

Ideal class groups ¹

Introductory presentation

David Kurniadi Angdinata

London School of Geometry and Number Theory

Wednesday, 6 October 2021

¹of number fields

Diophantine equations!

Consider *Mordell's equation*

$$y^2 = x^3 + n, \quad n \in \mathbb{Z}.$$

- ▶ Consider $y^2 = x^3 - 1$. Solution: $(1, 0)$.

Claim: $y = 0$. Check: x odd. In $\mathbb{Z}[i]$,

$$(y + i)(y - i) = x^3 \xrightarrow{\text{Nm}} y \pm i \text{ coprime} \xrightarrow{\text{UFD}} y \pm i \text{ cubes.}$$

Let

$$y + i = (a + bi)^3 = a(a^2 - 3b^2) + b(3a^2 - b^2)i.$$

Then $b = \pm 1$.

- ▶ $b = 1 \implies 3a^2 = 2$, contradiction.
- ▶ $b = -1 \implies 3a^2 = 0 \implies y = 0$.

Idea: use UF of $\mathbb{Z}[i]$ and Nm : $\mathbb{Z}[i] \rightarrow \mathbb{N}$.

Diophantine equations!

Consider *Mordell's equation*

$$y^2 = x^3 + n, \quad n \in \mathbb{Z}.$$

- ▶ Consider $y^2 = x^3 - 1$. Solution: $(1, 0)$.

Idea: use UF of $\mathbb{Z}[i]$ and $\text{Nm} : \mathbb{Z}[i] \rightarrow \mathbb{N}$.

- ▶ Consider $y^2 = x^3 - 5$. In $\mathbb{Z}[\sqrt{-5}]$,

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}).$$

However, on ideals,

$$(6) = (2, 1 + \sqrt{-5}) \cdot (2, 1 - \sqrt{-5}) \cdot (3, 1 + \sqrt{-5}) \cdot (3, 1 - \sqrt{-5}).$$

Furthermore, can define norm on ideals. Conclusion: consider ideals.

The ideal class group...

Let K be a number field, and let \mathcal{O}_K be its *ring of integers*,

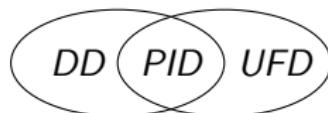
$$\mathcal{O}_K = \{x \in K : \exists f \in \mathbb{Z}[X] \text{ monic, } f(x) = 0\}.$$

Examples

- ▶ $K = \mathbb{Q}$ and $\mathcal{O}_K = \mathbb{Z}$,
- ▶ $K = \mathbb{Q}(i)$ and $\mathcal{O}_K = \mathbb{Z}[i]$, or
- ▶ $K = \mathbb{Q}(\sqrt{-3})$ and $\mathcal{O}_K = \mathbb{Z}[\omega]$ where $\omega = \frac{1+\sqrt{-3}}{2}$.

Fact

\mathcal{O}_K is a Dedekind domain. Every DD has UF into prime ideals.



The ideal class group...

The *ideal norm* is

$$\text{Nm}(I) = \#(\mathcal{O}_K/I), \quad I \trianglelefteq \mathcal{O}_K.$$

Example

If $K = \mathbb{Q}(\sqrt{-5})$, then $(2, 1 + \sqrt{-5}) \trianglelefteq \mathcal{O}_K$ has ideal norm

$$\begin{aligned}\text{Nm}((2, 1 + \sqrt{-5})) &= \#(\mathbb{Z}[\sqrt{-5}] / (2, 1 + \sqrt{-5})) \\ &= \#(\mathbb{Z}[X] / (2, 1 + X, 5 + X^2)) \\ &= \#(\mathbb{F}_2[X] / (1 + X, 1 + X^2)) = 2.\end{aligned}$$

Fact

$$\text{Nm}(I \cdot J) = \text{Nm}(I) \text{Nm}(J), \quad \text{Nm}((x)) = \text{Nm}(x) = \prod_{\sigma: K \rightarrow \overline{K}} \sigma(x).$$

The ideal class group...

Consider the set of non-zero *fractional ideals* of \mathcal{O}_K ,

$$\mathcal{I}(K) = \{x^{-1}I \subseteq K : x \in \mathcal{O}_K^\times, I \trianglelefteq \mathcal{O}_K\} \setminus \{(0)\}.$$

This is an abelian group under ideal multiplication, with identity (1) and

$$I^{-1} = \{x \in K : xI \subseteq \mathcal{O}_K\}, \quad I \in \mathcal{I}(K).$$

It has a subgroup of *principal fractional ideals*

$$\mathcal{P}(K) = \{(x) \in \mathcal{I}(K) : x \in K^\times\} \leq \mathcal{I}(K).$$

The quotient is the *ideal class group* $\text{Cl}(K)$.

Theorem

$\text{Cl}(K)$ is finite.

Proof.

Geometry of numbers gives Minkowski's bound $M_K \in \mathbb{R}_{>0}$. Every $[I] \in \text{Cl}(K)$ has a representative $I \trianglelefteq \mathcal{O}_K$ with $\text{Nm}(I) \leq M_K$. □

The ideal class group...

Examples

- If $K = \mathbb{Q}, \mathbb{Q}(i), \mathbb{Q}(\sqrt{-3})$, then $\text{Cl}(K) = 1$, since \mathcal{O}_K is a PID.
- If $K = \mathbb{Q}(\sqrt{-5})$, then $\text{Cl}(K) \neq 1$, since $(2, 1 + \sqrt{-5}) \in \mathcal{I}(K)$ is not principal. However $(2, 1 + \sqrt{-5})^2 = (2)$, so $\mathbb{Z}/2\mathbb{Z} \leq \text{Cl}(K)$. In fact $\text{Cl}(K) \cong \mathbb{Z}/2\mathbb{Z}$, for instance $(3, 1 - \sqrt{-5}) = \left(\frac{1 - \sqrt{-5}}{2}\right) \cdot (2, 1 + \sqrt{-5})$.

Consider $y^2 = x^3 - 5$. Check: x odd. In $\mathbb{Z}[\sqrt{-5}]$,

$$(y + \sqrt{-5})(y - \sqrt{-5}) = (x)^3 \xrightarrow{\text{Nm}} (y \pm \sqrt{-5}) \text{ coprime ideals}$$
$$\xrightarrow{\text{DD}} (y \pm \sqrt{-5}) \text{ ideal cubes.}$$

Since $3 \nmid \#\text{Cl}(\mathbb{Q}(\sqrt{-5}))$,

$$(y \pm \sqrt{-5}) = (a \pm b\sqrt{-5})^3 \implies y \pm \sqrt{-5} = (a \pm b\sqrt{-5})^3$$
$$\implies \dots$$
$$\implies \text{contradiction}$$

What's next?

- ▶ Quadratic forms and form class group

$$\mathrm{Cl}(\mathbb{Q}(\sqrt{n})) \cong \mathrm{Cl}(\Delta_{\mathbb{Q}(\sqrt{n})})$$

- ▶ Picard group and algebraic K-theory

$$\mathrm{Cl}(K) \cong \mathrm{Pic}(\mathrm{Spec}(\mathcal{O}_K)) \quad K_0(\mathcal{O}_K) \cong \mathbb{Z} \oplus \mathrm{Cl}(K)$$

- ▶ Idele class group and class field theory

$$C^1(K) \twoheadrightarrow \mathrm{Cl}(K) \quad \mathrm{Cl}(K) \cong \mathrm{Gal}(H(K)/K)$$

- ▶ Elliptic curves and Tate–Shafarevich group

$$\mathrm{Cl}(K) \cong \mathrm{III}(K)$$

- ▶ Class number one problem and Cohen–Lenstra heuristics

$$\mathrm{Prob}(\mathrm{Cl}(\mathbb{Q}(\sqrt{p})) = 1 \mid p > 0 \text{ prime}) \approx \frac{3}{4}$$