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Some recapitulation

Let E be a rational elliptic curve of conductor N, and let K = Q(
√
−D)

be an imaginary quadratic field satisfying the Heegner hypothesis

ℓ | N =⇒ ℓ is split in K .

For any n coprime to N, define a Heegner point of conductor n

Pn := ΦN(C/On,C/Nn) ∈ E (Hn).

For any ℓ coprime to nN that is inert in K , there are norm compatibilities

trHnℓ

Hn
Pnℓ = aℓPn.

These form a Heegner system for (E ,K ).

Furthermore, define the basic Heegner point

PK := trH1

K (P1) ∈ E (K ).
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Application to BSD

We will do the following next week:

Theorem (Gross–Zagier ’86)
There is an explicit constant α ̸= 0 such that L′(E/K , 1) = α · ĥ(PK ).

We will do the following this week:

Theorem (Kolyvagin ’90)
If ĥ(PK ) ̸= 0, then rkZ E (K ) = 1 and #X(E/K ) < ∞.

In particular, E (K )/ tor = Z · 1
nPK .

This almost proves the following:

Corollary (of Gross–Zagier ’86, Kolyvagin ’90, etc)
If ords=1 L(E , s) ≤ 1, then rkZ E (Q) = ords=1 L(E , s) and #X(E ) < ∞.

The missing ingredient is the existence of K .
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Existence of Heegner fields

Let −ϵ be the sign in the functional equation

Λ(E , s) = −ϵ · Λ(E , 2− s).

Theorem (Waldspurger ’85, Murty–Murty ’97)
If ϵ = +, there are many imaginary quadratic fields K = Q(

√
−D)

satisfying the Heegner hypothesis such that ords=1 L(ED , s) = 0.

In particular,
ords=1 L(E , s) = ords=1 L(E/K , s).

Theorem (Bump–Friedberg–Hoffstein ’90, Murty–Murty ’91)
If ϵ = −, there are many imaginary quadratic fields K = Q(

√
−D)

satisfying the Heegner hypothesis such that ords=1 L(ED , s) = 1.

In particular,

ords=1 L(E , s) = ords=1 L(E/K , s)− 1.

4 / 16



Complex conjugation on Heegner points

Lemma (τ)
Complex conjugation τ maps Pn ∈ E (Hn)/ tor to

τ(Pn) = ϵ · σ(Pn),

for some σ ∈ Gal(Hn/K ).

Proof.
Note that ϵ is precisely the eigenvalue of the Fricke involution wN on the
eigenform fE associated to E . On the other hand,

wN(C/On,C/Nn) = (C/N−1
n ,C/Nn),

which differs from τ(C/On,C/Nn) by some σ ∈ Gal(Hn/K ) ∼= Cl(On).
Now apply ΦN and the Manin–Drinfeld theorem.

In particular, PK ∈ E (Q)/ tor precisely if ϵ = +.
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Proof of Gross–Zagier–Kolyvagin

Proof of BSD for ords=1 L(E , s) ≤ 1.
The functional equation says that L(E , 1) = −ϵ · L(E , 1) and
L′(E , 1) = ϵ · L′(E , 1). Since ords=1 L(E , s) ≤ 1,

ords=1 L(E , s) =

{
1 if ϵ = +,

0 if ϵ = −.

Choose any imaginary quadratic field K satisfying the Heegner hypothesis
such that ords=1 L(E/K , s) = 1, which exists by W/MM and BFH/MM.
By Gross–Zagier and Kolyvagin, E (K )/ tor = Z · 1

nPK . By Lemma (τ),

rkZ E (Q) =

{
1 if ϵ = +,

0 if ϵ = −.

Finally, #X(E ) < ∞ follows from #X(E/K ) < ∞ by Kolyvagin.
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A weaker version of Kolyvagin

Theorem (Kolyvagin ’90)
If ĥ(PK ) ̸= 0, then rkZ E (K ) = 1 and #X(E/K ) < ∞.

For any prime ℓ,

0 → E (K )/ℓE (K )
δ−→ Selℓ(E/K ) → X(E/K )[ℓ] → 0.

Choose any prime ℓ ∤ 6ND such that ρE ,ℓ is surjective and PK /∈ ℓE (K ).
Then E (K )[ℓ] = 0, so rkZ E (K ) = dimFℓ

E (K )/ℓE (K ).

Theorem (weak Kolyvagin ’90)
Selℓ(E/K ) = Fℓ · δ(PK ), so rkZ E (K ) ≤ 1 and #X(E/K )[ℓ] < ∞.

When E has no complex multiplication, this excludes finitely many primes
by Serre’s theorem, so this proves that ĥ(PK ) ̸= 0 implies rkZ E (K ) = 1.
Kolyvagin proves #X(E/K ) < ∞ by refining the argument for these
primes and bounding the ℓ-primary components using Iwasawa theory.
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Selmer structures

Let M be a discrete finite irreducible self-dual Fℓ[GK ]-module.

The inflation-restriction exact sequence says

0 → H1(Gnr
p ,M Ip ) → H1(Kp,M) → H1(Ip,M)G

nr
p → 0.

For M = E [ℓ] and good p ∤ ℓ, this can be identified with

0 → E (Kp)/ℓE (Kp) → H1(Kp,E [ℓ]) → H1(Kp,E )[ℓ] → 0.

More generally, a Selmer structure for (K ,M) is an assignment

p 7−→ H1
f (Kp,M) ⊆ H1(Kp,M),

such that H1
f (Kp,M) = H1(Gnr

p ,M Ip ) for all but finitely many places p of

K . Its associated singular quotient H1
s (Kp,M) sits in

0 → H1
f (Kp,M) → H1(Kp,M)

(·)s−−→ H1
s (Kp,M) → 0.
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Selmer groups

The Selmer group Sel := Sel(K ,M) sits in

0 → Sel(K ,M) → H1(K ,M)

∏
p(·)

s
p−−−−→

∏
p

H1
s (Kp,M).

For M = E [ℓ] and H1
f (Kp,M) = E (Kp)/ℓE (Kp), this is just Selℓ(E/K ).

Let S be a finite set of places of K .

▶ The relaxed Selmer group SelS := SelS(K ,M) sits in

0 → Sel(K ,M) → SelS(K ,M)

⊕
p∈S (·)

s
p−−−−−−→

⊕
p∈S

H1
s (Kp,M).

▶ The restricted Selmer group SelS := SelS(K ,M) sits in

0 → SelS(K ,M) → Sel(K ,M)

⊕
p∈S (·)p−−−−−−→

⊕
p∈S

H1
f (Kp,M).
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Duality of Selmer groups

Corollary (of Tate duality)

0 Sel SelS
⊕
p∈S

H1
s (Kp,M)

⊕
p∈S

H1
f (Kp,M)∨ Sel∨ Sel∨S 0.

|

Proof.
Local Tate duality gives a perfect pairing H1

s (Kp,M)× H1
f (Kp,M) → Fℓ.

The Poitou–Tate exact sequence gives exactness at

SelS →
⊕
p∈S

H1(Kp,M) → SelS∨ .

Now apply the snake lemma and diagram chase.
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Complex conjugation on Selmer groups

To compute Sel, it suffices to consider the last three terms

0 → coker

SelS →
⊕
p∈S

H1
s (Kp,M)

 → Sel∨ → Sel∨S → 0,

for some appropriate finite set of places S of K .

If τ ∈ GQ is an involution with non-zero eigenspaces M+ and M−, then

0 → coker

SelS1+ →
⊕
p∈S1

H1
s (Kp,M)+

 → Sel+∨ → Sel+∨
S1

→ 0,

0 → coker

SelS2− →
⊕
p∈S2

H1
s (Kp,M)−

 → Sel−∨ → Sel−∨
S2

→ 0,

for some appropriate finite sets of places S1 and S2 of K .
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Computing Selmer groups

Now consider M = E [ℓ].

Corollary (of Chebotarev density)
There is a finite set S of primes of Q inert in K such that

coker

 SelS−ϵ︸ ︷︷ ︸⊕
p∈S Fℓ·c(p)sp

→
⊕
p∈S

H1(Kp,E )[ℓ]
−ϵ︸ ︷︷ ︸

Fℓ·c(p)sp

 → Sel−ϵ∨ → Sel−ϵ∨
S︸ ︷︷ ︸
0

.

For any p ∈ S, there is a finite set Sp of primes of Q inert in K such that

coker

 SelSpϵ︸ ︷︷ ︸⊕
q∈Sp

Fℓ·c(pq)sq

→
⊕
q∈Sp

H1(Kp,E )[ℓ]
ϵ︸ ︷︷ ︸

Fℓ·c(pq)sq

 → Selϵ∨ → Selϵ∨Sp︸ ︷︷ ︸
Fℓ·δ(PK )

→ 0.

Proof.
Chebotarev density and a lot of Galois cohomology.
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Derivative operators

The classes c(n) ∈ H1(K ,E [ℓ]) are derived from Pn ∈ E (Hn).

It suffices to let n be a product of primes p ∤ NDℓ inert in K , so

Gal(Hn/H1) ∼=
∏
p|n

Gal(Hp/H1) ∼=
∏
p|n

Z/(p + 1)Z · σp.

Define the derivative operator Dn ∈ Z[Gal(Hn/H1)] by

Dn :=
∏
p|n

Dp,

where Dp is any solution to (σp − 1)Dp = p + 1− tr
Hp

H1
, and define

Pn :=
∑
τ∈Tn

τ(DnPn),

where Tn is a set of coset representatives for Gal(Hn/H1) in Gal(Hn/K ).
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Derived classes

Lemma
The class of Pn in E (Hn)/ℓE (Hn) is invariant under the action of
Gn := Gal(Hn/K ) and lies in the ϵn := ϵ · (−1)σ0(n) eigenspace.

Proof.
Norm compatibilities and Lemma (τ).

Define the derived class c(n) ∈ H1(K ,E [ℓ])ϵn by resn(c(n)) = δn(Pn) in

H1(Gn,E (Hn)[ℓ])
ϵn = 0

H1
f (K ,E [ℓ])ϵn H1(K ,E [ℓ])ϵn H1

s (K ,E [ℓ])ϵn

H1
f (Hn,E [ℓ])

Gnϵn H1(Hn,E [ℓ])
Gnϵn H1

s (Hn,E [ℓ])
Gnϵn

H2(Gn,E (Hn)[ℓ])
ϵn = 0.

infn
δ

resn

δn
tran
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Ramification of derived classes

Lemma
1. If p ∤ n, then c(n)sp = 0, so c(n) ∈ Sel{p|n}ϵn .

2. If p | n, then c(n)sp = 0 if and only if Pn/p ∈ ℓE (Kp).

Proof of 1 for good p ∤ ℓ.
Note that H1

s (Ip,E [ℓ]) = Hom(Ip,E [ℓ])
Gnr
p . Since (Hn)p/K is unramified

at p, the inertia subgroups of Kp and (Hn)p are both Ip, so

H1
f (Kp,E [ℓ]) H1(Kp,E [ℓ]) Hom(Ip,E [ℓ])

H1
f ((Hn)p,E [ℓ]) H1((Hn)p,E [ℓ]) Hom(Ip,E [ℓ]).

(·)s

resn |

δn (·)s

Thus c(n)sp = (resn(c(n)p))
s = 0 by exactness.

Note that 2 is precisely the reason for the assumption PK /∈ ℓE (K ).
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