set theory is replaced by Type Theory.

element € set = Term : Type

Can define inductive types.

inductive Nat
| zero : Nat
| succ : Nat — Nat

Can define functions recursively.

def add : Nat — Nat — Nat
| nzero:=n
| n (succ m) := succ (add n m)

3/13



Programming in Lean

How to prove Vn € N, 04+ n=n?

A theorem is a Type (of type Prop).

theorem zero_add : V (n : Nat), add zeron = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

begin
intro n,
induction n with m hm,
{ refl },
{ rw [add, hm] }
end

The keywords intro, induction, refl, and rw are tactics.

Play The Natural Number Game!

4/13



Lean’'s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

>
>
>
>
>
>
>
>
>
>
>

3k files, 1m lines, 40k definitions, 100k theorems, 270 contributors.

algebra
algebraic_geometry
algebraic_topology
analysis
category_theory
combinatorics
computability
dynamics
field_theory
geometry
group_theory

>
>
| 4
>
>
>
| 4
| 2
>
>
>

information_theory
linear_algebra
measure_theory
model_theory
number_theory

order

probability
representation_theory
ring_theory
set_theory

topology

5/13



Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢ )

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (L : subgroup G) ~* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (A _, rfl)

Why is this not trivial?

Canonical isomorphisms are important data!

6/13



Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic_geometry/EllipticCurve.

def A_aux {R: Type} [comm_ring R] (a; a» a3 a4 ag : R) : R :=

let
by := a; "2 + 4*ay,
bs := 2*a; + a;*az,
be 1= a3"2 + 4*ag,
bg := a;"2*ag + 4*ar*ag — ai;*az*as + ar*az3"2 — az"2

in

—by"2%bg — 8%bs "3 — 27*bg "2 + 9*by*bs*bg

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 as : R) (A : units R) (A_eq: 1A = A_aux a; a, a3 a4 ag)

Accurate for rings R with Pic(R)[12] = 0, such as PIDs!

Much can be done just with this definition.

7/13



Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can define zero.

instance : has_zero E(K) := (zero)

Can define negation.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3)
begin
w [« W],
ring
end

instance : has_neg E(K) := (neg)

8/13



Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can define addition.

def add : E(K) — E(K) — E(K)
| zero P :=P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) =
if x_ne : x; # xp then
let
L:=(y1—y2) / (21 — %2),
x3 := L"2 + E.a1*L — E.ap — x1 — X»,

y3 := —L*x3 — E.a;*x3 — y1 + L¥x; — E.a3
in
some x3 y3 ... —— 100 lines
else ... —— 100 lines

instance : has_add E(K) := (add)

9/13



Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can prove group axioms (except associativity, which is left as a sorry).

lemma zero_add (P : E(K)) : 0 +P =P :=...

lemma add_zero (P: E(K)) :P+0=P:= ...

lemma add_left_neg (P : E(K)): —P +P =0:

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q+R):=... —— 7?7 lines

Can also prove Galois-theoretic properties and structure of torsion points.

10/13



The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).
» Define the complete 2-descent homomorphism
E(K) — K*/(KX)? x K*/(K*)?
0o — (1,1)
(x,y) — (x—e,x—e)

> Prove its kernel is 2E(K).

» Prove its image lies in a Selmer group K(S,2).

> Prove 0 — O /(O%)" — K(0,n) — Clk[n] — 0 is exact.

> Prove Clk is finite (done) and Of is finitely generated (soon). OJ

11/13



The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height
h : E@Q@ — R

O — 0 .
(5,y) +— logmax(|nl|,|d])

> Prove VQ € E(Q), 3C € R, VP € E(Q), h(P + Q) < 2h(P) + C.
> Prove 3C € R, YP € E(Q), 4h(P) < h(2P) + C.
» Prove VC € R, the set {P € E(Q) : h(P) < C} is finite.
» Prove the descent theorem (done). O

Can finally define the algebraic rank of E(Q).

12/13



Algebraic number theory in Lean

Here are some recent developments.

Completed:

>

vVvyVvyVYyVvyVYyYVYYVYYy

Quadratic reciprocity

Hensel's lemma

UF in Dedekind domains

# Clk < oo for global fields
Adeles and ideles

Statement of global CFT
L-series of arithmetic functions
Bernoulli polynomials
Perfectoid spaces

Liquid tensor experiment

Ongoing:

| 2

>
>
>
>
>
>
>
>
>

S-unit theorem (HELP)
FLT for regular primes
p-adic L-functions

Bar, But, and B
Modular forms

Etale cohomology

Local CFT

Statement of BSD
Statement of GAGA
Statement of R=T

13/13



