Young Researchers in Algebraic Number Theory

Wednesday, 24 August 2022

Formalisation of elliptic curves in Lean

David Kurniadi Angdinata

London School of Geometry and Number Theory

1/56

The Lean theorem prover

VN

THEOREM PROVER

The Lean theorem prover

N
V
THEOREM PROVER

A functional programming language...

3/56

The Lean theorem prover

N
V
THEOREM PROVER

A functional programming language...

and an interactive theorem prover!

4/56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element € set = Term : Type

5/56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element € set = Term : Type

Can define inductive types.

inductive Nat
| zero : Nat
| succ : Nat — Nat

6/56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element € set = Term : Type

Can define inductive types.

inductive Nat
| zero : Nat
| succ : Nat — Nat

Can define functions recursively.

def add : Nat — Nat — Nat
| nzero:=n
| n (succ m) := succ (add n m)

7/56

Programming in Lean

How to prove Vn € N, 04+ n=n?

8/56

Programming in Lean

How to prove Vn € N, 04+ n=n?

A theorem is a Type (of type Prop).

theorem zero_add : V (n : Nat), add zeron = n :=

9/56

Programming in Lean

How to prove Vn € N, 04+ n=n?

A theorem is a Type (of type Prop).

theorem zero_add : V (n : Nat), add zeron = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

10/56

Programming in Lean

How to prove Vn € N, 04+ n=n?

A theorem is a Type (of type Prop).

theorem zero_add : V (n : Nat), add zeron = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

begin
intro n,
induction n with m hm,
{ refl },
{ rv [add, hm] }
end

The keywords intro, induction, refl, and rw are tactics.

11/56

Programming in Lean

How to prove Vn € N, 04+ n=n?

A theorem is a Type (of type Prop).

theorem zero_add : V (n : Nat), add zeron = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

begin
intro n,
induction n with m hm,
{ refl },
{ rv [add, hm] }
end

The keywords intro, induction, refl, and rw are tactics.

Play The Natural Number Game!

12/56

Lean’'s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

13/56

Lean’'s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

vVVvVyVvyVyVvyVYyVYVYyVYYVYYy

algebra
algebraic_geometry
algebraic_topology
analysis
category_theory
combinatorics
computability
dynamics
field_theory
geometry

group_theory

>
>
>
>
>
>
>
>
>
>
>

information_theory
linear_algebra
measure_theory
model_theory
number_theory
order

probability
representation_theory
ring_theory
set_theory
topology

14 /56

Lean’'s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

vVVvVyVvyVyVvyVYyVYVYyVYYVYYy

3k files, 1m lines, 40k definitions, 100k theorems, 270 contributors.

algebra
algebraic_geometry
algebraic_topology
analysis
category_theory
combinatorics
computability
dynamics
field_theory
geometry

group_theory

>
>
>
>
>
>
>
>
>
>
>

information_theory
linear_algebra
measure_theory
model_theory
number_theory
order

probability

representation_theory

ring_theory
set_theory
topology

15 /56

Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢)

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

16 /56

Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢)

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

Why is this a definition?

17 /56

Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢)

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (L : subgroup G) ~* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (A _, rfl)

18/56

Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢)

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (L : subgroup G) ~* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (A _, rfl)

Why is this not trivial?

19/56

Lean’'s mathematical library mathlib

Consider the following theorem in group_theory/quotient_group.

variables {G H : Type} [group G] [group H]
variables (¢ : G =* H) (¢ : H — G) (he : right_inverse ¢)

def quotient_ker_equiv_of_right_inverse : G / ker ¢ ~* H :=
{ to_fun := ker_lift ¢,
inv_fun := mk o ¥,

left_inv = ...,
right_inv := hyp,
map_mul’ := ...}

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (L : subgroup G) ~* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (A _, rfl)

Why is this not trivial?

Canonical isomorphisms are important datal

20/56

Elliptic curves in Lean

What generality?

21/56

Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...

22/56

Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

23/56

Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic_geometry/EllipticCurve.

def A_aux {R: Type} [comm_ring R] (a; a» a3 a4 ag : R) : R 1=

let
by = a; "2 + 4*a,,
by 1= 2*ay + aj*as,
be := a3"2 + 4*ag,
bg := a;"2*ag + 4*ar*ag — ai;*az*as + ar*az3"2 — az"2

in
—by"2%bg — 8%bs "3 — 27*bg "2 + 9*by*b,s*bg

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a : R) (A : units R) (A_eq: TA = A_aux aj a a3 a4 as)

24 /56

Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic_geometry/EllipticCurve.

def A_aux {R: Type} [comm_ring R] (a; a» a3 a4 ag : R) : R 1=

let
by = a; "2 + 4*a,,
by 1= 2*ay + aj*as,
be := a3"2 + 4*ag,
bg := a;"2*ag + 4*ar*ag — ai;*az*as + ar*az3"2 — az"2

in
—by"2%bg — 8%bs "3 — 27*bg "2 + 9*by*b,s*bg

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a : R) (A : units R) (A_eq: TA = A_aux aj a a3 a4 as)

Accurate for rings R with Pic(R)[12] = 0, such as PIDs!

25 /56

Elliptic curves in Lean

What generality? ldeally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic_geometry/EllipticCurve.

def A_aux {R: Type} [comm_ring R] (a; a» a3 a4 ag : R) : R 1=
let
by = a; "2 + 4*a,,

by = 2¥a; + ai*ag,
be := a3"2 + 4*ag,
bg := a;"2*ag + 4*ar*ag — ar*az*as + ax*a3"2 — az"2

in
—by"2%bg — 8%bs "3 — 27*bg "2 + 9*by*b,s*bg

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a : R) (A : units R) (A_eq: TA = A_aux aj a a3 a4 as)

Accurate for rings R with Pic(R)[12] = 0, such as PIDs!

Much can be done just with this definition.

26 /56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

27 /56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can define zero.

instance : has_zero E(K) := (zero)

28/56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can define zero.

instance : has_zero E(K) := (zero)

Can define negation.

def neg : E(K) — E(K)
| zero := zero
| (some x y w) := some x (—y — E.a;*x — E.a3)
begin
w [« W],
ring
end

instance : has_neg E(K) := (neg)

29/56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can define addition.

def add : E(K) — E(K) — E(K)
| zero P :=P
| P zero := P
| (some x1 y1 w1) (some xp y2 w2) =
if x_ne : x; # xp then
let
L:=(y1—y2) / (21 — %2),
x3 := L"2 + E.a1*L — E.ap — x1 — X»,

y3 := —L*x3 — E.a;*x3 — y1 + L¥x; — E.a3
in
some x3 y3 ... —— 100 lines
else ... —— 100 lines

instance : has_add E(K) := (add)

30/56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can prove group axioms

lemma zero_add (P : E(K)) : 0 +P =P :=...
lemma add_zero (P: E(K)) :P+0=P:= ...

lemma add_left_neg (P : E(K)): —P +P =0:

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q+R):=... —— 7?7 lines

31/56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can prove group axioms (except associativity, which is left as a sorry).

lemma zero_add (P : E(K)) : 0 +P =P :=...

lemma add_zero (P: E(K)) :P+0=P:= ...

lemma add_left_neg (P : E(K)): —P +P =0:

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q+R):=... —— 7?7 lines

32/56

Elliptic curves in Lean

Can define K-points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]
inductive point
| zero

| some (xy:K) (w:y"2 + Ear*x*y + E.az*y = x"3 + E.ax*x"2 + E.ay*x + E.ap)

notation E(K) := point E K

Can prove group axioms (except associativity, which is left as a sorry).

lemma zero_add (P : E(K)) : 0 +P =P :=...

lemma add_zero (P: E(K)) :P+0=P:= ...

lemma add_left_neg (P : E(K)): —P +P =0:

lemma add_comm (P Q : E(K)) :P+Q=Q + P:=... — 100 lines

lemma add_assoc (PQR:EX)):(P+Q +R=P+ (Q+R):=... —— 7?7 lines

Can also prove Galois-theoretic properties and structure of torsion points.

33/56

The Mordell-Weil theorem in Lean
Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

34/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).

» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).

35/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).

» Define the complete 2-descent homomorphism

E(K) — K*/(KX)? x K*/(K*)?
O r— (1,1)
(xy) — (x —e1,x — &)

36/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).
» Define the complete 2-descent homomorphism

E(K) — K*/(KX)? x K*/(K*)?
O r— (1,1)
(xy) — (x —e1,x — &)

> Prove its kernel is 2E(K).

37/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).

» Define the complete 2-descent homomorphism

E(K) — K*/(KX)? x K*/(K*)?
O r— (1,1)
(xy) — (x —e1,x — &)

> Prove its kernel is 2E(K).
» Prove its image lies in a Selmer group K(S,2).

38/56

The Mordell-Weil theorem in Lean
Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).
» Define the complete 2-descent homomorphism
E(K) — K*/(KX)? x K*/(K*)?
0 — (1,1)
(x,y) +— (x —e1,x — &)

> Prove its kernel is 2E(K).
» Prove its image lies in a Selmer group K(S,2).
> Prove 0 — O /(0O%)" — K(0,n) — Clk[n] — 0 is exact.

39/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite).
» Reduce to K D E[2], so that y? = (x — e1)(x — &)(x — e3).
» Define the complete 2-descent homomorphism
E(K) — K*/(KX)? x K*/(K*)?
0 — (1,1)
(x,y) +— (x —e1,x — &)

> Prove its kernel is 2E(K).

» Prove its image lies in a Selmer group K(S,2).

> Prove 0 — O /(0O%)" — K(0,n) — Clk[n] — 0 is exact.

» Prove Clg is finite (done) and O is finitely generated (soon). O

40/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height

h E(Q — R
O — 0 .
(4,y) = logmax(|nl,|d|)

41/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height

h : E@Q — R
O — 0 .
(4,y) = logmax(|nl,|d|)

> Prove VQ € E(Q), 3C € R, VP € E(Q), h(P + Q) < 2h(P) + C.

42/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height

h : E@Q — R
O — 0 .
(4,y) = logmax(|nl,|d|)

> Prove VQ € E(Q), 3C € R, VP € E(Q), h(P+ Q) < 2h(P) + C.
» Prove 3C € R, VP € E(Q), 4h(P) < h(2P) + C.

43/56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.
Theorem (Mordell)
E(Q) is finitely generated.
Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height
h : E@Q — R

O — 0 .
(5,y) +— logmax(|nl|,|d])

> Prove VQ € E(Q), 3C e R, VP € E(Q), h(P+ Q) < 2h(P) + C.
» Prove 3C € R, VP € E(Q), 4h(P) < h(2P) + C.
» Prove VC € R, the set {P € E(Q) | h(P) < C} is finite.

44 /56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.
Theorem (Mordell)
E(Q) is finitely generated.
Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height
h : E@Q — R

O — 0 .
(5,y) +— logmax(|nl|,|d])

> Prove ¥Q € E(Q), 3C € R, YP € E(Q), h(P + Q) < 2h(P) + C.
> Prove 3C € R, YP € E(Q), 4h(P) < h(2P) + C.

» Prove VC € R, the set {P € E(Q) | h(P) < C} is finite.

» Prove the descent theorem (done). O

45 /56

The Mordell-Weil theorem in Lean

Can prove Mordell's theorem by complete 2-descent and naive heights.

Theorem (Mordell)
E(Q) is finitely generated.

Proof (E(Q)/2E(Q) finite = E(Q) finitely generated).
» Define the naive height
h : E@Q — R

O — 0 .
(5,y) +— logmax(|nl|,|d])

> Prove VQ € E(Q), 3C € R, VP € E(Q), h(P + Q) < 2h(P) + C.
> Prove 3C € R, YP € E(Q), 4h(P) < h(2P) + C.
» Prove VC € R, the set {P € E(Q) | h(P) < C} is finite.
» Prove the descent theorem (done). O

Can finally define the algebraic rank of E(Q).

46 /56

Algebraic number theory in Lean

Here are some recent developments.

47 /56

Algebraic number theory in Lean
Here are some recent developments.
Completed:

» Quadratic reciprocity
» Hensel's lemma

48 /56

Algebraic number theory in Lean

Here are some recent developments.

Completed:
» Quadratic reciprocity
» Hensel's lemma
» UF in Dedekind domains
» #Clk < oo for global fields

49 /56

Algebraic number theory in Lean

Here are some recent developments.

Completed:
» Quadratic reciprocity
» Hensel's lemma
» UF in Dedekind domains
» #Clk < oo for global fields
» Adeles and ideles
>

Statement of global CFT

50/56

Algebraic number theory in Lean

Here are some recent developments.

Completed:
» Quadratic reciprocity
» Hensel's lemma
» UF in Dedekind domains
> #Clk < oo for global fields
» Adeles and ideles
» Statement of global CFT
» L-series of arithmetic functions
>

Bernoulli polynomials

51/56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

>

VVyVyVYyVVYVYVYY

Quadratic reciprocity

Hensel's lemma

UF in Dedekind domains
#Clk < oo for global fields
Adéles and ideles

Statement of global CFT
L-series of arithmetic functions
Bernoulli polynomials
Perfectoid spaces

Liquid tensor experiment

52/56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

>

VVyVyVYyVVYVYVYY

Quadratic reciprocity

Hensel's lemma

UF in Dedekind domains
#Clk < oo for global fields
Adéles and ideles

Statement of global CFT
L-series of arithmetic functions
Bernoulli polynomials
Perfectoid spaces

Liquid tensor experiment

Ongoing:
» S-unit theorem (HELP)
» FLT for regular primes
» p-adic L-functions
» Bgr, Bur, and Beis

53/56

Algebraic number theory in Lean

Here are some recent developments.

Completed: Ongoing:

» Quadratic reciprocity » S-unit theorem (HELP)
Hensel's lemma » FLT for regular primes
UF in Dedekind domains » p-adic L-functions
#Clk < oo for global fields » Bar, But, and Bepis
Adeéles and ideles >
Statement of global CFT >

>

L-series of arithmetic functions

Modular forms
Etale cohomology
Local CFT
Bernoulli polynomials

Perfectoid spaces

vVVvVvYvVYyVvyVYyVvYVYyYVYyYy

Liquid tensor experiment

54/56

Algebraic number theory in Lean

Here are some recent developments.

Completed: Ongoing:
» Quadratic reciprocity » S-unit theorem (HELP)
» Hensel's lemma » FLT for regular primes
» UF in Dedekind domains » p-adic L-functions
» #Clk < oo for global fields » Bar, But, and Bepis
» Adeles and idéles » Modular forms
» Statement of global CFT > Etale cohomology
> |-series of arithmetic functions » Local CFT
» Bernoulli polynomials » Statement of BSD
» Perfectoid spaces » Statement of GAGA
» Liquid tensor experiment » Statement of R=T

55 /56

Thank youl!

Check out the leanprover community!

56 /56

