

Formalisation of elliptic curves in Lean

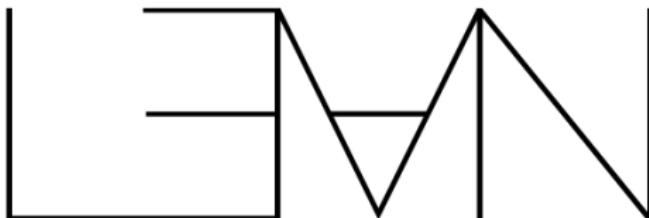
Young Researchers in Algebraic Number Theory

David Kurniadi Angdinata

London School of Geometry and Number Theory

Wednesday, 24 August 2022

The Lean theorem prover



THEOREM PROVER

A functional programming language...

and an interactive theorem prover!

Programming in Lean

Idea: *set theory* is replaced by Type Theory.

element \in *set* \implies Term : Type

Can define inductive types.

```
inductive Nat
| zero : Nat
| succ : Nat → Nat
```

Can define functions recursively.

```
def add : Nat → Nat → Nat
| n zero := n
| n (succ m) := succ (add n m)
```

Programming in Lean

How to prove $\forall n \in \mathbb{N}, 0 + n = n$?

A theorem is a Type (of type Prop).

```
theorem zero_add :  $\forall$  (n : Nat), add zero n = n :=
```

A proof of this theorem (if it exists) is the unique Term of this type.

```
begin
  intro n,
  induction n with m hm,
  { refl },
  { rw [add, hm] }
end
```

The keywords `intro`, `induction`, `refl`, and `rw` are **tactics**.

Play **The Natural Number Game!**

Lean's mathematical library `mathlib`

Community-driven unified library of mathematics formalised in Lean.

- ▶ algebra
- ▶ algebraic_geometry
- ▶ algebraic_topology
- ▶ analysis
- ▶ category_theory
- ▶ combinatorics
- ▶ computability
- ▶ dynamics
- ▶ field_theory
- ▶ geometry
- ▶ group_theory
- ▶ information_theory
- ▶ linear_algebra
- ▶ measure_theory
- ▶ model_theory
- ▶ number_theory
- ▶ order
- ▶ probability
- ▶ representation_theory
- ▶ ring_theory
- ▶ set_theory
- ▶ topology

3k files, 1m lines, 40k definitions, 100k theorems, 270 contributors.

Lean's mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

```
variables {G H : Type} [group G] [group H]
variables (φ : G →* H) (ψ : H → G) (hφ : right_inverse ψ φ)

def quotient_ker_equiv_of_right_inverse : G / ker φ ≅* H :=
{ to_fun := ker_lift φ,
  inv_fun := mk ∘ ψ,
  left_inv := ...,
  right_inv := hφ,
  map_mul' := ... }
```

Why is this a definition?

Consider an immediate corollary.

```
def quotient_bot : G / (⊥ : subgroup G) ≅* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ _, rfl)
```

Why is this not trivial?

Canonical isomorphisms are important data!

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...
However, `mathlib`'s algebraic geometry is still quite primitive.

Here is a working definition in `algebraic_geometry/EllipticCurve`.

```
def Δ_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=  
  let  
    b2 := a12 + 4*a2,  
    b4 := 2*a4 + a1*a3,  
    b6 := a32 + 4*a6,  
    b8 := a12*a6 + 4*a2*a6 - a1*a3*a4 + a2*a32 - a42  
  in  
    -b22*b8 - 8*b43 - 27*b62 + 9*b2*b4*b6  
  
structure EllipticCurve (R : Type) [comm_ring R] :=  
  (a1 a2 a3 a4 a6 : R) (Δ : units R) (Δ_eq : ↑Δ = Δ_aux a1 a2 a3 a4 a6)
```

Accurate for rings R with $\text{Pic}(R)[12] = 0$, such as PIDs!

Much can be done just with this definition.

Elliptic curves in Lean

Can define K -points.

```
variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : y^2 + E.a1*x*y + E.a3*y = x^3 + E.a2*x^2 + E.a4*x + E.a6)

notation E(K) := point E K
```

Can define zero.

```
instance : has_zero E(K) := ⟨zero⟩
```

Can define negation.

```
def neg : E(K) → E(K)
| zero := zero
| (some x y w) := some x (-y - E.a1*x - E.a3)
begin
  rw [← w],
  ring
end
```

```
instance : has_neg E(K) := ⟨neg⟩
```

Elliptic curves in Lean

Can define K -points.

```
variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : y^2 + E.a1*x*y + E.a3*y = x^3 + E.a2*x^2 + E.a4*x + E.a6)

notation E(K) := point E K
```

Can define addition.

```
def add : E(K) → E(K) → E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some x2 y2 w2) :=
  if x_ne : x1 ≠ x2 then
    let
      L := (y1 - y2) / (x1 - x2),
      x3 := L^2 + E.a1*L - E.a2 - x1 - x2,
      y3 := -L*x3 - E.a1*x3 - y1 + L*x1 - E.a3
    in
      some x3 y3 ... -- 100 lines
  else ... -- 100 lines

instance : has_add E(K) := ⟨add⟩
```

Elliptic curves in Lean

Can define K -points.

```
variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : y^2 + E.a1*x*y + E.a3*y = x^3 + E.a2*x^2 + E.a4*x + E.a6)

notation E(K) := point E K
```

Can prove group axioms (except associativity, which is left as a sorry).

```
lemma zero_add (P : E(K)) : 0 + P = P := ...
lemma add_zero (P : E(K)) : P + 0 = P := ...
lemma add_left_neg (P : E(K)) : -P + P = 0 := ...
lemma add_comm (P Q : E(K)) : P + Q = Q + P := ... -- 100 lines
lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) := ... -- ?? lines
```

Can also prove Galois-theoretic properties and structure of torsion points.

The Mordell–Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naïve heights.

Theorem (Mordell)

$E(\mathbb{Q})$ is finitely generated.

Proof ($E(\mathbb{Q})/2E(\mathbb{Q})$ finite).

- ▶ Reduce to $K \supseteq E[2]$, so that $y^2 = (x - e_1)(x - e_2)(x - e_3)$.
- ▶ Define the complete 2-descent homomorphism

$$\begin{array}{rcl} E(K) & \longrightarrow & K^\times/(K^\times)^2 \times K^\times/(K^\times)^2 \\ \mathcal{O} & \longmapsto & (1, 1) \\ (x, y) & \longmapsto & (x - e_1, x - e_2) \end{array} .$$

- ▶ Prove its kernel is $2E(K)$.
- ▶ Prove its image lies in a Selmer group $K(S, 2)$.
- ▶ Prove $0 \rightarrow \mathcal{O}_K^\times/(\mathcal{O}_K^\times)^n \rightarrow K(\emptyset, n) \rightarrow \text{Cl}_K[n] \rightarrow 0$ is exact.
- ▶ Prove Cl_K is finite (done) and \mathcal{O}_K^\times is finitely generated (soon). \square

The Mordell–Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naïve heights.

Theorem (Mordell)

$E(\mathbb{Q})$ is finitely generated.

Proof ($E(\mathbb{Q})/2E(\mathbb{Q})$ finite $\implies E(\mathbb{Q})$ finitely generated).

- ▶ Define the naïve height

$$\begin{aligned} h : E(\mathbb{Q}) &\longrightarrow \mathbb{R} \\ \mathcal{O} &\longmapsto 0 \\ \left(\frac{n}{d}, y\right) &\longmapsto \log \max(|n|, |d|) \end{aligned} .$$

- ▶ Prove $\forall Q \in E(\mathbb{Q}), \exists C \in \mathbb{R}, \forall P \in E(\mathbb{Q}), h(P + Q) \leq 2h(P) + C$.
- ▶ Prove $\exists C \in \mathbb{R}, \forall P \in E(\mathbb{Q}), 4h(P) \leq h(2P) + C$.
- ▶ Prove $\forall C \in \mathbb{R}$, the set $\{P \in E(\mathbb{Q}) : h(P) \leq C\}$ is finite.
- ▶ Prove the descent theorem (done). \square

Can finally define the algebraic rank of $E(\mathbb{Q})$.

Algebraic number theory in Lean

Here are some recent developments.

Completed:

- ▶ Quadratic reciprocity
- ▶ Hensel's lemma
- ▶ UF in Dedekind domains
- ▶ $\#\text{Cl}_K < \infty$ for global fields
- ▶ Adèles and idèles
- ▶ Statement of global CFT
- ▶ L-series of arithmetic functions
- ▶ Bernoulli polynomials
- ▶ Perfectoid spaces
- ▶ Liquid tensor experiment

Ongoing:

- ▶ S-unit theorem (**HELP**)
- ▶ FLT for regular primes
- ▶ p-adic L-functions
- ▶ B_{dR} , B_{HT} , and B_{cris}
- ▶ Modular forms
- ▶ Étale cohomology
- ▶ Local CFT
- ▶ Statement of BSD
- ▶ Statement of GAGA
- ▶ Statement of R=T