
Young Researchers in Algebraic Number Theory

Wednesday, 24 August 2022

Formalisation of elliptic curves in Lean

David Kurniadi Angdinata

London School of Geometry and Number Theory

1 / 56

The Lean theorem prover

A functional programming language...

and an interactive theorem prover!

2 / 56

The Lean theorem prover

A functional programming language...

and an interactive theorem prover!

3 / 56

The Lean theorem prover

A functional programming language...

and an interactive theorem prover!

4 / 56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element ∈ set =⇒ Term : Type

5 / 56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element ∈ set =⇒ Term : Type

Can define inductive types.

inductive Nat
| zero : Nat
| succ : Nat → Nat

6 / 56

Programming in Lean

Idea: set theory is replaced by Type Theory.

element ∈ set =⇒ Term : Type

Can define inductive types.

inductive Nat
| zero : Nat
| succ : Nat → Nat

Can define functions recursively.

def add : Nat → Nat → Nat
| n zero := n
| n (succ m) := succ (add n m)

7 / 56

Programming in Lean

How to prove ∀n ∈ N, 0 + n = n?

8 / 56

Programming in Lean

How to prove ∀n ∈ N, 0 + n = n?

A theorem is a Type (of type Prop).

theorem zero_add : ∀ (n : Nat), add zero n = n :=

9 / 56

Programming in Lean

How to prove ∀n ∈ N, 0 + n = n?

A theorem is a Type (of type Prop).

theorem zero_add : ∀ (n : Nat), add zero n = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

10 / 56

Programming in Lean

How to prove ∀n ∈ N, 0 + n = n?

A theorem is a Type (of type Prop).

theorem zero_add : ∀ (n : Nat), add zero n = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

begin
intro n,
induction n with m hm,
{ refl },
{ rw [add, hm] }

end

The keywords intro, induction, refl, and rw are tactics.

11 / 56

Programming in Lean

How to prove ∀n ∈ N, 0 + n = n?

A theorem is a Type (of type Prop).

theorem zero_add : ∀ (n : Nat), add zero n = n :=

A proof of this theorem (if it exists) is the unique Term of this type.

begin
intro n,
induction n with m hm,
{ refl },
{ rw [add, hm] }

end

The keywords intro, induction, refl, and rw are tactics.

Play The Natural Number Game!

12 / 56

Lean’s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

13 / 56

Lean’s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

I algebra

I algebraic geometry

I algebraic topology

I analysis

I category theory

I combinatorics

I computability

I dynamics

I field theory

I geometry

I group theory

I information theory

I linear algebra

I measure theory

I model theory

I number theory

I order

I probability

I representation theory

I ring theory

I set theory

I topology

14 / 56

Lean’s mathematical library mathlib

Community-driven unified library of mathematics formalised in Lean.

I algebra

I algebraic geometry

I algebraic topology

I analysis

I category theory

I combinatorics

I computability

I dynamics

I field theory

I geometry

I group theory

I information theory

I linear algebra

I measure theory

I model theory

I number theory

I order

I probability

I representation theory

I ring theory

I set theory

I topology

3k files, 1m lines, 40k definitions, 100k theorems, 270 contributors.

15 / 56

Lean’s mathematical library mathlib

Consider the following theorem in group theory/quotient group.

variables {G H : Type} [group G] [group H]
variables (ϕ : G →* H) (ψ : H → G) (hϕ : right_inverse ψ ϕ)

def quotient_ker_equiv_of_right_inverse : G / ker ϕ '* H :=
{ to_fun := ker_lift ϕ,
inv_fun := mk ◦ ψ,
left_inv := . . .,
right_inv := hϕ,
map_mul’ := . . . }

16 / 56

Lean’s mathematical library mathlib

Consider the following theorem in group theory/quotient group.

variables {G H : Type} [group G] [group H]
variables (ϕ : G →* H) (ψ : H → G) (hϕ : right_inverse ψ ϕ)

def quotient_ker_equiv_of_right_inverse : G / ker ϕ '* H :=
{ to_fun := ker_lift ϕ,
inv_fun := mk ◦ ψ,
left_inv := . . .,
right_inv := hϕ,
map_mul’ := . . . }

Why is this a definition?

17 / 56

Lean’s mathematical library mathlib

Consider the following theorem in group theory/quotient group.

variables {G H : Type} [group G] [group H]
variables (ϕ : G →* H) (ψ : H → G) (hϕ : right_inverse ψ ϕ)

def quotient_ker_equiv_of_right_inverse : G / ker ϕ '* H :=
{ to_fun := ker_lift ϕ,
inv_fun := mk ◦ ψ,
left_inv := . . .,
right_inv := hϕ,
map_mul’ := . . . }

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (⊥ : subgroup G) '* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ _, rfl)

18 / 56

Lean’s mathematical library mathlib

Consider the following theorem in group theory/quotient group.

variables {G H : Type} [group G] [group H]
variables (ϕ : G →* H) (ψ : H → G) (hϕ : right_inverse ψ ϕ)

def quotient_ker_equiv_of_right_inverse : G / ker ϕ '* H :=
{ to_fun := ker_lift ϕ,
inv_fun := mk ◦ ψ,
left_inv := . . .,
right_inv := hϕ,
map_mul’ := . . . }

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (⊥ : subgroup G) '* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ _, rfl)

Why is this not trivial?

19 / 56

Lean’s mathematical library mathlib

Consider the following theorem in group theory/quotient group.

variables {G H : Type} [group G] [group H]
variables (ϕ : G →* H) (ψ : H → G) (hϕ : right_inverse ψ ϕ)

def quotient_ker_equiv_of_right_inverse : G / ker ϕ '* H :=
{ to_fun := ker_lift ϕ,
inv_fun := mk ◦ ψ,
left_inv := . . .,
right_inv := hϕ,
map_mul’ := . . . }

Why is this a definition?

Consider an immediate corollary.

def quotient_bot : G / (⊥ : subgroup G) '* G :=
quotient_ker_equiv_of_right_inverse (monoid_hom.id G) id (λ _, rfl)

Why is this not trivial?

Canonical isomorphisms are important data!

20 / 56

Elliptic curves in Lean

What generality?

21 / 56

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...

22 / 56

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

23 / 56

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic geometry/EllipticCurve.

def ∆_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
let
b2 := a1ˆ2 + 4*a2,
b4 := 2*a4 + a1*a3,
b6 := a3ˆ2 + 4*a6,
b8 := a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2

in
=b2ˆ2*b8 = 8*b4ˆ3 = 27*b6ˆ2 + 9*b2*b4*b6

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (∆ : units R) (∆_eq : ↑∆ = ∆_aux a1 a2 a3 a4 a6)

24 / 56

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic geometry/EllipticCurve.

def ∆_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
let
b2 := a1ˆ2 + 4*a2,
b4 := 2*a4 + a1*a3,
b6 := a3ˆ2 + 4*a6,
b8 := a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2

in
=b2ˆ2*b8 = 8*b4ˆ3 = 27*b6ˆ2 + 9*b2*b4*b6

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (∆ : units R) (∆_eq : ↑∆ = ∆_aux a1 a2 a3 a4 a6)

Accurate for rings R with Pic(R)[12] = 0, such as PIDs!

25 / 56

Elliptic curves in Lean

What generality? Ideally, defined abstractly over a scheme or a ring...
However, mathlib’s algebraic geometry is still quite primitive.

Here is a working definition in algebraic geometry/EllipticCurve.

def ∆_aux {R : Type} [comm_ring R] (a1 a2 a3 a4 a6 : R) : R :=
let
b2 := a1ˆ2 + 4*a2,
b4 := 2*a4 + a1*a3,
b6 := a3ˆ2 + 4*a6,
b8 := a1ˆ2*a6 + 4*a2*a6 = a1*a3*a4 + a2*a3ˆ2 = a4ˆ2

in
=b2ˆ2*b8 = 8*b4ˆ3 = 27*b6ˆ2 + 9*b2*b4*b6

structure EllipticCurve (R : Type) [comm_ring R] :=
(a1 a2 a3 a4 a6 : R) (∆ : units R) (∆_eq : ↑∆ = ∆_aux a1 a2 a3 a4 a6)

Accurate for rings R with Pic(R)[12] = 0, such as PIDs!

Much can be done just with this definition.

26 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

27 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can define zero.

instance : has_zero E(K) := 〈zero〉

28 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can define zero.

instance : has_zero E(K) := 〈zero〉

Can define negation.

def neg : E(K) → E(K)
| zero := zero
| (some x y w) := some x (=y = E.a1*x = E.a3)
begin
rw [← w],
ring

end

instance : has_neg E(K) := 〈neg〉

29 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can define addition.

def add : E(K) → E(K) → E(K)
| zero P := P
| P zero := P
| (some x1 y1 w1) (some x2 y2 w2) :=
if x_ne : x1 6= x2 then
let
L := (y1 = y2) / (x1 = x2),
x3 := Lˆ2 + E.a1*L = E.a2 = x1 = x2,
y3 := =L*x3 = E.a1*x3 = y1 + L*x1 = E.a3

in
some x3 y3 . . . == 100 lines

else . . . == 100 lines

instance : has_add E(K) := 〈add〉

30 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can prove group axioms

lemma zero_add (P : E(K)) : 0 + P = P := . . .

lemma add_zero (P : E(K)) : P + 0 = P := . . .

lemma add_left_neg (P : E(K)) : =P + P = 0 := . . .

lemma add_comm (P Q : E(K)) : P + Q = Q + P := . . . == 100 lines

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) := . . . == ?? lines

31 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can prove group axioms (except associativity, which is left as a sorry).

lemma zero_add (P : E(K)) : 0 + P = P := . . .

lemma add_zero (P : E(K)) : P + 0 = P := . . .

lemma add_left_neg (P : E(K)) : =P + P = 0 := . . .

lemma add_comm (P Q : E(K)) : P + Q = Q + P := . . . == 100 lines

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) := . . . == ?? lines

32 / 56

Elliptic curves in Lean

Can define K -points.

variables {F : Type} [field F] (E : EllipticCurve F) (K : Type) [field K] [algebra F K]

inductive point
| zero
| some (x y : K) (w : yˆ2 + E.a1*x*y + E.a3*y = xˆ3 + E.a2*xˆ2 + E.a4*x + E.a6)

notation E(K) := point E K

Can prove group axioms (except associativity, which is left as a sorry).

lemma zero_add (P : E(K)) : 0 + P = P := . . .

lemma add_zero (P : E(K)) : P + 0 = P := . . .

lemma add_left_neg (P : E(K)) : =P + P = 0 := . . .

lemma add_comm (P Q : E(K)) : P + Q = Q + P := . . . == 100 lines

lemma add_assoc (P Q R : E(K)) : (P + Q) + R = P + (Q + R) := . . . == ?? lines

Can also prove Galois-theoretic properties and structure of torsion points.

33 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

34 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

35 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

36 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

37 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

38 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

39 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite).

I Reduce to K ⊇ E [2], so that y2 = (x − e1)(x − e2)(x − e3).

I Define the complete 2-descent homomorphism

E (K) −→ K×/(K×)2 × K×/(K×)2

O 7−→ (1, 1)
(x , y) 7−→ (x − e1, x − e2)

.

I Prove its kernel is 2E (K).

I Prove its image lies in a Selmer group K (S , 2).

I Prove 0→ O×K /(O×K)n → K (∅, n)→ ClK [n]→ 0 is exact.

I Prove ClK is finite (done) and O×K is finitely generated (soon). �

40 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

41 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

42 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

43 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

44 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

45 / 56

The Mordell-Weil theorem in Lean

Can prove Mordell’s theorem by complete 2-descent and näıve heights.

Theorem (Mordell)
E (Q) is finitely generated.

Proof (E (Q)/2E (Q) finite =⇒ E (Q) finitely generated).

I Define the näıve height

h : E (Q) −→ R
O 7−→ 0

(n
d , y) 7−→ log max(|n|, |d |)

.

I Prove ∀Q ∈ E (Q), ∃C ∈ R, ∀P ∈ E (Q), h(P + Q) ≤ 2h(P) + C .

I Prove ∃C ∈ R, ∀P ∈ E (Q), 4h(P) ≤ h(2P) + C .

I Prove ∀C ∈ R, the set {P ∈ E (Q) | h(P) ≤ C} is finite.

I Prove the descent theorem (done). �

Can finally define the algebraic rank of E (Q).

46 / 56

Algebraic number theory in Lean

Here are some recent developments.

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

47 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

48 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

49 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

50 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

51 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

52 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

Ongoing:

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

53 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

Ongoing:

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

54 / 56

Algebraic number theory in Lean

Here are some recent developments.

Completed:

I Quadratic reciprocity

I Hensel’s lemma

I UF in Dedekind domains

I #ClK <∞ for global fields

I Adèles and idèles

I Statement of global CFT

I L-series of arithmetic functions

I Bernoulli polynomials

I Perfectoid spaces

I Liquid tensor experiment

Ongoing:

I S-unit theorem (HELP)

I FLT for regular primes

I p-adic L-functions

I BdR, BHT, and Bcris

I Modular forms

I Étale cohomology

I Local CFT

I Statement of BSD

I Statement of GAGA

I Statement of R=T

55 / 56

Thank you!
Check out the leanprover community!

56 / 56

