Hyperelliptic curves over function fields Study group on arithmetic of hyperelliptic curves

David Kurniadi Angdinata

University College London

Friday, 28 November 2025

Global function fields

A function field F = k(C) is that of a nice ¹ curve C over a base field k. When $k = \mathbb{F}_q$ is a finite field of size q, this is a global function field.

A ring of integers \mathcal{O}_F of a global function field F is the ring of sections over an open affine $U\subseteq C$, in which case $C\setminus U$ are its infinite places. This is a Dedekind domain, so it has a potentially infinite class group.

A place $v \in V_F$ of a global function field F is the Galois orbit of a point $x \in C(\overline{k})$, or equivalently a maximal ideal of a ring of integers \mathcal{O}_F . The localisation of \mathcal{O}_F at v is a non-archimedean discrete valuation ring.

Example

If $C=\mathbb{P}^1$ and $k=\mathbb{F}_q$, then $F=\mathbb{F}_q(t)$ is a global function field, and the ring of integers $\mathcal{O}_F=\mathbb{F}_q[t]$ has a unique infinite place $1/t\in V_F$ with valuation $\operatorname{ord}_{1/t}:F\to\mathbb{Z}\cup\{\infty\}$ given by $\operatorname{ord}_{1/t}(f/g)=\deg g-\deg f$.

¹smooth proper geometrically irreducible

Curves and Jacobians

Let X be a nice curve of genus g_X over the function field F of a nice curve C of genus g_C over a base field k. Associated to X is a principally polarised abelian variety of dimension g_X over F called its *Jacobian* J_X .

There is a unique abelian variety A_X over k, called the F/k-trace of J_X , and a unique morphism $\tau_X:A_X\times_k F\to J_X$, such that for any abelian variety A over k with a morphism $\tau:A\times_k F\to J_X$, there is a unique morphism $\psi:A\to A_X$ such that $\tau_X\circ (\psi\times_k F)=\tau$.

Theorem (Lang-Néron)

If F is a finitely generated regular field extension of k, then the Mordell–Weil group $J_X(F)/\tau_X(A_{J_K}\times_k F)$ is finitely generated.

If $J_X \times_F K \cong A \times_{\overline{k}} K$ for some abelian variety A over \overline{k} and some finite extension K of F, then J_X is called **isotrivial**. If J_X is a non-isotrivial elliptic curve, then $A_X = 0$, which recovers the Mordell–Weil theorem.

A hyperelliptic curve

Example

Let X be the hyperelliptic curve over $F = \mathbb{F}_{13}(t)$ given by

$$y^2 = f(x) := x^6 + x^5 + t.$$

Then J_X is non-isotrivial, and in fact geometrically irreducible.

Since the roots of $f'(x) = 6x^5 + 5x^4$ are only x = 0 and x = -5/6, it is unramified everywhere except possibly at 1/t, at t, and at $t - 5^5/6^6$, and in fact tamely ramified everywhere since $2g_X + 1 = 5 < 13$.

The cluster pictures of X at 1/t, at t, and at $t-5^5/6^6$ are respectively:

A simple computation shows that $f(J_X) = (1/t)^5 \cdot t^4 \cdot (t - 5^5/6^6)$.

L-functions

Let k be finite, and let ρ be a nice 2 ℓ -adic representation of F for some fixed auxiliary prime $\ell \neq \operatorname{char}(k)$. The **L-function** of ρ is given by

$$L(
ho, T) := \prod_{v \in V_F} \det(1 - T \cdot arphi_v \mid
ho^{l_v})^{-1},$$

which is the L-function of J_X when $\rho = \rho_{J_X} := H^1_{\text{\'et}}(\overline{X}, \mathbb{Q}_\ell)$ and $T = q^{-s}$.

Theorem (Deligne-Grothendieck)

The numerator of the rational function $L(\rho, T)$ is precisely $\det(1-T\cdot\phi_{\sigma}\mid H^1_{\acute{e}t}(\overline{C},\mathcal{F}_{\rho}))$ for some constructible sheaves \mathcal{F}_{ρ} on C, and

$$\dim H^1_{\acute{e}t}(\overline{C},\mathcal{F}_\rho) = \deg \mathfrak{f}(\rho) + (2g_C - 2)\dim \rho + 2\dim \rho^{\operatorname{Gal}(\overline{k}F/F)}.$$

Here, \mathcal{F}_{ρ} is the pushforward of a lisse sheaf on an open subset of C where ρ is unramified, and its stalk at any place $v \in V_F$ is precisely ρ^{l_v} .

²almost everywhere unramified and pure and self-dual of some integral weight

Artin formalism

Let K be a finite extension of F. Artin's formalism gives a factorisation

$$L(J_X/K,s) := L(\rho_{J_X/K}, q^{-s}) = \prod_{\chi \in \widehat{G}} L(\rho_{J_X} \otimes \chi, q^{-s}),$$

where \widehat{G} is the character group of the Galois closure of K over F.

At the level of étale cohomology, there are also canonical isomorphisms

$$H^1_{\operatorname{cute{e}t}}(\overline{C}, \mathcal{F}_{
ho_{J_X/K}}) \cong igoplus_{\chi \in \widehat{G}} H^1_{\operatorname{cute{e}t}}(\overline{C}, \mathcal{F}_{
ho_{J_X} \otimes \chi}),$$

which respects the action of ϕ_q . Furthermore, if \widehat{G} can be partitioned into subsets $o \subseteq \widehat{G}$, then there are canonical isomorphisms

$$H^1_{\operatorname{\acute{e}t}}(\overline{C}, \mathcal{F}_{
ho_{J_X/K}}) \cong igoplus_{o \subset \widehat{G}} H^1_{\operatorname{\acute{e}t}}(\overline{C}, \mathcal{F}_{
ho_{J_X} \otimes (igoplus_{\chi \in o} \chi)}).$$

Geometric vanishing

By Poincaré duality, the Tate twist $H^1_{\mathrm{\acute{e}t}}(\overline{C}, \mathcal{F}_{\rho_{J_X}(1)\otimes(\bigoplus_{\chi\in\sigma}\chi)})$ admits a ϕ_q -invariant non-degenerate symmetric bilinear pairing for any $o\subseteq\widehat{G}$.

Lemma (Ulmer)

Let W_1,\ldots,W_{2n} be finite-dimensional vector spaces with odd $\dim W_0$, and let $\phi:\bigoplus_{i=1}^{2n}W_i\to\bigoplus_{i=1}^{2n}W_i$ be a linear map with $\phi(W_i)=W_{i+1}$ for all $i\in\mathbb{Z}/2n$, such that $\bigoplus_{i=1}^{2n}W_i$ admits a ϕ_q -invariant non-degenerate symmetric bilinear pairing that induces an isomorphism $W_n\cong W_0^*$. Then

$$1 - T^{2n}$$
 divides $det(1 - T \cdot \phi \mid \bigoplus_{i=1}^{2n} W_i)$.

In particular, for each subset $o \subseteq \widehat{G}$ satisfying appropriate assumptions,

$$1-(qT)^{2n} \text{ divides } \det(1-T\cdot\phi_q\mid H^1_{\operatorname{\acute{e}t}}(\overline{C},\mathcal{F}_{\rho_{J_X}\otimes(\bigoplus_{\chi\in\sigma}\chi)})),$$

which increments the order of vanishing of $L(J_X/K, s)$.

A Frobenius action

Example

Let $F = \mathbb{F}_{13}(t)$, and let $K = \mathbb{F}_{13}(\sqrt[170]{t})$. Then $\operatorname{Gal}(\overline{\mathbb{F}_{13}}(t)/\mathbb{F}_{13}(t)) \cong \widehat{\mathbb{Z}}$ is generated by ϕ_{13} , which acts naturally on $\widehat{G} \cong \mathbb{Z}/170$ by

$$\phi_{13}^i \cdot \chi := (\sigma \mapsto \chi(\phi_{13}^i(\sigma))),$$

which translates to multiplication by $13^{-1} \equiv -13 \mod 170$.

Let $\widehat{G}\cong \mathbb{Z}/170$ be partitioned by the 44 orbits of this action given by the singletons $\{0\}$ and $\{85\}$, and $\{\pm n, \pm 13n\}$ for each $n\in\mathbb{N}$.

Let X be as before. If the order of $\chi \in \widehat{\mathcal{G}}$ is sufficiently large,

$$\dim H^1_{\operatorname{\acute{e}t}}(\overline{\mathcal{C}},\mathcal{F}_{\rho_{J_X}(1)\otimes\chi})\equiv \deg \mathfrak{f}(\rho_{J_X}(1)\otimes\chi)\equiv \deg \mathfrak{f}(\rho_{J_X})\mod 2,$$

which is odd. Thus the previous lemma applies, and the order of vanishing of $L(J_X, s)$ at s = 1 is at least 44 - c for some small $c \in \mathbb{N}$.

The Birch-Swinnerton-Dyer conjecture

Conjecture (Birch–Swinnerton-Dyer)

The order of vanishing of $L(J_X, s)$ at s = 1 is $\operatorname{rk}(J_X)$, with leading term

$$\lim_{s\to 1}\frac{L(J_X,s)}{(s-1)^{\mathsf{rk}(J_X)}}=\frac{\mathsf{Reg}(J_X)\cdot\#\mathrm{III}(J_X)\cdot\mathsf{Tam}(J_X)}{\#\,\mathsf{tor}(J_X)^2}.$$

This implicitly assumes that $\coprod(J_X)$ is finite, which by the exact sequence

$$0 \to J_X(F) \otimes \mathbb{Z}_\ell \to \varprojlim_n \mathsf{Sel}_{\ell^n}(J_X) \to \mathit{T}_\ell \mathrm{III}(J_X) \to 0,$$

implies that the first map is an isomorphism.

Theorem (Artin-Tate, Milne, Schneider, Bauer, Kato-Trihan)

The rank conjecture is equivalent to the finiteness of $\coprod (J_X)[\ell^{\infty}]$ for any prime ℓ , in which case the leading term conjecture also holds.

Invariants of surfaces

For any nice curve X over F, there is a unique irreducible proper regular relatively minimal surface $\mathcal{X} \to C$ over k, whose generic fibre is X.

If S is a proper regular surface over k, its **Picard** and **Brauer groups** are

$$\operatorname{Pic}(S) := H^1_{\operatorname{\acute{e}t}}(S, \mathbb{G}_m), \qquad \operatorname{Br}(S) := H^2_{\operatorname{\acute{e}t}}(S, \mathbb{G}_m).$$

The **Néron–Severi group** NS(S) is the image of Pic(S) in the quotient of $Pic(\overline{S})$ by its subgroup of divisors algebraically equivalent to zero.

Theorem (Shioda-Tate)

If f_v is the number of irreducible components of the fibre \mathcal{X}_v at v, then

$$\mathsf{rk}(\mathsf{NS}(\mathcal{X})) - \mathsf{rk}(J_X) = 2 + \sum_{v} (f_v - 1).$$

Theorem (Grothendieck)

There is a canonical isomorphism $\operatorname{Br}(\mathcal{X}) \xrightarrow{\sim} \operatorname{III}(J_X)$.

The Tate conjecture

Analogously to J_X , there is an exact sequence

$$0 \to \mathsf{NS}(\mathcal{X}) \otimes \mathbb{Z}_\ell \xrightarrow{c_\ell} \varprojlim_n H^2_{\text{\'et}}(\overline{\mathcal{X}}, \mu_{\ell^n})^{G_k} \to \mathcal{T}_\ell \, \mathsf{Br}(\mathcal{X}) \to 0,$$

so the finiteness of $\coprod (J_X)[\ell^{\infty}]$ reduces to c_{ℓ} being an isomorphism.

Conjecture (Tate)

The cycle class map c_{ℓ} is an isomorphism for any prime ℓ . Equivalently,

$$\mathsf{rk}(\mathsf{NS}(\mathcal{X})) = -\,\mathsf{ord}_{s=1}\,\zeta(\mathcal{X},s).$$

In particular, this is independent of ℓ . It turns out that

$$-\operatorname{ord}_{s=1}\zeta(\mathcal{X},s)-\operatorname{ord}_{s=1}L(J_X,s)=2+\sum_v(f_v-1),$$

so the rank conjecture is equivalent to the Tate conjecture.

A Delsarte surface

Tate's conjecture is known to hold for rational surfaces, abelian surfaces, elliptic K3 surfaces, and surfaces dominated by a product of nice curves.

Example

Let X be as before. It defines a *Delsarte* surface $\mathcal{X} \subseteq \mathbb{P}^3_{[z:t:x:y]}$ given by

$$z^4y^2 - x^6 - zx^5 - z^5t = 0,$$

which is dominated by the *Fermat* surface $S \subseteq \mathbb{P}^3_{[y_0:y_1:y_2:y_3]}$ given by

$$y_0^2 + y_1^2 + y_2^2 + y_3^2 = 0,$$

by the rational map $\mathcal{S} o \mathcal{X}$ given by

$$[y_0:y_1:y_2:y_3]\mapsto \left[\frac{y_2^{12}}{y_1^{10}}:y_3^2:\frac{y_2^{10}}{y_1^8}:\frac{5y_0y_2^6}{y_1^5}\right].$$

In particular, the Tate conjecture holds for \mathcal{X} . Thus the rank conjecture, and hence the full Birch–Swinnerton-Dyer conjecture, holds for J_X .

