

Kolyvagin's theorem

The conjecture of Birch and Swinnerton-Dyer

David Kurniadi Angdinata

University College London

Wednesday, 13 March 2024

Some recapitulation

Let E be a rational elliptic curve of conductor N , and let $K = \mathbb{Q}(\sqrt{-D})$ be an imaginary quadratic field satisfying the **Heegner hypothesis**

$$\ell \mid N \implies \ell \text{ is split in } K.$$

For any n coprime to N , define a **Heegner point of conductor n**

$$P_n := \Phi_N(\mathbb{C}/\mathcal{O}_n, \mathbb{C}/\mathcal{N}_n) \in E(H_n).$$

For any ℓ coprime to nN that is inert in K , there are norm compatibilities

$$\text{tr}_{H_n}^{H_{n\ell}} P_{n\ell} = a_\ell P_n.$$

These form a **Heegner system for (E, K)** .

Furthermore, define the **basic Heegner point**

$$P_K := \text{tr}_K^{H_1}(P_1) \in E(K).$$

Application to BSD

We will do the following next week:

Theorem (Gross–Zagier '86)

There is an explicit constant $\alpha \neq 0$ such that $L'(E/K, 1) = \alpha \cdot \widehat{h}(P_K)$.

We will do the following this week:

Theorem (Kolyvagin '90)

If $\widehat{h}(P_K) \neq 0$, then $\text{rk}_{\mathbb{Z}} E(K) = 1$ and $\#\text{III}(E/K) < \infty$.

In particular, $E(K)_{/\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K$.

This almost proves the following:

Corollary (of Gross–Zagier '86, Kolyvagin '90, etc)

If $\text{ord}_{s=1} L(E, s) \leq 1$, then $\text{rk}_{\mathbb{Z}} E(\mathbb{Q}) = \text{ord}_{s=1} L(E, s)$ and $\#\text{III}(E) < \infty$.

The missing ingredient is the existence of K .

Existence of Heegner fields

Let $-\epsilon$ be the sign in the functional equation

$$\Lambda(E, s) = -\epsilon \cdot \Lambda(E, 2 - s).$$

Theorem (Waldspurger '85, Murty–Murty '97)

If $\epsilon = +$, there are many imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-D})$ satisfying the Heegner hypothesis such that $\text{ord}_{s=1} L(E_D, s) = 0$.

In particular,

$$\text{ord}_{s=1} L(E, s) = \text{ord}_{s=1} L(E/K, s).$$

Theorem (Bump–Friedberg–Hoffstein '90, Murty–Murty '91)

If $\epsilon = -$, there are many imaginary quadratic fields $K = \mathbb{Q}(\sqrt{-D})$ satisfying the Heegner hypothesis such that $\text{ord}_{s=1} L(E_D, s) = 1$.

In particular,

$$\text{ord}_{s=1} L(E, s) = \text{ord}_{s=1} L(E/K, s) - 1.$$

Complex conjugation on Heegner points

Lemma (τ)

Complex conjugation τ maps $P_n \in E(H_n)_{/\text{tor}}$ to

$$\tau(P_n) = \epsilon \cdot \sigma(P_n),$$

for some $\sigma \in \text{Gal}(H_n/K)$.

Proof.

Note that ϵ is precisely the eigenvalue of the Fricke involution w_N on the eigenform f_E associated to E . On the other hand,

$$w_N(\mathbb{C}/\mathcal{O}_n, \mathbb{C}/\mathcal{N}_n) = (\mathbb{C}/\mathcal{N}_n^{-1}, \mathbb{C}/\overline{\mathcal{N}_n}),$$

which differs from $\tau(\mathbb{C}/\mathcal{O}_n, \mathbb{C}/\mathcal{N}_n)$ by some $\sigma \in \text{Gal}(H_n/K) \cong \text{Cl}(\mathcal{O}_n)$.

Now apply Φ_N and the Manin–Drinfeld theorem. □

In particular, $P_K \in E(\mathbb{Q})_{/\text{tor}}$ precisely if $\epsilon = +$.

Proof of Gross–Zagier–Kolyvagin

Proof of BSD for $\text{ord}_{s=1} L(E, s) \leq 1$.

The functional equation says that $L(E, 1) = -\epsilon \cdot L(E, 1)$ and $L'(E, 1) = \epsilon \cdot L'(E, 1)$. Since $\text{ord}_{s=1} L(E, s) \leq 1$,

$$\text{ord}_{s=1} L(E, s) = \begin{cases} 1 & \text{if } \epsilon = +, \\ 0 & \text{if } \epsilon = -. \end{cases}$$

Choose any imaginary quadratic field K satisfying the Heegner hypothesis such that $\text{ord}_{s=1} L(E/K, s) = 1$, which exists by W/MM and BFH/MM.

By Gross–Zagier and Kolyvagin, $E(K)_{/\text{tor}} = \mathbb{Z} \cdot \frac{1}{n} P_K$. By Lemma (τ) ,

$$\text{rk}_{\mathbb{Z}} E(\mathbb{Q}) = \begin{cases} 1 & \text{if } \epsilon = +, \\ 0 & \text{if } \epsilon = -. \end{cases}$$

Finally, $\#\text{III}(E) < \infty$ follows from $\#\text{III}(E/K) < \infty$ by Kolyvagin. □

A weaker version of Kolyvagin

Theorem (Kolyvagin '90)

If $\widehat{h}(P_K) \neq 0$, then $\text{rk}_{\mathbb{Z}} E(K) = 1$ and $\#\text{III}(E/K) < \infty$.

For any prime ℓ ,

$$0 \rightarrow E(K)/\ell E(K) \xrightarrow{\delta} \text{Sel}_{\ell}(E/K) \rightarrow \text{III}(E/K)[\ell] \rightarrow 0.$$

Choose any prime $\ell \nmid 6ND$ such that $\overline{\rho_{E,\ell}}$ is surjective and $P_K \notin \ell E(K)$.
Then $E(K)[\ell] = 0$, so $\text{rk}_{\mathbb{Z}} E(K) = \dim_{\mathbb{F}_{\ell}} E(K)/\ell E(K)$.

Theorem (weak Kolyvagin '90)

$\text{Sel}_{\ell}(E/K) = \mathbb{F}_{\ell} \cdot \delta(P_K)$, so $\text{rk}_{\mathbb{Z}} E(K) \leq 1$ and $\#\text{III}(E/K)[\ell] < \infty$.

When E has no complex multiplication, this excludes finitely many primes by Serre's theorem, so this proves that $\widehat{h}(P_K) \neq 0$ implies $\text{rk}_{\mathbb{Z}} E(K) = 1$.
Kolyvagin proves $\#\text{III}(E/K) < \infty$ by refining the argument for these primes and bounding the ℓ -primary components using Iwasawa theory.

Selmer structures

Let M be a discrete finite irreducible self-dual $\mathbb{F}_\ell[G_K]$ -module.

The inflation-restriction exact sequence says

$$0 \rightarrow H^1(G_p^{\text{nr}}, M^{I_p}) \rightarrow H^1(K_p, M) \rightarrow H^1(I_p, M)^{G_p^{\text{nr}}} \rightarrow 0.$$

For $M = E[\ell]$ and good $p \nmid \ell$, this can be identified with

$$0 \rightarrow E(K_p)/\ell E(K_p) \rightarrow H^1(K_p, E[\ell]) \rightarrow H^1(K_p, E)[\ell] \rightarrow 0.$$

More generally, a **Selmer structure** for (K, M) is an assignment

$$p \longmapsto H_f^1(K_p, M) \subseteq H^1(K_p, M),$$

such that $H_f^1(K_p, M) = H^1(G_p^{\text{nr}}, M^{I_p})$ for all but finitely many places p of K . Its associated **singular quotient** $H_s^1(K_p, M)$ sits in

$$0 \rightarrow H_f^1(K_p, M) \rightarrow H^1(K_p, M) \xrightarrow{(\cdot)^s} H_s^1(K_p, M) \rightarrow 0.$$

Selmer groups

The **Selmer group** $\text{Sel} := \text{Sel}(K, M)$ sits in

$$0 \rightarrow \text{Sel}(K, M) \rightarrow H^1(K, M) \xrightarrow{\prod_p (\cdot)_p^s} \prod_p H_s^1(K_p, M).$$

For $M = E[\ell]$ and $H_f^1(K_p, M) = E(K_p)/\ell E(K_p)$, this is just $\text{Sel}_\ell(E/K)$.

Let S be a finite set of places of K .

- The **relaxed Selmer group** $\text{Sel}^S := \text{Sel}^S(K, M)$ sits in

$$0 \rightarrow \text{Sel}(K, M) \rightarrow \text{Sel}^S(K, M) \xrightarrow{\bigoplus_{p \in S} (\cdot)_p^s} \bigoplus_{p \in S} H_s^1(K_p, M).$$

- The **restricted Selmer group** $\text{Sel}_S := \text{Sel}_S(K, M)$ sits in

$$0 \rightarrow \text{Sel}_S(K, M) \rightarrow \text{Sel}(K, M) \xrightarrow{\bigoplus_{p \in S} (\cdot)_p} \bigoplus_{p \in S} H_f^1(K_p, M).$$

Duality of Selmer groups

Corollary (of Tate duality)

$$\begin{array}{ccccccc} 0 & \rightarrow & \mathrm{Sel} & \rightarrow & \mathrm{Sel}^S & \rightarrow & \bigoplus_{p \in S} H_s^1(K_p, M) \\ & & & & & & \parallel \\ & & & & & & \\ & & & & & & \bigoplus_{p \in S} H_f^1(K_p, M)^\vee \\ & & & & & \rightarrow & \mathrm{Sel}^\vee \rightarrow \mathrm{Sel}_S^\vee \rightarrow 0. \end{array}$$

Proof.

Local Tate duality gives a perfect pairing $H_s^1(K_p, M) \times H_f^1(K_p, M) \rightarrow \mathbb{F}_\ell$.
The Poitou–Tate exact sequence gives exactness at

$$\mathrm{Sel}^S \rightarrow \bigoplus_{p \in S} H^1(K_p, M) \rightarrow \mathrm{Sel}^{S^\vee}.$$

Now apply the snake lemma and diagram chase. □

Complex conjugation on Selmer groups

To compute Sel , it suffices to consider the last three terms

$$0 \rightarrow \text{coker} \left(\text{Sel}^S \rightarrow \bigoplus_{p \in S} H_s^1(K_p, M) \right) \rightarrow \text{Sel}^\vee \rightarrow \text{Sel}_S^\vee \rightarrow 0,$$

for some appropriate finite set of places S of K .

If $\tau \in G_{\mathbb{Q}}$ is an involution with non-zero eigenspaces M^+ and M^- , then

$$0 \rightarrow \text{coker} \left(\text{Sel}^{S_1+} \rightarrow \bigoplus_{p \in S_1} H_s^1(K_p, M)^+ \right) \rightarrow \text{Sel}^{+\vee} \rightarrow \text{Sel}_{S_1}^{+\vee} \rightarrow 0,$$

$$0 \rightarrow \text{coker} \left(\text{Sel}^{S_2-} \rightarrow \bigoplus_{p \in S_2} H_s^1(K_p, M)^- \right) \rightarrow \text{Sel}^{-\vee} \rightarrow \text{Sel}_{S_2}^{-\vee} \rightarrow 0,$$

for some appropriate finite sets of places S_1 and S_2 of K .

Computing Selmer groups

Now consider $M = E[\ell]$.

Corollary (of Chebotarev density)

There is a finite set S of primes of \mathbb{Q} inert in K such that

$$\text{coker} \left(\begin{array}{ccc} \underbrace{\text{Sel}}^{S-\epsilon} & \rightarrow & \bigoplus_{p \in S} \underbrace{H^1(K_p, E)[\ell]^{-\epsilon}}_{\mathbb{F}_\ell \cdot c(p)_p^s} \\ \bigoplus_{p \in S} \mathbb{F}_\ell \cdot c(p)_p^s & & \end{array} \right) \rightarrow \text{Sel}^{-\epsilon \vee} \rightarrow \underbrace{\text{Sel}_S^{-\epsilon \vee}}_0.$$

For any $p \in S$, there is a finite set S_p of primes of \mathbb{Q} inert in K such that

$$\text{coker} \left(\begin{array}{ccc} \underbrace{\text{Sel}}^{S_p \epsilon} & \rightarrow & \bigoplus_{q \in S_p} \underbrace{H^1(K_p, E)[\ell]^\epsilon}_{\mathbb{F}_\ell \cdot c(pq)_q^s} \\ \bigoplus_{q \in S_p} \mathbb{F}_\ell \cdot c(pq)_q^s & & \end{array} \right) \rightarrow \text{Sel}^{\epsilon \vee} \rightarrow \underbrace{\text{Sel}_{S_p}^{\epsilon \vee}}_{\mathbb{F}_\ell \cdot \delta(P_K)} \rightarrow 0.$$

Proof.

Chebotarev density and a lot of Galois cohomology. □

Derivative operators

The classes $c(n) \in H^1(K, E[\ell])$ are derived from $P_n \in E(H_n)$.

It suffices to let n be a product of primes $p \nmid ND\ell$ inert in K , so

$$\mathrm{Gal}(H_n/H_1) \cong \prod_{p|n} \mathrm{Gal}(H_p/H_1) \cong \prod_{p|n} \mathbb{Z}/(p+1)\mathbb{Z} \cdot \sigma_p.$$

Define the **derivative operator** $D_n \in \mathbb{Z}[\mathrm{Gal}(H_n/H_1)]$ by

$$D_n := \prod_{p|n} D_p,$$

where D_p is any solution to $(\sigma_p - 1)D_p = p + 1 - \mathrm{tr}_{H_1}^{H_p}$, and define

$$\mathcal{P}_n := \sum_{\tau \in T_n} \tau(D_n P_n),$$

where T_n is a set of coset representatives for $\mathrm{Gal}(H_n/H_1)$ in $\mathrm{Gal}(H_n/K)$.

Derived classes

Lemma

The class of \mathcal{P}_n in $E(H_n)/\ell E(H_n)$ is invariant under the action of $G_n := \text{Gal}(H_n/K)$ and lies in the $\epsilon_n := \epsilon \cdot (-1)^{\sigma_0(n)}$ eigenspace.

Proof.

Norm compatibilities and Lemma (τ) . □

Define the **derived class** $c(n) \in H^1(K, E[\ell])^{\epsilon_n}$ by $\text{res}_n(c(n)) = \delta_n(\mathcal{P}_n)$ in

$$\begin{array}{ccccccc} & & H^1(G_n, E(H_n)[\ell])^{\epsilon_n} & = & 0 & & \\ & & \downarrow \text{inf}_n & & & & \\ H_f^1(K, E[\ell])^{\epsilon_n} & \xrightarrow{\delta} & H^1(K, E[\ell])^{\epsilon_n} & \longrightarrow & H_s^1(K, E[\ell])^{\epsilon_n} & & \\ \downarrow & & \downarrow \text{res}_n & & \downarrow & & \\ H_f^1(H_n, E[\ell])^{G_n \epsilon_n} & \xrightarrow{\delta_n} & H^1(H_n, E[\ell])^{G_n \epsilon_n} & \longrightarrow & H_s^1(H_n, E[\ell])^{G_n \epsilon_n} & & \\ & & \downarrow \text{tra}_n & & & & \\ & & H^2(G_n, E(H_n)[\ell])^{\epsilon_n} & = & 0. & & \end{array}$$

Ramification of derived classes

Lemma

1. If $p \nmid n$, then $c(n)_p^s = 0$, so $c(n) \in \text{Sel}^{\{p|n\}\epsilon_n}$.
2. If $p \mid n$, then $c(n)_p^s = 0$ if and only if $\mathcal{P}_{n/p} \in \ell E(K_p)$.

Proof of 1 for good $p \nmid \ell$.

Note that $H_s^1(I_p, E[\ell]) = \text{Hom}(I_p, E[\ell])^{G_p^{\text{nr}}}$. Since $(H_n)_p/K$ is unramified at p , the inertia subgroups of K_p and $(H_n)_p$ are both I_p , so

$$\begin{array}{ccccc} H_f^1(K_p, E[\ell]) & \longrightarrow & H^1(K_p, E[\ell]) & \xrightarrow{(\cdot)^s} & \text{Hom}(I_p, E[\ell]) \\ \downarrow & & \downarrow \text{res}_n & & \parallel \\ H_f^1((H_n)_p, E[\ell]) & \xrightarrow{\delta_n} & H^1((H_n)_p, E[\ell]) & \xrightarrow{(\cdot)^s} & \text{Hom}(I_p, E[\ell]). \end{array}$$

Thus $c(n)_p^s = (\text{res}_n(c(n)_p))^s = 0$ by exactness. □

Note that 2 is precisely the reason for the assumption $P_K \notin \ell E(K)$.

References

Different accounts of Kolyvagin's paper on Euler systems:

- ▶ K Rubin (1989) The work of Kolyvagin on the arithmetic of elliptic curves
- ▶ B Gross (1991) Kolyvagin's work on modular elliptic curves
- ▶ T Weston (2001) The Euler system of Heegner points
- ▶ H Darmon (2004) Rational points on modular elliptic curves

Relevant papers on non-vanishing of L-functions:

- ▶ J-L Waldspurger (1985) Sur les valeurs de certaines fonctions L automorphes en leur centre de symetrie
- ▶ D Bump, S Friedberg, and J Hoffstein (1990) Nonvanishing theorems for L-functions of modular forms and their derivatives
- ▶ M R Murty and V K Murty (1991) Mean values of derivatives of modular L-series
- ▶ M R Murty and V K Murty (1997) Non-vanishing of L-functions and applications