Wednesday, 18 January 2023

Introduction to abelian varieties over finite fields

Dual abelian varieties ${ }^{1}$

David Ang
University College London

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K.

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

$$
\begin{aligned}
\lambda_{(O)}: & E \\
& \xrightarrow{\sim} \mathrm{Cl}^{0}(E) \leq \mathrm{Cl}(E) \\
& \mapsto
\end{aligned}(-P)-(O) .
$$

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

$$
\begin{aligned}
\lambda_{(O)}: & E \\
& \xrightarrow{\sim} \mathrm{Cl}^{0}(E) \leq \mathrm{Cl}(E) \\
& \mapsto
\end{aligned}(-P)-(O) .
$$

Here $\mathrm{Cl}(E)$ is the class group of Weil divisors $\sum_{P \in E} n_{P}(P)$ modulo \sim, where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \bar{K}(E)^{\times}$, and $\mathrm{Cl}^{0}(E)$ is its subgroup with $\sum_{P \in E} n_{P}=0$.

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

$$
\begin{aligned}
\lambda_{(O)}: & E \\
& \xrightarrow{\longrightarrow} \mathrm{Cl}^{0}(E) \leq \mathrm{Cl}(E) \\
& \mapsto(-P)-(O)
\end{aligned} .
$$

Here $\mathrm{Cl}(E)$ is the class group of Weil divisors $\sum_{P \in E} n_{P}(P)$ modulo \sim, where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \bar{K}(E)^{\times}$, and $\mathrm{Cl}^{0}(E)$ is its subgroup with $\sum_{P \in E} n_{P}=0$.

Idea: for any $D \in \mathrm{Cl}^{0}(E)$, the Riemann-Roch space $\mathrm{L}(D+(O))$, where

$$
\mathrm{L}(D):=\left\{f \in \bar{K}(E)^{\times}:(f)+D \geq 0\right\} \cup\{0\},
$$

is one-dimensional, so $D \sim(-P)-(O)$ for some $P \in E$.

Dual elliptic curves

Let (E, O) be an elliptic curve over a field K. Recall that

$$
\begin{aligned}
\lambda_{(O)}: & E \\
& \xrightarrow{\longrightarrow} \mathrm{Cl}^{0}(E) \leq \mathrm{Cl}(E) \\
& \\
& \mapsto
\end{aligned}(-P)-(O) .
$$

Here $\mathrm{Cl}(E)$ is the class group of Weil divisors $\sum_{P \in E} n_{P}(P)$ modulo \sim, where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \bar{K}(E)^{\times}$, and $\mathrm{Cl}^{0}(E)$ is its subgroup with $\sum_{P \in E} n_{P}=0$.

Idea: for any $D \in \mathrm{Cl}^{0}(E)$, the Riemann-Roch space $\mathrm{L}(D+(O))$, where

$$
\mathrm{L}(D):=\left\{f \in \bar{K}(E)^{\times}:(f)+D \geq 0\right\} \cup\{0\},
$$

is one-dimensional, so $D \sim(-P)-(O)$ for some $P \in E$.
For an elliptic curve E, its dual is $\mathrm{Cl}^{0}(E)$.

Invertible sheaves on smooth varieties

Let X / K be a smooth variety.

Invertible sheaves on smooth varieties

Let X / K be a smooth variety. Then identify

$$
\begin{array}{rll}
\mathrm{Cl}(X) & \xrightarrow{\sim} & \operatorname{Pic}(X) \\
D & \mapsto & \mathcal{L}(D)
\end{array}
$$

Invertible sheaves on smooth varieties

Let X / K be a smooth variety. Then identify

$$
\begin{aligned}
\mathrm{Cl}(X) & \xrightarrow{\sim} \operatorname{Pic}(X) \\
D & \mapsto \mathcal{L}(D)
\end{aligned}
$$

Here $\operatorname{Pic}(X)$ is the Picard group of invertible sheaves \mathcal{L} modulo \cong, with

$$
\mathcal{L} \cdot \mathcal{L}^{\prime}:=\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\prime}, \quad \mathcal{L}^{-1}:=\mathcal{H o m}\left(\mathcal{L}, \mathcal{O}_{X}\right)
$$

Invertible sheaves on smooth varieties

Let X / K be a smooth variety. Then identify

$$
\begin{aligned}
\mathrm{Cl}(X) & \xrightarrow{\sim} \operatorname{Pic}(X) \\
D & \mapsto \mathcal{L}(D)
\end{aligned}
$$

Here $\operatorname{Pic}(X)$ is the Picard group of invertible sheaves \mathcal{L} modulo \cong, with

$$
\mathcal{L} \cdot \mathcal{L}^{\prime}:=\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\prime}, \quad \mathcal{L}^{-1}:=\mathcal{H o m}\left(\mathcal{L}, \mathcal{O}_{X}\right)
$$

and $\mathcal{L}(D)$ is the sheaf of \mathcal{O}_{X}-modules such that for any open $U \subseteq X$,

$$
\Gamma(U, \mathcal{L}(D)):=\left\{f \in K(X)^{\times}:(f)+D \geq 0 \text { on } U\right\} \cup\{0\} .
$$

Invertible sheaves on smooth varieties

Let X / K be a smooth variety. Then identify

$$
\begin{aligned}
\mathrm{Cl}(X) & \xrightarrow{\sim} \operatorname{Pic}(X) \\
D & \mapsto \mathcal{L}(D)
\end{aligned}
$$

Here $\operatorname{Pic}(X)$ is the Picard group of invertible sheaves \mathcal{L} modulo \cong, with

$$
\mathcal{L} \cdot \mathcal{L}^{\prime}:=\mathcal{L} \otimes_{\mathcal{O}_{X}} \mathcal{L}^{\prime}, \quad \mathcal{L}^{-1}:=\mathcal{H o m}\left(\mathcal{L}, \mathcal{O}_{X}\right)
$$

and $\mathcal{L}(D)$ is the sheaf of \mathcal{O}_{x}-modules such that for any open $U \subseteq X$,

$$
\Gamma(U, \mathcal{L}(D)):=\left\{f \in K(X)^{\times}:(f)+D \geq 0 \text { on } U\right\} \cup\{0\} .
$$

If $f: Y \rightarrow X$ is a morphism, then there is also a pull-back

$$
f^{*} \mathcal{L}:=f^{-1} \mathcal{L} \otimes_{f-1} \mathcal{O}_{Y} \mathcal{O}_{X} \in \operatorname{Pic}(Y)
$$

Invertible sheaves on abelian varieties

Let A / K be an abelian variety.

Invertible sheaves on abelian varieties

Let A / K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_{a}: A \rightarrow A$ induces $\tau_{a}^{*}: \operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A)$.

Invertible sheaves on abelian varieties

Let A / K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_{a}: A \rightarrow A$ induces $\tau_{a}^{*}: \operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
\begin{aligned}
\lambda_{\mathcal{L}}: A(K) & \rightarrow \operatorname{Pic}(A) \\
a & \mapsto \tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} .
\end{aligned}
$$

Invertible sheaves on abelian varieties

Let A / K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_{a}: A \rightarrow A$ induces $\tau_{a}^{*}: \operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
\begin{aligned}
\lambda_{\mathcal{L}}: A(K) & \rightarrow \operatorname{Pic}(A) \\
a & \mapsto \tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} .
\end{aligned}
$$

This is a homomorphism, by theorem of the square

$$
\tau_{a+b}^{*} \mathcal{L} \cdot \mathcal{L} \cong \tau_{a}^{*} \mathcal{L} \cdot \tau_{b}^{*} \mathcal{L}, \quad a, b \in A(K)
$$

Invertible sheaves on abelian varieties

Let A / K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_{a}: A \rightarrow A$ induces $\tau_{a}^{*}: \operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
\begin{aligned}
\lambda_{\mathcal{L}}: A(K) & \rightarrow \operatorname{Pic}(A) \\
a & \mapsto \tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} .
\end{aligned}
$$

This is a homomorphism, by theorem of the square

$$
\tau_{a+b}^{*} \mathcal{L} \cdot \mathcal{L} \cong \tau_{a}^{*} \mathcal{L} \cdot \tau_{b}^{*} \mathcal{L}, \quad a, b \in A(K)
$$

This follows from theorem of the cube ${ }^{2}$ that
$(f+g+h)^{*} \mathcal{L} \cdot(f+g)^{*} \mathcal{L}^{-1} \cdot(f+h)^{*} \mathcal{L}^{-1} \cdot(g+h)^{*} \mathcal{L}^{-1} \cdot f^{*} \mathcal{L} \cdot g^{*} \mathcal{L} \cdot h^{*} \mathcal{L}$
is trivial for any regular maps $f, g, h: V \rightarrow A$ from a variety V / K.

Invertible sheaves on abelian varieties

Let A / K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_{a}: A \rightarrow A$ induces $\tau_{a}^{*}: \operatorname{Pic}(A) \rightarrow \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
\begin{aligned}
\lambda_{\mathcal{L}}: A(K) & \rightarrow \operatorname{Pic}(A) \\
a & \mapsto \tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} .
\end{aligned}
$$

This is a homomorphism, by theorem of the square

$$
\tau_{a+b}^{*} \mathcal{L} \cdot \mathcal{L} \cong \tau_{a}^{*} \mathcal{L} \cdot \tau_{b}^{*} \mathcal{L}, \quad a, b \in A(K)
$$

This follows from theorem of the cube ${ }^{2}$ that
$(f+g+h)^{*} \mathcal{L} \cdot(f+g)^{*} \mathcal{L}^{-1} \cdot(f+h)^{*} \mathcal{L}^{-1} \cdot(g+h)^{*} \mathcal{L}^{-1} \cdot f^{*} \mathcal{L} \cdot g^{*} \mathcal{L} \cdot h^{*} \mathcal{L}$
is trivial for any regular maps $f, g, h: V \rightarrow A$ from a variety V / K.
In fact, if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, then $\operatorname{ker}\left(\lambda_{\mathcal{L}}\right) \leq A(K)$ is finite. ${ }^{3}$

[^0]
Invertible sheaves and Weil divisors

Remark
Equivalently, $\tau_{a}^{*}: \mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A)$ translates a Weil divisor D by $-a$,

Invertible sheaves and Weil divisors

Remark
Equivalently, $\tau_{a}^{*}: \mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A)$ translates a Weil divisor D by $-a$, so

$$
\begin{aligned}
\lambda_{\mathcal{L}(D)}: A(K) & \rightarrow \mathrm{Cl}(A) \\
a & \mapsto D_{-a}-D,
\end{aligned}
$$

where D_{-a} is translation of D by $-a$.

Invertible sheaves and Weil divisors

Remark

Equivalently, $\tau_{a}^{*}: \mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A)$ translates a Weil divisor D by $-a$, so

$$
\begin{aligned}
\lambda_{\mathcal{L}(D)}: A(K) & \rightarrow \mathrm{Cl}(A) \\
a & \mapsto D_{-a}-D,
\end{aligned}
$$

where D_{-a} is translation of D by $-a$. Theorem of the square becomes

$$
D_{-(a+b)}+D \sim D_{-a}+D_{-b}, \quad a, b \in A(K)
$$

Invertible sheaves and Weil divisors

Remark
Equivalently, $\tau_{a}^{*}: \mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A)$ translates a Weil divisor D by $-a$, so

$$
\begin{aligned}
\lambda_{\mathcal{L}(D)}: A(K) & \rightarrow \mathrm{Cl}(A) \\
a & \mapsto D_{-a}-D,
\end{aligned}
$$

where D_{-a} is translation of D by $-a$. Theorem of the square becomes

$$
D_{-(a+b)}+D \sim D_{-a}+D_{-b}, \quad a, b \in A(K)
$$

If $A=E$, then

$$
\begin{aligned}
\lambda_{\mathcal{L}((O))}: E(K) & \rightarrow \mathrm{Cl}(E) \\
P & \mapsto(-P)-(O) .
\end{aligned}
$$

Invertible sheaves and Weil divisors

Remark

Equivalently, $\tau_{a}^{*}: \mathrm{Cl}(A) \rightarrow \mathrm{Cl}(A)$ translates a Weil divisor D by $-a$, so

$$
\begin{aligned}
\lambda_{\mathcal{L}(D)}: A(K) & \rightarrow \mathrm{Cl}(A) \\
a & \mapsto D_{-a}-D,
\end{aligned}
$$

where D_{-a} is translation of D by $-a$. Theorem of the square becomes

$$
D_{-(a+b)}+D \sim D_{-a}+D_{-b}, \quad a, b \in A(K)
$$

If $A=E$, then

$$
\begin{aligned}
\lambda_{\mathcal{L}((O))}: E(K) & \rightarrow \mathrm{Cl}(E) \\
P & \mapsto(-P)-(O) .
\end{aligned}
$$

In fact, if $D \in \mathrm{Cl}(E)$ is effective, then $\operatorname{deg} D=0$ iff $\lambda_{\mathcal{L}(D)}=0 .{ }^{4}$

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component.

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
\mathrm{K}(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\} .
$$

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
K(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\} .
$$

Then $K(\mathcal{L})(K)=\operatorname{ker}\left(\lambda_{\mathcal{L}}\right)$ as subgroups of A, since

$$
\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}}=\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K)
$$

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
K(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\} .
$$

Then $K(\mathcal{L})(K)=\operatorname{ker}\left(\lambda_{\mathcal{L}}\right)$ as subgroups of A, since

$$
\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}}=\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K) .
$$

In fact, $\mathrm{K}(\mathcal{L})$ is closed as a subvariety of A. ${ }^{5}$

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
K(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\} .
$$

Then $K(\mathcal{L})(K)=\operatorname{ker}\left(\lambda_{\mathcal{L}}\right)$ as subgroups of A, since

$$
\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}}=\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K)
$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A. ${ }^{5}$
Define the subgroup of translation-invariant invertible sheaves

$$
\operatorname{Pic}^{0}(A):=\{\mathcal{L} \in \operatorname{Pic}(A): \mathrm{K}(\mathcal{L})=A\} .
$$

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
K(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\}
$$

Then $\mathrm{K}(\mathcal{L})(K)=\operatorname{ker}\left(\lambda_{\mathcal{L}}\right)$ as subgroups of A, since

$$
\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}}=\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K)
$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of $A .{ }^{5}$

Define the subgroup of translation-invariant invertible sheaves

$$
\operatorname{Pic}^{0}(A):=\{\mathcal{L} \in \operatorname{Pic}(A): \mathrm{K}(\mathcal{L})=A\}
$$

Then $\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} \in \operatorname{Pic}^{0}(A)$ for any $a \in A(K)$, so $\operatorname{im}\left(\lambda_{\mathcal{L}}\right) \subseteq \operatorname{Pic}^{0}(A)$.

Translation-invariant invertible sheaves

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_{i}: A \times A \rightarrow A$ be the projection map to the i-th component. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$
K(\mathcal{L}):=\left\{a \in A:\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}} \cong \mathcal{O}_{A}\right\} .
$$

Then $K(\mathcal{L})(K)=\operatorname{ker}\left(\lambda_{\mathcal{L}}\right)$ as subgroups of A, since

$$
\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times\{a\}}=\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1}, \quad a \in A(K) .
$$

In fact, $\mathrm{K}(\mathcal{L})$ is closed as a subvariety of A. ${ }^{5}$
Define the subgroup of translation-invariant invertible sheaves

$$
\operatorname{Pic}^{0}(A):=\{\mathcal{L} \in \operatorname{Pic}(A): \mathrm{K}(\mathcal{L})=A\} .
$$

Then $\tau_{a}^{*} \mathcal{L} \cdot \mathcal{L}^{-1} \in \operatorname{Pic}^{0}(A)$ for any $a \in A(K)$, so $\operatorname{im}\left(\lambda_{\mathcal{L}}\right) \subseteq \operatorname{Pic}^{0}(A)$.
Need an abelian variety \widehat{A} such that $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $K(\mathcal{L})$ is a reduced subgroup variety of A,

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $\mathrm{K}(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $\mathrm{K}(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $K(\mathcal{L})$-orbits of A.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $\mathrm{K}(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $K(\mathcal{L})$-orbits of A.
- If $\operatorname{char}(K) \neq 0$, then $K(\mathcal{L})$ may not be reduced in general, so redefine $\mathrm{K}(\mathcal{L})$ as the maximal subscheme of A such that $\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times K(\mathcal{L})} \cong \pi_{2}^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}(\mathrm{K}(\mathcal{L}))$,

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $\mathrm{K}(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $\mathrm{K}(\mathcal{L})$-orbits of A.
- If $\operatorname{char}(K) \neq 0$, then $K(\mathcal{L})$ may not be reduced in general, so redefine $\mathrm{K}(\mathcal{L})$ as the maximal subscheme of A such that $\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times K(\mathcal{L})} \cong \pi_{2}^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}(\mathrm{K}(\mathcal{L}))$, and $A / K(\mathcal{L})$ is naturally an algebraic space quotient of A.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $\mathrm{K}(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $\mathrm{K}(\mathcal{L})$-orbits of A.
- If $\operatorname{char}(K) \neq 0$, then $\mathrm{K}(\mathcal{L})$ may not be reduced in general, so redefine $\mathrm{K}(\mathcal{L})$ as the maximal subscheme of A such that $\left.\left(+^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times K(\mathcal{L})} \cong \pi_{2}^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}(\mathrm{K}(\mathcal{L}))$, and $A / K(\mathcal{L})$ is naturally an algebraic space quotient of A.
The dual abelian variety of A is $\widehat{A}:=A / K(\mathcal{L})$.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $K(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $K(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $K(\mathcal{L})$-orbits of A.
- If $\operatorname{char}(K) \neq 0$, then $K(\mathcal{L})$ may not be reduced in general, so redefine $K(\mathcal{L})$ as the maximal subscheme of A such that $\left.\left(+{ }^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times K(\mathcal{L})} \cong \pi_{2}^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}(\mathrm{K}(\mathcal{L}))$, and $A / \mathrm{K}(\mathcal{L})$ is naturally an algebraic space quotient of A.
The dual abelian variety of A is $\widehat{A}:=A / K(\mathcal{L})$.

Remark

Since $\mathcal{L} \in \operatorname{Pic}^{0}(A)$ iff $+^{*} \mathcal{L} \cong \pi_{1}^{*} \mathcal{L} \cdot \pi_{2}^{*} \mathcal{L}$, addition on A lifts to multiplication on \mathcal{L} and makes $\mathcal{G}(\mathcal{L}):=\mathcal{L} \backslash\{0\}$ an abelian group scheme over K.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}}: A(K) \rightarrow \operatorname{Pic}^{0}(A)$ has kernel $\mathrm{K}(\mathcal{L})(K)$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ${ }^{6}$ so \widehat{A} should be the quotient variety $A / K(\mathcal{L})$.

- If $\operatorname{char}(K)=0$, then $K(\mathcal{L})$ is a reduced subgroup variety of A, and $A / K(\mathcal{L})$ is simply defined as the $K(\mathcal{L})$-orbits of A.
- If $\operatorname{char}(K) \neq 0$, then $K(\mathcal{L})$ may not be reduced in general, so redefine $\mathrm{K}(\mathcal{L})$ as the maximal subscheme of A such that $\left.\left(+{ }^{*} \mathcal{L} \cdot \pi_{1}^{*} \mathcal{L}^{-1}\right)\right|_{A \times K(\mathcal{L})} \cong \pi_{2}^{*} \mathcal{L}^{\prime}$ for some $\mathcal{L}^{\prime} \in \operatorname{Pic}(\mathrm{K}(\mathcal{L}))$, and $A / \mathrm{K}(\mathcal{L})$ is naturally an algebraic space quotient of A.
The dual abelian variety of A is $\widehat{A}:=A / K(\mathcal{L})$.

Remark

Since $\mathcal{L} \in \operatorname{Pic}^{0}(A)$ iff $+^{*} \mathcal{L} \cong \pi_{1}^{*} \mathcal{L} \cdot \pi_{2}^{*} \mathcal{L}$, addition on A lifts to multiplication on \mathcal{L} and makes $\mathcal{G}(\mathcal{L}):=\mathcal{L} \backslash\{0\}$ an abelian group scheme over K. In fact, $\mathcal{G}(\mathcal{L})$ is an extension of A by \mathbb{G}_{m}, and this defines an isomorphism $\mathcal{G}: \operatorname{Pic}^{0}(A) \xrightarrow{\sim} \operatorname{Ext}_{K}^{1}\left(A, \mathbb{G}_{\mathrm{m}}\right)$ of abelian group schemes.

[^1]
Representability of dual abelian varieties

Consider the functor $\mathcal{F}: \mathbf{V a r}_{K} \rightarrow$ Set that associates a variety V / K to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that
$-\left.\mathcal{L}\right|_{A \times\{x\}} \in \operatorname{Pic}^{0}\left(A_{x}\right)$ for any $x \in V$, and
$-\left.\mathcal{L}\right|_{\{0\} \times V} \cong \mathcal{O}_{V}$.

Representability of dual abelian varieties

Consider the functor $\mathcal{F}: \mathbf{V a r}_{K} \rightarrow$ Set that associates a variety V / K to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that
$-\left.\mathcal{L}\right|_{A \times\{x\}} \in \operatorname{Pic}^{0}\left(A_{x}\right)$ for any $x \in V$, and
$-\left.\mathcal{L}\right|_{\{0\} \times V} \cong \mathcal{O}_{V}$.
Theorem
\widehat{A} represents \mathcal{F}. In other words $\mathcal{F}(V)=\operatorname{Hom}(V, \widehat{A})$ for any variety V / K.
Proof.
Sketched in Section I.8.

Representability of dual abelian varieties

Consider the functor $\mathcal{F}: \mathbf{V a r}_{K} \rightarrow$ Set that associates a variety V / K to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that
$-\left.\mathcal{L}\right|_{A \times\{x\}} \in \operatorname{Pic}^{0}\left(A_{x}\right)$ for any $x \in V$, and
$-\left.\mathcal{L}\right|_{\{0\} \times V} \cong \mathcal{O}_{V}$.
Theorem
\widehat{A} represents \mathcal{F}. In other words $\mathcal{F}(V)=\operatorname{Hom}(V, \widehat{A})$ for any variety V / K.
Proof.
Sketched in Section I.8.

By construction, $\widehat{A}(L)=\operatorname{Pic}^{0}\left(A_{L}\right)$ for any field extension L / K.

Representability of dual abelian varieties

Consider the functor $\mathcal{F}: \mathbf{V a r}_{K} \rightarrow$ Set that associates a variety V / K to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that
$-\left.\mathcal{L}\right|_{A \times\{x\}} \in \operatorname{Pic}^{0}\left(A_{x}\right)$ for any $x \in V$, and
$-\left.\mathcal{L}\right|_{\{0\} \times V} \cong \mathcal{O}_{V}$.
Theorem
\widehat{A} represents \mathcal{F}. In other words $\mathcal{F}(V)=\operatorname{Hom}(V, \widehat{A})$ for any variety V / K.
Proof.
Sketched in Section I.8.

By construction, $\widehat{A}(L)=\operatorname{Pic}^{0}\left(A_{L}\right)$ for any field extension L / K.
By universality, \widehat{A} is unique up to unique isomorphism.

Representability of dual abelian varieties

Consider the functor $\mathcal{F}: \mathbf{V a r}_{K} \rightarrow$ Set that associates a variety V / K to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that
$-\left.\mathcal{L}\right|_{A \times\{x\}} \in \operatorname{Pic}^{0}\left(A_{x}\right)$ for any $x \in V$, and
$-\left.\mathcal{L}\right|_{\{0\} \times V} \cong \mathcal{O}_{V}$.
Theorem
\widehat{A} represents \mathcal{F}. In other words $\mathcal{F}(V)=\operatorname{Hom}(V, \widehat{A})$ for any variety V / K.
Proof.
Sketched in Section I.8.

By construction, $\widehat{A}(L)=\operatorname{Pic}^{0}\left(A_{L}\right)$ for any field extension L / K.
By universality, \widehat{A} is unique up to unique isomorphism. Its corresponding universal element is the Poincaré sheaf $\mathcal{P}_{A} \in \mathcal{F}(\widehat{A})$, which associates any $\mathcal{L} \in \operatorname{Pic}^{0}(A)$ with a unique $\left.\mathcal{P}_{A}\right|_{A \times\{a\}}$ for some $a \in \widehat{A}(K)$.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Now let $\phi: A \rightarrow B$ be a morphism.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$
\begin{aligned}
\widehat{\phi}: & \widehat{B}
\end{aligned}>\widehat{\mathcal{A}} .
$$

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$
\begin{aligned}
\widehat{\phi}: & \widehat{B} \\
& \mapsto \widehat{\mathcal{A}} \\
\mathcal{L} & \mapsto \phi^{*} \mathcal{L} .
\end{aligned}
$$

If ϕ is an isogeny, then $\operatorname{ker}(\widehat{\phi})=\widehat{\operatorname{ker}(\phi)}$ is the Cartier dual of $\operatorname{ker}(\phi),{ }^{9}$ where $\widehat{\widehat{\operatorname{ker}(\phi)}} \cong \operatorname{ker}(\phi)$.

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$
\begin{aligned}
\widehat{\phi}: \widehat{B} & \mapsto \widehat{A} \\
& \mathcal{L}
\end{aligned} \phi^{*} \mathcal{L} .
$$

If ϕ is an isogeny, then $\operatorname{ker}(\widehat{\phi})=\widehat{\operatorname{ker}(\phi)}$ is the Cartier dual of $\operatorname{ker}(\phi),{ }^{9}$ where $\widehat{\widehat{\operatorname{ker}(\phi)}} \cong \operatorname{ker}(\phi)$. If $K=K^{\text {sep }}$ with $\operatorname{char}(K) \nmid n:=\# \operatorname{ker}(\phi)$, then

$$
\widehat{\operatorname{ker}(\phi)}=\operatorname{Hom}\left(\operatorname{ker}(\phi), \mu_{n}\right) .
$$

Dualities on abelian varieties

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\hat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_{A},{ }^{8}$ since \mathcal{P}_{A} parameterises $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$
\begin{aligned}
\widehat{\phi}: \widehat{B} & \mapsto \widehat{A} \\
\mathcal{L} & \mapsto \phi^{*} \mathcal{L} .
\end{aligned}
$$

If ϕ is an isogeny, then $\operatorname{ker}(\widehat{\phi})=\widehat{\operatorname{ker}(\phi)}$ is the Cartier dual of $\operatorname{ker}(\phi),{ }^{9}$ where $\widehat{\widehat{\operatorname{ker}(\phi)}} \cong \operatorname{ker}(\phi)$. If $K=K^{\text {sep }}$ with $\operatorname{char}(K) \nmid n:=\# \operatorname{ker}(\phi)$, then

$$
\widehat{\operatorname{ker}(\phi)}=\operatorname{Hom}\left(\operatorname{ker}(\phi), \mu_{n}\right) .
$$

This defines a Weil pairing

$$
\mathrm{e}_{\phi}: \operatorname{ker}(\phi) \times \operatorname{ker}(\widehat{\phi}) \rightarrow \mu_{n} .
$$

[^2]
Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$.

Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$. It is principal if it has degree one.

Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$. It is principal if it has degree one.

Remark

Zarhin proved that $(A \times \widehat{A})^{4}$ is always principally polarised. ${ }^{10}$

Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$. It is principal if it has degree one.

Remark
Zarhin proved that $(A \times \widehat{A})^{4}$ is always principally polarised. ${ }^{10}$

Let $\lambda: A \rightarrow \widehat{A}$ be a polarisation.

Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$. It is principal if it has degree one.

Remark

Zarhin proved that $(A \times \widehat{A})^{4}$ is always principally polarised. ${ }^{10}$
Let $\lambda: A \rightarrow \widehat{A}$ be a polarisation. This defines an involution on $\operatorname{End}^{0}(A)$ called the Rosati involution $(\cdot)^{\dagger}: \operatorname{End}^{0}(A) \rightarrow \operatorname{End}^{0}(A)$, where

$$
A \xrightarrow{\phi} A \quad \longmapsto \quad A \xrightarrow{\lambda} \widehat{A} \xrightarrow{\widehat{\phi}} \widehat{A} \xrightarrow{\lambda^{-1}} A,
$$

which is well-defined since $\lambda^{-1} \in \operatorname{Hom}^{0}(\widehat{A}, A)$.

Polarisations on abelian varieties

A polarisation on A is an isogeny $\lambda: A \rightarrow \widehat{A}$ such that $\lambda=\lambda_{\mathcal{L}}$ over \bar{K} for some ample $\mathcal{L} \in \operatorname{Pic}\left(A_{\bar{K}}\right)$. It is principal if it has degree one.

Remark

Zarhin proved that $(A \times \widehat{A})^{4}$ is always principally polarised. ${ }^{10}$
Let $\lambda: A \rightarrow \widehat{A}$ be a polarisation. This defines an involution on $\operatorname{End}^{0}(A)$ called the Rosati involution $(\cdot)^{\dagger}: \operatorname{End}^{0}(A) \rightarrow \operatorname{End}^{0}(A)$, where

$$
A \xrightarrow{\phi} A \quad \longmapsto \quad A \xrightarrow{\lambda} \widehat{A} \xrightarrow{\widehat{\phi}} \widehat{A} \xrightarrow{\lambda^{-1}} A,
$$

which is well-defined since $\lambda^{-1} \in \operatorname{Hom}^{0}(\widehat{A}, A)$. It satisfies

$$
(\phi+\psi)^{\dagger}=\phi^{\dagger}+\psi^{\dagger}, \quad(\phi \circ \psi)^{\dagger}=\psi^{\dagger} \circ \phi^{\dagger}, \quad \phi, \psi \in \operatorname{End}^{0}(A),
$$

and $a^{\dagger}=a$ for any $a \in \mathbb{Q}$.

[^0]: ${ }^{2}$ Theorem I.5.1
 ${ }^{3}$ Proposition I.8.1

[^1]: ${ }^{6}$ Proposition I.8.14
 ${ }^{7}$ Proposition I.9.3

[^2]: ${ }^{8}$ Theorem I.8.9
 ${ }^{9}$ Theorem I.9.1

