Abelian varieties over finite fields

Wednesday, 18 January 2023

Introduction to abelian varieties over finite fields

Dual abelian varieties ¹

David Ang

University College London

¹J S Milne (2008) Abelian Varieties

Let (E, O) be an elliptic curve over a field K.

Let (E, O) be an elliptic curve over a field K. Recall that

$$\begin{array}{rcl} \lambda_{(O)} & : & E & \xrightarrow{\sim} & \operatorname{Cl}^0(E) \leq \operatorname{Cl}(E) \\ & & P & \mapsto & (-P) - (O) \end{array}.$$

Let (E, O) be an elliptic curve over a field K. Recall that

$$\begin{array}{rcl} \lambda_{(O)} & : & E & \xrightarrow{\sim} & \operatorname{Cl}^{0}(E) \leq \operatorname{Cl}(E) \\ & P & \mapsto & (-P) - (O) \end{array}$$

Here $\operatorname{Cl}(E)$ is the **class group** of Weil divisors $\sum_{P \in E} n_P(P)$ modulo \sim , where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \overline{K}(E)^{\times}$, and $\operatorname{Cl}^0(E)$ is its subgroup with $\sum_{P \in E} n_P = 0$.

Let (E, O) be an elliptic curve over a field K. Recall that

$$\begin{array}{rcl} \lambda_{(O)} & : & E & \xrightarrow{\sim} & \operatorname{Cl}^{0}(E) \leq \operatorname{Cl}(E) \\ & P & \mapsto & (-P) - (O) \end{array}$$

Here $\operatorname{Cl}(E)$ is the **class group** of Weil divisors $\sum_{P \in E} n_P(P)$ modulo \sim , where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \overline{K}(E)^{\times}$, and $\operatorname{Cl}^0(E)$ is its subgroup with $\sum_{P \in E} n_P = 0$.

Idea: for any $D \in \operatorname{Cl}^0(E)$, the Riemann-Roch space $\operatorname{L}(D + (O))$, where

$$\mathcal{L}(D) := \{ f \in \overline{K}(E)^{\times} : (f) + D \ge 0 \} \cup \{ 0 \},$$

is one-dimensional, so $D \sim (-P) - (O)$ for some $P \in E$.

Let (E, O) be an elliptic curve over a field K. Recall that

$$\begin{array}{rcl} \lambda_{(O)} & : & E & \xrightarrow{\sim} & \operatorname{Cl}^{0}(E) \leq \operatorname{Cl}(E) \\ & P & \mapsto & (-P) - (O) \end{array}$$

Here $\operatorname{Cl}(E)$ is the **class group** of Weil divisors $\sum_{P \in E} n_P(P)$ modulo \sim , where $D \sim 0$ if D is the divisor (f) of some rational function $f \in \overline{K}(E)^{\times}$, and $\operatorname{Cl}^0(E)$ is its subgroup with $\sum_{P \in E} n_P = 0$.

Idea: for any $D \in \operatorname{Cl}^0(E)$, the Riemann-Roch space $\operatorname{L}(D + (O))$, where

$$\mathcal{L}(D) := \{ f \in \overline{K}(E)^{\times} : (f) + D \ge 0 \} \cup \{ 0 \},\$$

is one-dimensional, so $D \sim (-P) - (O)$ for some $P \in E$.

For an elliptic curve E, its dual is $Cl^{0}(E)$.

Let X/K be a smooth variety.

Let X/K be a smooth variety. Then identify

$$\begin{array}{rcl} \operatorname{Cl}(X) & \xrightarrow{\sim} & \operatorname{Pic}(X) \\ D & \mapsto & \mathcal{L}(D) \end{array}$$

.

Let X/K be a smooth variety. Then identify

$$\begin{array}{rcl} \operatorname{Cl}(X) & \xrightarrow{\sim} & \operatorname{Pic}(X) \\ D & \mapsto & \mathcal{L}(D) \end{array}$$

Here $\operatorname{Pic}(X)$ is the **Picard group** of invertible sheaves \mathcal{L} modulo \cong , with

$$\mathcal{L} \cdot \mathcal{L}' := \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}', \qquad \mathcal{L}^{-1} := \mathcal{H}om(\mathcal{L}, \mathcal{O}_X),$$

Let X/K be a smooth variety. Then identify

$$\begin{array}{rcl} \operatorname{Cl}(X) & \xrightarrow{\sim} & \operatorname{Pic}(X) \\ D & \mapsto & \mathcal{L}(D) \end{array}$$

Here $\operatorname{Pic}(X)$ is the **Picard group** of invertible sheaves \mathcal{L} modulo \cong , with

$$\mathcal{L} \cdot \mathcal{L}' := \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}', \qquad \mathcal{L}^{-1} := \mathcal{H}om(\mathcal{L}, \mathcal{O}_X),$$

and $\mathcal{L}(D)$ is the sheaf of \mathcal{O}_X -modules such that for any open $U \subseteq X$,

 $\Gamma(U,\mathcal{L}(D)):=\{f\in K(X)^{ imes}:(f)+D\geq 0 \text{ on } U\}\cup\{0\}.$

Let X/K be a smooth variety. Then identify

$$\begin{array}{rcl} \operatorname{Cl}(X) & \xrightarrow{\sim} & \operatorname{Pic}(X) \\ D & \mapsto & \mathcal{L}(D) \end{array}$$

Here $\operatorname{Pic}(X)$ is the **Picard group** of invertible sheaves \mathcal{L} modulo \cong , with

$$\mathcal{L} \cdot \mathcal{L}' := \mathcal{L} \otimes_{\mathcal{O}_X} \mathcal{L}', \qquad \mathcal{L}^{-1} := \mathcal{H}\textit{om}(\mathcal{L}, \mathcal{O}_X),$$

and $\mathcal{L}(D)$ is the sheaf of \mathcal{O}_X -modules such that for any open $U \subseteq X$,

$$\Gamma(U,\mathcal{L}(D)):=\{f\in K(X)^{\times}:(f)+D\geq 0 \text{ on } U\}\cup\{0\}.$$

If $f: Y \to X$ is a morphism, then there is also a **pull-back**

$$f^*\mathcal{L} := f^{-1}\mathcal{L} \otimes_{f^{-1}\mathcal{O}_Y} \mathcal{O}_X \in \operatorname{Pic}(Y).$$

Let A/K be an abelian variety.

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \to A$ induces $\tau_a^* : \operatorname{Pic}(A) \to \operatorname{Pic}(A)$.

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \to A$ induces $\tau_a^* : \operatorname{Pic}(A) \to \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$\lambda_{\mathcal{L}}$$
 : $A(\mathcal{K}) \rightarrow \operatorname{Pic}(\mathcal{A})$
 $a \mapsto \tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1}$.

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \to A$ induces $\tau_a^* : \operatorname{Pic}(A) \to \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$\lambda_{\mathcal{L}} : A(\mathcal{K}) \rightarrow \operatorname{Pic}(\mathcal{A})$$

 $a \mapsto \tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1}$

This is a homomorphism, by theorem of the square

$$\tau^*_{a+b}\mathcal{L}\cdot\mathcal{L}\cong \tau^*_a\mathcal{L}\cdot\tau^*_b\mathcal{L}, \qquad a,b\in A(K).$$

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \to A$ induces $\tau_a^* : \operatorname{Pic}(A) \to \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$\lambda_{\mathcal{L}}$$
 : $A(\mathcal{K}) \rightarrow \operatorname{Pic}(\mathcal{A})$
 $a \mapsto au_a^* \mathcal{L} \cdot \mathcal{L}^{-1}$.

This is a homomorphism, by theorem of the square

$$\tau^*_{a+b}\mathcal{L}\cdot\mathcal{L}\cong \tau^*_a\mathcal{L}\cdot\tau^*_b\mathcal{L}, \qquad a,b\in A(K).$$

This follows from **theorem of the cube**² that

$$(f+g+h)^*\mathcal{L}\cdot(f+g)^*\mathcal{L}^{-1}\cdot(f+h)^*\mathcal{L}^{-1}\cdot(g+h)^*\mathcal{L}^{-1}\cdot f^*\mathcal{L}\cdot g^*\mathcal{L}\cdot h^*\mathcal{L}$$

is trivial for any regular maps $f, g, h: V \rightarrow A$ from a variety V/K.

<ロト<回ト<巨ト<Eト<Eト 16/56

²Theorem I.5.1

Let A/K be an abelian variety. For any $a \in A(K)$, the translation map $\tau_a : A \to A$ induces $\tau_a^* : \operatorname{Pic}(A) \to \operatorname{Pic}(A)$. For any $\mathcal{L} \in \operatorname{Pic}(A)$, define

$$\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}(\mathcal{A}) \ a \mapsto \tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1}$$

This is a homomorphism, by theorem of the square

$$\tau^*_{a+b}\mathcal{L}\cdot\mathcal{L}\cong \tau^*_a\mathcal{L}\cdot\tau^*_b\mathcal{L}, \qquad a,b\in A(K).$$

This follows from **theorem of the cube**² that

$$(f+g+h)^*\mathcal{L}\cdot(f+g)^*\mathcal{L}^{-1}\cdot(f+h)^*\mathcal{L}^{-1}\cdot(g+h)^*\mathcal{L}^{-1}\cdot f^*\mathcal{L}\cdot g^*\mathcal{L}\cdot h^*\mathcal{L}$$

is trivial for any regular maps $f, g, h: V \to A$ from a variety V/K.

In fact, if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, then ker $(\lambda_{\mathcal{L}}) \leq A(K)$ is finite.³

²Theorem I.5.1

³Proposition I.8.1

Remark Equivalently, $\tau_a^* : \operatorname{Cl}(A) \to \operatorname{Cl}(A)$ translates a Weil divisor D by -a,

Remark

Equivalently, $au_a^*: \operatorname{Cl}(A) o \operatorname{Cl}(A)$ translates a Weil divisor D by -a, so

$$\lambda_{\mathcal{L}(D)}$$
 : $A(K) \rightarrow \operatorname{Cl}(A)$
 $a \mapsto D_{-a} - D$,

where D_{-a} is translation of D by -a.

Remark

Equivalently, $au_a^*: \operatorname{Cl}(A) o \operatorname{Cl}(A)$ translates a Weil divisor D by -a, so

$$\begin{array}{rcl} \lambda_{\mathcal{L}(D)} & : & \mathcal{A}(\mathcal{K}) & \to & \mathrm{Cl}(\mathcal{A}) \\ & & a & \mapsto & D_{-a} - D \end{array}, \end{array}$$

where D_{-a} is translation of D by -a. Theorem of the square becomes

$$D_{-(a+b)} + D \sim D_{-a} + D_{-b}, \qquad a, b \in A(K).$$

イロト イヨト イヨト イヨト 二日

20 / 56

Remark

Equivalently, $au_a^*:\operatorname{Cl}(A)\to\operatorname{Cl}(A)$ translates a Weil divisor D by -a, so

$$\lambda_{\mathcal{L}(D)}$$
 : $A(K) \rightarrow \operatorname{Cl}(A)$
 $a \mapsto D_{-a} - D$,

where D_{-a} is translation of D by -a. Theorem of the square becomes

$$D_{-(a+b)} + D \sim D_{-a} + D_{-b}, \qquad a, b \in A(K).$$

If A = E, then

$$\begin{array}{rcl} \lambda_{\mathcal{L}((O))} & : & E(K) & \to & \operatorname{Cl}(E) \\ & & P & \mapsto & (-P) - (O) \end{array} .$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>21/56

Remark

Equivalently, $au_a^*: \operatorname{Cl}(A) o \operatorname{Cl}(A)$ translates a Weil divisor D by -a, so

$$\begin{array}{rcl} \lambda_{\mathcal{L}(D)} & : & \mathcal{A}(\mathcal{K}) & \to & \mathrm{Cl}(\mathcal{A}) \\ & & a & \mapsto & D_{-a} - D \end{array}, \end{array}$$

where D_{-a} is translation of D by -a. Theorem of the square becomes

$$D_{-(a+b)} + D \sim D_{-a} + D_{-b}, \qquad a, b \in A(K).$$

If A = E, then

$$\lambda_{\mathcal{L}((O))}$$
 : $E(K) \rightarrow \operatorname{Cl}(E)$
 $P \mapsto (-P) - (O)$.

In fact, if $D \in \operatorname{Cl}(E)$ is effective, then deg D = 0 iff $\lambda_{\mathcal{L}(D)} = 0$.⁴

⁴Example I.8.3

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component.

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1}) |_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1}) |_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Then $K(\mathcal{L})(\mathcal{K}) = \ker(\lambda_{\mathcal{L}})$ as subgroups of \mathcal{A} , since

$$(+^*\mathcal{L}\cdot\pi_1^*\mathcal{L}^{-1})|_{A\times\{a\}}=\tau_a^*\mathcal{L}\cdot\mathcal{L}^{-1}, \qquad a\in A(K).$$

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Then $K(\mathcal{L})(\mathcal{K}) = \ker(\lambda_{\mathcal{L}})$ as subgroups of A, since

$$(+^*\mathcal{L}\cdot\pi_1^*\mathcal{L}^{-1})|_{A\times\{a\}}= au_a^*\mathcal{L}\cdot\mathcal{L}^{-1}, \qquad a\in A(K).$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A. ⁵

⁵Proposition I.5.19

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Then $K(\mathcal{L})(\mathcal{K}) = \ker(\lambda_{\mathcal{L}})$ as subgroups of A, since

$$(+^*\mathcal{L}\cdot\pi_1^*\mathcal{L}^{-1})|_{A\times\{a\}}= au_a^*\mathcal{L}\cdot\mathcal{L}^{-1}, \qquad a\in A(K).$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A. ⁵

Define the subgroup of translation-invariant invertible sheaves

$$\operatorname{Pic}^{0}(A) := \{ \mathcal{L} \in \operatorname{Pic}(A) : \operatorname{K}(\mathcal{L}) = A \}.$$

(日)

27/56

⁵Proposition I.5.19

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Then $K(\mathcal{L})(\mathcal{K}) = \ker(\lambda_{\mathcal{L}})$ as subgroups of \mathcal{A} , since

$$(+^*\mathcal{L}\cdot\pi_1^*\mathcal{L}^{-1})|_{A\times\{a\}}=\tau_a^*\mathcal{L}\cdot\mathcal{L}^{-1}, \qquad a\in A(K).$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A. ⁵

Define the subgroup of translation-invariant invertible sheaves

$$\operatorname{Pic}^{0}(A) := \{ \mathcal{L} \in \operatorname{Pic}(A) : \operatorname{K}(\mathcal{L}) = A \}.$$

Then $\tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1} \in \operatorname{Pic}^0(\mathcal{A})$ for any $a \in \mathcal{A}(\mathcal{K})$, so $\operatorname{im}(\lambda_{\mathcal{L}}) \subseteq \operatorname{Pic}^0(\mathcal{A})$.

⁵Proposition I.5.19

Let $+: A \times A \rightarrow A$ be the addition map, and let $\pi_i: A \times A \rightarrow A$ be the projection map to the *i*-th component. For any $\mathcal{L} \in \text{Pic}(A)$, define

$$\mathrm{K}(\mathcal{L}) := \{ \mathbf{a} \in \mathcal{A} : (+^*\mathcal{L} \cdot \pi_1^*\mathcal{L}^{-1})|_{\mathcal{A} \times \{\mathbf{a}\}} \cong \mathcal{O}_{\mathcal{A}} \}.$$

Then $K(\mathcal{L})(\mathcal{K}) = \ker(\lambda_{\mathcal{L}})$ as subgroups of A, since

$$(+^*\mathcal{L}\cdot\pi_1^*\mathcal{L}^{-1})|_{A\times\{a\}}=\tau_a^*\mathcal{L}\cdot\mathcal{L}^{-1}, \qquad a\in A(K).$$

In fact, $K(\mathcal{L})$ is closed as a subvariety of A. ⁵

Define the subgroup of translation-invariant invertible sheaves

$$\operatorname{Pic}^{0}(A) := \{ \mathcal{L} \in \operatorname{Pic}(A) : \operatorname{K}(\mathcal{L}) = A \}.$$

Then $\tau_a^* \mathcal{L} \cdot \mathcal{L}^{-1} \in \operatorname{Pic}^0(\mathcal{A})$ for any $a \in \mathcal{A}(\mathcal{K})$, so $\operatorname{im}(\lambda_{\mathcal{L}}) \subseteq \operatorname{Pic}^0(\mathcal{A})$.

Need an abelian variety \widehat{A} such that $\widehat{A}(K) \cong \operatorname{Pic}^{0}(A)$.

⁵Proposition I.5.19

Idea: $\lambda_{\mathcal{L}} : \mathcal{A}(\mathcal{K}) \to \operatorname{Pic}^{0}(\mathcal{A})$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(\mathcal{A})$ is ample, ⁶

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(\mathcal{A})$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(\mathcal{A})$ is ample, ⁶ so $\widehat{\mathcal{A}}$ should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

• If $char(\mathcal{K}) = 0$, then $K(\mathcal{L})$ is a reduced subgroup variety of A,

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(\mathcal{A})$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(\mathcal{A})$ is ample, ⁶ so $\widehat{\mathcal{A}}$ should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

- If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.
- If char(K) ≠ 0, then K(L) may not be reduced in general, so redefine K(L) as the maximal subscheme of A such that (+*L · π₁^{*}L⁻¹)|_{A×K(L)} ≅ π₂^{*}L' for some L' ∈ Pic(K(L)),

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

- If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.
- If char(K) ≠ 0, then K(L) may not be reduced in general, so redefine K(L) as the maximal subscheme of A such that (+*L · π₁*L⁻¹)|_{A×K(L)} ≃ π₂*L' for some L' ∈ Pic(K(L)), and A/K(L) is naturally an algebraic space quotient of A.

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

- If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.
- If char(K) ≠ 0, then K(L) may not be reduced in general, so redefine K(L) as the maximal subscheme of A such that (+*L · π₁*L⁻¹)|_{A×K(L)} ≅ π₂*L' for some L' ∈ Pic(K(L)), and A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is $\widehat{A} := A/K(\mathcal{L})$.

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

- If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.
- If char(K) ≠ 0, then K(L) may not be reduced in general, so redefine K(L) as the maximal subscheme of A such that (+*L · π₁*L⁻¹)|_{A×K(L)} ≅ π₂*L' for some L' ∈ Pic(K(L)), and A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is $\widehat{A} := A/K(\mathcal{L})$.

Remark

Since $\mathcal{L} \in \operatorname{Pic}^{0}(A)$ iff $+^{*}\mathcal{L} \cong \pi_{1}^{*}\mathcal{L} \cdot \pi_{2}^{*}\mathcal{L}$, addition on A lifts to multiplication on \mathcal{L} and makes $\mathcal{G}(\mathcal{L}) := \mathcal{L} \setminus \{0\}$ an abelian group scheme over K.

⁶Proposition I.8.14

Construction of dual abelian varieties

Idea: $\lambda_{\mathcal{L}} : A(\mathcal{K}) \to \operatorname{Pic}^{0}(A)$ has kernel $\operatorname{K}(\mathcal{L})(\mathcal{K})$, and in fact is surjective if $\mathcal{L} \in \operatorname{Pic}(A)$ is ample, ⁶ so \widehat{A} should be the quotient variety $A/\operatorname{K}(\mathcal{L})$.

- If char(K) = 0, then K(L) is a reduced subgroup variety of A, and A/K(L) is simply defined as the K(L)-orbits of A.
- If char(K) ≠ 0, then K(L) may not be reduced in general, so redefine K(L) as the maximal subscheme of A such that (+*L · π₁*L⁻¹)|_{A×K(L)} ≅ π₂*L' for some L' ∈ Pic(K(L)), and A/K(L) is naturally an algebraic space quotient of A.

The dual abelian variety of A is $\widehat{A} := A/K(\mathcal{L})$.

Remark

Since $\mathcal{L} \in \operatorname{Pic}^{0}(A)$ iff $+^{*}\mathcal{L} \cong \pi_{1}^{*}\mathcal{L} \cdot \pi_{2}^{*}\mathcal{L}$, addition on A lifts to multiplication on \mathcal{L} and makes $\mathcal{G}(\mathcal{L}) := \mathcal{L} \setminus \{0\}$ an abelian group scheme over K. In fact, $\mathcal{G}(\mathcal{L})$ is an extension of A by \mathbb{G}_{m} , and this defines an isomorphism $\mathcal{G} : \operatorname{Pic}^{0}(A) \xrightarrow{\sim} \operatorname{Ext}_{K}^{1}(A, \mathbb{G}_{m})$ of abelian group schemes.⁷

⁶Proposition I.8.14

⁷Proposition I.9.3

Consider the functor $\mathcal{F} : \mathbf{Var}_{\mathcal{K}} \to \mathbf{Set}$ that associates a variety V/\mathcal{K} to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that

•
$$\mathcal{L}|_{A \times \{x\}} \in \operatorname{Pic}^{0}(A_{x})$$
 for any $x \in V$, and

$$\blacktriangleright \mathcal{L}|_{\{0\}\times V}\cong \mathcal{O}_V.$$

Consider the functor $\mathcal{F} : \operatorname{Var}_{\mathcal{K}} \to \operatorname{Set}$ that associates a variety V/\mathcal{K} to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that

▶
$$\mathcal{L}|_{A \times \{x\}} \in \operatorname{Pic}^{0}(A_{x})$$
 for any $x \in V$, and

$$\blacktriangleright \mathcal{L}|_{\{0\}\times V}\cong \mathcal{O}_V.$$

Theorem

 \widehat{A} represents \mathcal{F} . In other words $\mathcal{F}(V) = \operatorname{Hom}(V, \widehat{A})$ for any variety V/K.

Proof.

Sketched in Section I.8.

Consider the functor $\mathcal{F} : \operatorname{Var}_{\mathcal{K}} \to \operatorname{Set}$ that associates a variety V/\mathcal{K} to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that

•
$$\mathcal{L}|_{A imes \{x\}} \in \operatorname{Pic}^0(A_x)$$
 for any $x \in V$, and

$$\blacktriangleright \mathcal{L}|_{\{0\}\times V}\cong \mathcal{O}_V.$$

Theorem

 \widehat{A} represents \mathcal{F} . In other words $\mathcal{F}(V) = \operatorname{Hom}(V, \widehat{A})$ for any variety V/K.

Proof.

Sketched in Section I.8.

By construction, $\widehat{A}(L) = \operatorname{Pic}^{0}(A_{L})$ for any field extension L/K.

Consider the functor $\mathcal{F} : \operatorname{Var}_{\mathcal{K}} \to \operatorname{Set}$ that associates a variety V/\mathcal{K} to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that

•
$$\mathcal{L}|_{A imes \{x\}} \in \operatorname{Pic}^0(A_x)$$
 for any $x \in V$, and

$$\blacktriangleright \mathcal{L}|_{\{0\}\times V}\cong \mathcal{O}_V.$$

Theorem

 \widehat{A} represents \mathcal{F} . In other words $\mathcal{F}(V) = \operatorname{Hom}(V, \widehat{A})$ for any variety V/K.

Proof.

Sketched in Section I.8.

By construction, $\widehat{A}(L) = \operatorname{Pic}^{0}(A_{L})$ for any field extension L/K.

By universality, \widehat{A} is unique up to unique isomorphism.

Consider the functor $\mathcal{F} : \operatorname{Var}_{\mathcal{K}} \to \operatorname{Set}$ that associates a variety V/\mathcal{K} to the set of isomorphism classes of $\mathcal{L} \in \operatorname{Pic}(A \times V)$ such that

►
$$\mathcal{L}|_{A \times \{x\}} \in \operatorname{Pic}^{0}(A_{x})$$
 for any $x \in V$, and

$$\blacktriangleright \mathcal{L}|_{\{0\}\times V}\cong \mathcal{O}_V.$$

Theorem

 \widehat{A} represents \mathcal{F} . In other words $\mathcal{F}(V) = \operatorname{Hom}(V, \widehat{A})$ for any variety V/K.

Proof.

Sketched in Section I.8.

By construction, $\widehat{A}(L) = \operatorname{Pic}^{0}(A_{L})$ for any field extension L/K.

By universality, \widehat{A} is unique up to unique isomorphism. Its corresponding universal element is the **Poincaré sheaf** $\mathcal{P}_A \in \mathcal{F}(\widehat{A})$, which associates any $\mathcal{L} \in \operatorname{Pic}^0(A)$ with a unique $\mathcal{P}_A|_{A \times \{a\}}$ for some $a \in \widehat{A}(K)$.

The functor $A\mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}}\cong A$.

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(K) \cong \operatorname{Pic}^0(A)$.

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(\mathcal{K}) \cong \operatorname{Pic}^0(A)$.

Now let $\phi : A \to B$ be a morphism.

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(\mathcal{K}) \cong \operatorname{Pic}^0(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$\widehat{\phi}$$
 : $\widehat{B} \mapsto \widehat{A}$
 $\mathcal{L} \mapsto \phi^* \mathcal{L}$

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(\mathcal{K}) \cong \operatorname{Pic}^0(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$\widehat{\phi}$$
 : $\widehat{B} \mapsto \widehat{A}$
 $\mathcal{L} \mapsto \phi^* \mathcal{L}$

If ϕ is an isogeny, then $\ker(\widehat{\phi}) = \widehat{\ker(\phi)}$ is the *Cartier dual* of $\ker(\phi)$, ⁹ where $\widehat{\ker(\phi)} \cong \ker(\phi)$.

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(\mathcal{K}) \cong \operatorname{Pic}^0(A)$.

Now let $\phi: A \rightarrow B$ be a morphism. Then it has a dual morphism

$$\begin{array}{rcccc} \widehat{\phi} & : & \widehat{B} & \mapsto & \widehat{A} \\ & & \mathcal{L} & \mapsto & \phi^* \mathcal{L} \end{array}$$

If ϕ is an isogeny, then $\ker(\widehat{\phi}) = \widehat{\ker(\phi)}$ is the *Cartier dual* of $\ker(\phi)$, ⁹ where $\widehat{\ker(\phi)} \cong \ker(\phi)$. If $K = K^{\text{sep}}$ with $\operatorname{char}(K) \nmid n := \# \ker(\phi)$, then

 $\widehat{\operatorname{ker}(\phi)} = \operatorname{Hom}(\operatorname{ker}(\phi), \mu_n).$

⁸Theorem I.8.9 ⁹Theorem I.9.1

The functor $A \mapsto \widehat{A}$ is a duality theory in the sense that $\widehat{\widehat{A}} \cong A$. This follows from $\mathcal{P}_{\widehat{A}} \cong \mathcal{P}_A$, ⁸ since \mathcal{P}_A parameterises $\widehat{A}(\mathcal{K}) \cong \operatorname{Pic}^0(A)$.

Now let $\phi : A \rightarrow B$ be a morphism. Then it has a dual morphism

$$\widehat{\phi}$$
 : \widehat{B} \mapsto \widehat{A}
 \mathcal{L} \mapsto $\phi^*\mathcal{L}$

If ϕ is an isogeny, then $\ker(\widehat{\phi}) = \widehat{\ker(\phi)}$ is the *Cartier dual* of $\ker(\phi)$, ⁹ where $\widehat{\ker(\phi)} \cong \ker(\phi)$. If $K = K^{\text{sep}}$ with $\operatorname{char}(K) \nmid n := \# \ker(\phi)$, then

$$\ker(\phi) = \operatorname{Hom}(\ker(\phi), \mu_n)$$

This defines a Weil pairing

$$e_{\phi}: \ker(\phi) \times \ker(\widehat{\phi}) \to \mu_n$$

⁸Theorem I.8.9

⁹Theorem I.9.1

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$.

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

Remark

Zarhin proved that $(A \times \widehat{A})^4$ is always principally polarised. ¹⁰

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

Remark

Zarhin proved that $(A imes \widehat{A})^4$ is always principally polarised. ¹⁰

Let $\lambda : A \to \widehat{A}$ be a polarisation.

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

Remark

Zarhin proved that $(A imes \widehat{A})^4$ is always principally polarised. ¹⁰

Let $\lambda : A \to \widehat{A}$ be a polarisation. This defines an involution on $\operatorname{End}^{0}(A)$ called the **Rosati involution** $(\cdot)^{\dagger} : \operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A)$, where

$$A \xrightarrow{\phi} A \longrightarrow A \longrightarrow A \xrightarrow{\lambda} \widehat{A} \xrightarrow{\widehat{\phi}} \widehat{A} \xrightarrow{\lambda^{-1}} A,$$

which is well-defined since $\lambda^{-1} \in \operatorname{Hom}^{0}(\widehat{A}, A)$.

¹⁰Theorem I.13.12

A **polarisation** on A is an isogeny $\lambda : A \to \widehat{A}$ such that $\lambda = \lambda_{\mathcal{L}}$ over \overline{K} for some ample $\mathcal{L} \in \operatorname{Pic}(A_{\overline{K}})$. It is **principal** if it has degree one.

Remark

Zarhin proved that $(A imes \widehat{A})^4$ is always principally polarised. ¹⁰

Let $\lambda : A \to \widehat{A}$ be a polarisation. This defines an involution on $\operatorname{End}^{0}(A)$ called the **Rosati involution** $(\cdot)^{\dagger} : \operatorname{End}^{0}(A) \to \operatorname{End}^{0}(A)$, where

$$A \xrightarrow{\phi} A \longrightarrow A \longrightarrow A \xrightarrow{\lambda} \widehat{A} \xrightarrow{\widehat{\phi}} \widehat{A} \xrightarrow{\lambda^{-1}} A,$$

which is well-defined since $\lambda^{-1} \in \operatorname{Hom}^{0}(\widehat{A}, A)$. It satisfies

$$(\phi + \psi)^{\dagger} = \phi^{\dagger} + \psi^{\dagger}, \qquad (\phi \circ \psi)^{\dagger} = \psi^{\dagger} \circ \phi^{\dagger}, \qquad \phi, \psi \in \operatorname{End}^{0}(A),$$

and $a^{\dagger} = a$ for any $a \in \mathbb{Q}$.

¹⁰Theorem I.13.12